NaCo2O4晶体的生长形貌和生长机理英文

NaCo2O4晶体的生长形貌和生长机理英文
NaCo2O4晶体的生长形貌和生长机理英文

第41卷第3期

人工晶体学报Vol.41No.32012年6月JOURNAL OF SYNTHETIC CRYSTALS June ,2012

Growth ,Morphology and Growth Mechanism

of NaCo 2O 4Crystals

HAN Shu-juan 1,WANG Ji-yang 1,LI Jing 1,GUO Yong-jie 1,WANG Yong-zheng 1,

ZHAO Lan-ling 1,YAO Shu-hua 2,CHEN Yan-bin 2,Boughton R.I.3

(1.State Key Laboratory of Crystal Materials ,Shandong University ,Jinan 250100,China ;

2.College of Materials Science and Engineering ,Nanjing University ,Nanjing 210093,China ;

3.Department of Physics and Astronomy ,Bowling Green State University ,Bowling Green ,Ohio 43403,USA )

(Received 28September 2011,

accepted 5March 2012)Abstract :Millimetre-sized NaCo 2O 4crystals were grown from a molten flux based on NaCl-Na 2CO 3by

spontaneous nucleation method.Details of the preparation and growth procedures are provided.The as-

grown crystals were characterized by X-ray powder diffraction (XRPD ).The morphology and growth

mechanism were investigated by scanning electron microscopy (SEM )and atomic force microscopy

(AFM ).The results show that the obtained crystal are well crystallized and indexed in a hexagonal

crystal system with lattice parameters a =b =0.2842nm ,c =1.0894nm ,and V =0.0761997nm 3.The

growth of NaCo 2O 4single crystals was controlled by a two-dimensional (2D )layer-by-layer mechanism

acting along the c -axis.Furthermore ,the morphology of the crystals was also interpreted in the viewpoint

of anionic coordination polyhedron growth units.

Key words :layered compounds ;crystal growth ;microstructure

Received date :2011-09-28;accepted date :2012-03-05

Foundation item :National Natural Science Foundation of China (50872066);National Fundamental Research Project (2010CB833103);Graduate

Independent Innovation Foundation of Shandong University (GIIFSDU )

Biography :HAN Shu-juan (1983-),female ,from Shandong province ,Doctor.E-mail :shujuanhan84@163.com

Corresponding author :WANG Ji-yang ,professor.E-mail address :jywang@sdu.edu.cn

CLC number :O78Document code :A Article ID :1000-985X (2012)03-0573-05

NaCo 2O 4晶体的生长,形貌和生长机理研究

韩树娟1,王继扬1,李静1,郭永解1,王永政1,赵兰玲1,

姚淑华2,陈延彬2,

Boughton R.I.3(1.山东大学晶体材料国家重点实验室,济南250100;2.南京大学材料科学与工程学院,南京210093;

3.博林格林州立大学天文和物理学系,俄亥俄博林格林43403)

摘要:采用自发成核方法,以NaCl-Na 2CO 3为助熔剂,生长了毫米级的NaCo 2O 4晶体。通过X 射线衍射对晶体作了

表征。利用扫描电子显微镜和原子力显微镜研究了晶体的形貌和生长机理。结果表明:所得晶体是NaCo 2O 4,属于

六方晶系,晶胞参数:a =b =0.2842nm ,c =1.0894nm ,V =0.0761997nm 3。NaCo 2O 4晶体是沿c 轴层状生长的,同

时从阴离子配位多面体的角度分析了晶体的形貌。

关键词:层状化合物;晶体生长;微观结构

574人工晶体学报第41卷1Introduction

Recently ,a number of studies have been carried out to investigate the thermoelectric properties of cobalt oxides as potential candidates for thermoelectric applications ,motivated by their attractive advantages such as high thermal and chemical stability ,excellent oxidation resistance ,low costs and weak toxicity [1-3].Layered compounds ,such as NaCo 2O 4[4]and Ca 3Co 4O 9[5]are found to exhibit interesting thermoelectric performance ,which is attributed to their unique layered structure and the presence of mixed Co valences [6-8].

There has been increasing interest in the growth and characterization of NaCo 2O 4since single crystal NaCo 2O 4was discovered to be a potentially important thermoelectric material by Terasaki [9].Ken Kurosaki et al.[10],Shin Tajima et al.[11]and Jinguang Cheng et al.[12]reported the thermoelectric properties of NaCo 2O 4polycrystal and indicated its potential for high-temperature thermoelectric application.The electronic structure of NaCo 2O 4was studied by Woosuck et al.[13]and Ying Xu et al.[14]using different methods.They reported that the compound showed metallic character and had large effective mass of the charge carrier.The Na ions played the role of providing valence electrons.In addition ,Santi et al.fabricated the NaCo 2O 4nanofibers [15]by electrospinning.However ,no detailed investigation of the morphology and growth mechanism of NaCo 2O 4crystals has yet been reported.

In this paper ,The details of NaCo 2O 4crystals growth from the flux system based on NaCl-Na 2CO 3by the spontaneous nucleation method were reported.The morphology and growth mechanism of the as-grown crystals were investigated by SEM and AFM.And the morphology of the crystals was also interpreted in the viewpoint of anionic coordination polyhedron growth units for the first time.

2

Experimental 2.1Crystal growth

The NaCo 2O 4crystals were grown from the flux melt based on NaCl-Na 2CO 3.The raw materials were analytical pure reagents Co 2O 3(99.9wt%),Na 2CO 3(99.5wt%)and NaCl (99.5wt%).The crystal growth experiment was performed in a vertical electric furnace controlled by an FP21digital microprocessor temperature programmer-controller (Programmable PID regulator ,Island Power Company ,Japan )in air.The temperature was measured using a thermocouple.

Fig.1SEM images of the selected NaCo 2O 4crystals

The starting materials Co 2O 3,Na 2CO 3and NaCl in a weight ratio of 1?6?10were completely mixed and put into a platinum crucible with dimensions of 40mm in diameter and 50mm in height.The platinum crucible was placed in the center of a vertical ,programmable temperature furnace which was not sealed.So the crucible containing the raw materials was open to air.The mixture was heated to 900?at a rate of 100?/h and held at this temperature for two days to provide a mix as homogeneous as possible.Then the temperature was lowered to 830?at a rate of 9?/h.After this stage ,the melt was lowered to 710?at a rate of 2?/h ,and then cooled

第3期HAN Shu-juan et al:Growth,Morphology and Growth Mechanism of NaCo2O4Crystals575

to room temperature naturally.Finally,millimeter-sized crystals were obtained.The as-grown crystals were mechanically separated from the flux without washing in water.A typical millimeter-sized crystal that was obtained is shown in Fig.1a.

2.2X-ray powder diffraction analysis

X-ray powder diffraction was used to estimate lattice parameters of the as-grown crystals at room temperature.The crystals were ground into powder form for examination.XRD data was recorded on Japan Burker by Bruker,(which is a German brand,not Japan one)diffractometer system with graphite monochromatized Cu K

α

irradiation (λ=0.15418nm),together with a diffractometer scan step size of2θ=0.02?,and a counting time of2s/step,over a2θrange of10?-70?.

2.3Surface morphology and microstructure

The surface morphology and microstructure of the NaCo

2O

4

crystals were investigated using scanning electron

microscopy(SEM,Hitachi,S-4800)and atomic force microscopy(AFM).The AFM images were collected in ambient atmosphere at room temperature in contact mode using a commercial Nanoscope IIIa MultiMode AFM instrument.A J-type scanner and a standard SiN cantilever integrated with NP tips were used.

3Results and discussion

3.1Flux growth and characteristics of NaCo

2O

4

crystal

Fig.2XRD patterns of the as-grown crystals

By comparison with other crystal growth methods,the flux growth technique is especially preferable because it readily allows crystal growth at a temperature well below the melting point of the solute.In addition,crystals grown from the flux have regular morphology[16].Black

hexagonal-plate crystals of NaCo

2O

4

were obtained.The

images obtained from the SEM studies of the selected

NaCo

2O

4

crystals are shown in Fig.1.It can be found

that the crystals obtained are millimeter-sized.Due to

hexagonal layered structure of NaCo

2O

4

crystals,some

crystals are thin platelets and exhibit the expected hexagonal shape,as shown in Fig.1a.However,during the crystal growth,owing to the fluctuation of the temperature gradient or composition,the atomic deposition and arrangement to form the crystal at the melt-crystal interface are very easily interrupted,leading to the forming of the crystals with the unperfect hexagonal shape,such as Fig.1b.

3.2Phase identification of the crystals

Fig.2shows the X-ray powder diffraction pattern of the as-grown crystals.All of the peaks in Fig.2can be

indexed in accordance with the standard JCPDS Card File27-682for NaCo

2O

4.

The lattice parameters were calculated using the program TOPASS from the observed2values(see Table1).All the results are in agreement with the report of Ken Kurosaki[10].

Table1Lattice parameters of NaCo

2O

4

crystal

Lattice parameters a/nm b/nm c/nm

Reference[10]0.28340.28341.0899 This work0.28420.28421.0894

3.3Surface morphology and growth mechanism analysis

From observations of the SEM(Fig.3)and AFM(Fig.4)results on the NaCo

2O

4

crystals,it is clear that the

晶体生长的机理

第五章 一、什么是成核相变、基本条件 成核相变:在亚稳相中形成小体积新相的相变过程。 条件:1、热力学条件:ΔG=G S-G L<0;ΔT>0。2、结构条件:能量起伏、结构起伏、浓度起伏、扩散→短程规则排列(大小不等,存在时间短,时聚时散,与固相有相似结构,之间有共享原子)→晶坯→晶胞。 相变驱动力:f=-Δg/ΩS;Δg每个原子由流体相转变成晶体相所引起的自由能降低;ΩS单个原子的体积。 气相生长体系:(T0 P0)→(T0 P1),Δg=-kT0σ,σ=α-1= P1/ P0;溶液生长体系:(C0 T0 P0)→(C1 T0 P0),Δg=-kT0σ,σ=α-1= C1/ C0;熔体生长体系:Δg=-l mΔT/T m,l m单个原子的相变潜热。 二、均匀成核、非均匀成核 不含结晶物质时的成核为一次成核,包括均匀成核(自发产生,不是靠外来的质点或基底诱发)和非均匀成核。 三、均匀成核的临界晶核半径与临界晶核型成功 临界晶核:成核过程中,能稳定存在并继续长大的最小尺寸晶核。 ΔG=ΔG V+ΔG S,球形核ΔG=-4πr3Δg/ΩS+4πr2γSL→r C=2γSLΩS/Δg,r0,且随着r的增加,ΔG不断增大,r>r C时,ΔG<0,且随着r的增加,ΔG减小,r=r C时,往两边都有ΔG<0,称r C为临界半径。 临界晶核型成功:ΔG C(r C)=A CγSL/3由能量起伏提供。 熔体生长体系:r C=2γSLΩS T m/l m ΔT;ΔG C(r C)=16πγ3SLΩ2S T2m/3l2m(ΔT)2 四、非均匀成核(体系中各处成核几率不相等的成核过程) 表面张力与接触角的关系:σLB = σSB + σLS cosθ ΔG*(r)= (-4πr3Δg/ΩS+4πr2σSL)·f(θ);r*C=2γSLΩS/Δg;ΔG*C(r*C)=ΔG C(r C) ·f(θ)

盐类结晶实验报告-结晶与晶体生长形态观察

盐类结晶实验报告 一、实验名称: 盐类结晶与晶体生长形态观察 二、实验目的: 1.通过观察盐类的结晶过程,掌握晶体结晶的基本规律及特点。为理解金属的结晶理论建立感性认识。 2.熟悉晶体生长形态及不同结晶条件对晶粒大小的影响。观察具有枝晶组织的金相照片及其有枝晶特征的铸件或铸锭表面,建立金属晶体以树枝状形态成长的直观概念。 3.掌握冷却速度与过冷度的关系。 三、实验原理概述: 金属及其合金的结晶是在液态冷却的过程中进行的,需要有一定的过冷度,才能开始结晶。而金属和合金的成分、液相中的温度梯度和凝固速度是影响成分过冷的主要因素。晶体的生长形态与成分过冷区的大小密切相关,在成分过冷区较窄时形成胞状晶,而成分过冷区较大时,则形成树枝晶。由于液态金属的结晶过程难以直接观察,而盐类亦是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。 在玻璃片上滴一滴接近饱和的热氯化氨(NH4CI)或硝酸铅[Pb(NO3)2]水溶液,随着水分蒸发,温度降低,溶液逐渐变浓而达到饱和,继而开始结晶。我们可观察到其结晶大致可分为三个阶段:第一阶段开始于液滴边缘,因该处最薄,蒸发最快,易于形核,故产生大量晶核而先形成一圈细小的等轴晶(如图1所示),接着形成较粗大的柱状晶(如图2所示)。因液滴的饱和程序是由外向里,故位向利于生长的等轴晶得以继续长大,形成伸向中心的柱状晶。第三阶段是在液滴中心形成杂乱的树枝状晶,且枝晶间有许多空隙(如图3所示)。这是因液滴已越来越薄,蒸发较快,晶核亦易形成,然而由于已无充足的溶液补充,结晶出的晶体填布满枝晶间的空隙,从而能观察到明显的枝晶。 四、材料与设备: 1)配置好的质量分数为25%~30%氯化铵水溶液。 2)玻璃片、量筒、培养皿、玻璃棒、小烧杯、氯化铵、冰块。 3)磁力搅拌器、温度计。 4)生物显微镜。 五、实验步骤: 1.将质量分数为25%~30%氯化铵水溶液,加热到80~90℃,观察在下列条件下的结晶过程及晶体生长形态。 1)将溶液倒入培养皿中空冷结晶。 2)将溶液滴在玻璃片上,在生物显微镜下空冷结晶。 3)将溶液滴入试管中空冷结晶。 4)在培养皿中撒入少许氢化氨粉末并空冷结晶。 5)将培养皿、试管置于冰块上结晶。 2.比较不同条件下对氯化铵水溶液空冷结晶组织的影响: 氯化钠溶液在玻璃皿中空冷时由于玻璃皿边缘与中心的介质不同,造成氯化钠溶液洁净的不均匀,从而造成晶粒的大小不同;另外撒入少量的氯化铵粉末后粉末在促进结晶的同时也成为氯化铵的成长中心,析出的氯化铵依附在撒入的粉末上成长,即撒入的粉末有引导结晶的作用,实际的形态和撒入的量、分布有关。

晶体的生长机理及条件对晶型的影响

1.晶体生长机理 理根据经典的晶体生长理论,液相反应体系中晶体生长包括以下步骤:①营养料在水溶液介质里溶解,以离子、分子团的形式进入溶液(溶 解阶段):②由于体系中存在十分有效的热对流以及溶解区和生长区 之间的浓度差,这些离子、分子或离子团被输运到生长区(输运阶段); ③离子、分子或离子团在生长界面上的吸附、分解与脱附;④吸附物质在界面上的运动;⑤结晶(③、④、⑤统称为结晶阶段)。液相条件下生长的晶体晶面发育完整,晶体的结晶形貌与生长条件密切相关,同种晶体在不同的生长条件下可能有不同的结晶形貌。简单套用经典晶体生长理论不能很好解释许多实验现象,因此在大量实验的基础 上产生了“生长基元”理论模型。。“生长基元"理论模型认为在上述输运阶段②,溶解进入溶液的离子、分子或离子团之间发生反应,形成具有一定几何构型的聚合体一生长基元,生长基元的大小和结构与溶液中的反应条件有关。在一个水溶液反应体系里,同时存在多种形式的生长基元,它们之间建立起动态平衡。某种生长基元越稳定(可从能量和几何构型两方面加以考察),其在体系里出现的几率就越大。在界面上叠合的生长基元必须满足晶面结晶取向的要求,而生长基元在界面上叠合的难易程度决定了该面族的生长速率。从结晶学观点看:生长基元中的正离子与满足一定配位要求的负离子相联结,因此又进一步被称为“负离子配位多面体生长基元"。生长基元模型将晶体的结晶形貌、晶体的结构和生长条件有机地统一起来,很好地解释了许多实验现象。

2晶体生长的影响条件 对于水热合成,晶粒的形成经历了“溶解一结晶"两个阶段。水热法制备常采用固体粉末或新配制的凝胶作为前驱物,所谓“溶解”是指在水热反应初期,前驱物微粒之间的团聚和联结遭到破坏,以使微粒自身在水热介质中溶解,以离子或离子团的形式进入溶液,进而成核、结晶而形成晶粒。在水热条件下,晶体自由生长,晶体各个面族的生长习性可以得到充分显露,由于水热条件下晶体生长是在非受迫的情况下进行,所以生长温度压力、溶液、溶液流向和温度梯度对晶体各个面族的生长速率影响很明显,表现在晶体的结晶形态变化。总的来说,在水热合成中影响材料形貌、大小、结构的因素主要有温度、原材料的种类、浓度、比例、pH值、反应时间、有机物添加剂等 (1)反应温度 反应温度提供合成材料的原动力,因此反应制备过程需要高于一定的温度,不同的材料,不同的体系差别很大。一般温度越高,产物的直径越大,而结晶性会更好,并且容易形成其稳定相。 (2)原料 原料的种类对产物的形貌、大小有很大的影响。在液相反应体系中,不同的原料直接决定了溶液中生成先驱体的浓度,先驱体发生化学反应生成产物达到一定的过饱和度时,结晶析出生长晶体。因此原料的不同得到先驱体的反应特性也不同,如水解速率、浓度等,从而影响产物的形态。 (3)其它条件

单晶培养.单晶生长原理及其常规方法

单晶的培养 物质的结构决定物质的物理化学性质和性能,同时物理化学性质和性能是物质结构的反映。只有充分了解物质结构,才能深入认识和理解物质的性能,才能更好地改进化合物和材料的性质与功能,设计出性能良好的新化合物和新材料。单晶结构分析可以提供一个化合物在固态中所有原子的精确空间位置、原子的连接形式、分子构象、准确的键长和键角等数据,从而为化学、材料科学和生命科学等研究提供广泛而重要的信息。X射线晶体结构分析的过程,从单晶培养开始,到晶体的挑选与安置,继而使用衍射仪测量衍射数据,再利用各种结构分析与数据拟合方法,进行晶体结构解析与结构精修,最后得到各种晶体结构的几何数据与结构图形等结果。要获得比较理想的衍射数据,首先必须获得质量好的单晶。衍射实验所需要单晶的培养,需要采用合适的方法,以获得质量好、尺寸合适的晶体。晶体的生长和质量主要依赖于晶核形成和生长的速率。如果晶核形成速率大于生长速率,就会形成大量的微晶,并容易出现晶体团聚。相反,太快的生长速率会引起晶体出现缺陷。以下是几种常用的有效的方法和一些实用的建议。 1.溶液中晶体的生长 从溶液中将化合物结晶出来,是单晶体生长的最常用的形式。它是通过冷却或蒸发化合物的饱和溶液,让化合物从溶液中结晶出来。这时最好采取各种必要的措施,使其缓慢冷却或蒸发,以期获得比较完美的晶体。因为晶体的生长和质量主要依赖于晶核形成和生长的速率。如果晶核形成速率大于生长速率,就会形成大量的微晶,并容易出现晶体团聚。相反,太快的生长速率会引起晶体出现缺陷。在实验中,通常注意以下几个方面: ①为了减少晶核成长位置的数目,最好使用干净、光滑的玻璃杯等容器。 ②应在非震动环境中,较高温度下进行结晶,因为较高温度条件下结晶可以减少化合物与不必要溶剂共结晶的几率,同时,必须注意,尽量不要让溶剂完全挥发。因为溶剂完全挥发后,容易导致晶体相互团聚或者沾染杂质,不利于获得纯相、质量优良的晶体。 ③可以尝试不同的溶剂,但应尽量避免使用氯仿和四氯化碳等含有重原子并且通常会在晶体中形成无序结构的溶剂。 2.界面扩散法 如果化合物有两种反应物反应生成,而两种反应物可以分别溶于不同(尤其是不太互溶的)溶剂中,可以用溶液界面扩散法(liuuiddi恤sion)。将A溶液小心的加到B溶液上,化学反应将在这两种溶液的接触面开始,晶体就可能在溶液界面附近产生。通常溶液慢慢扩散进另一种溶液时,会在界面附近产生好的晶体。如果结晶速率太快,可以利用凝胶体等方法,进一步降低扩散速率,以求结晶完美。 3.蒸汽扩散法 蒸汽扩散法(vapordi恤sion)的操作也很简单。选择两种对目标化合物溶解度不同的溶剂A和B,且A和B有一定的互溶性。把要结晶的化合物溶解在盛于

晶体生长机理与晶体形貌的控制

晶体生长机理与晶体形貌的控制 张凯1003011020 摘要:本文综述了晶体生长与晶体形貌的基本理论和研究进展,介绍了层生长理论,分析了研究晶体宏观形貌与内部结构关系的3种主要理论,即布拉维法则、周期键链理论和负离子配位多面体生长基元理论。 关键词:晶体生长机理晶体结构晶体形貌晶体 1.引言 固态物质分为晶体和非晶体。从宏观上看,晶体都有自己独特的、呈对称性的形状。晶体在不同的方向上有不同的物理性质,如机械强度、导热性、热膨胀、导电性等,称为各向异性。晶体形态的变化,受内部结构和外部生长环境的控制。晶体形态是其成份和内部结构的外在反映,一定成份和内部结构的晶体具有一定的形态特征,因而晶体外形在一定程度上反映了其内部结构特征。今天,晶体学与晶体生长学都发展到了非常高的理论水平,虽然也不断地有一些晶体形貌方面的研究成果,但都停留在观察、测量、描述、推测生长机理的水平上。然而,在高新技术与前沿理论突飞猛进的今天,晶体形貌学必然也会受到冲击与挑战,积极地迎接挑战,与前沿科学理论技术接轨,晶体形貌学就会有新的突破,并且与历史上 一样也会对其它科学的发展做出贡献。 2.层生长理论 科塞尔(Kossel,1927)首先提出,后经斯特兰斯基(Stranski)加以发展的晶体的层生长理论亦称为科塞尔—斯特兰斯基理论。 它是论述在晶核的光滑表面上生长一层原子面时,质点在界面上进入晶格"座位"的最佳位置是具有三面凹入角的位置。质点在此位置上与晶核结合成键放出的能量最大。因为每一个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多,释放出能量最大的位置。质点在生长中的晶体表面上所可能有的各种生长位置:k为曲折面,具有三面凹人角,是最有利的生长位置;其次是S阶梯面,具有二面凹入角的位置;最不利的生长位置是A。由此可以得出如下的结论即晶体在理想情况下生长时,先长一条行列,然后长相邻的行列。在长满一层面网后,再开始长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体的层生长理论,用它可以解释如下的一些生长现象。 1)晶体常生长成为面平、棱直的多面体形态。 2)在晶体生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状

晶核的形成和长大

第六讲晶核的长大 第五节晶核长大 一、主要内容: 液固界面的微观结构 晶体的长大机制 液固界面前沿液体中的温度梯度 晶体生长的界面形状-晶体形态 长大速度 晶粒大小的控制 二、要点: 液固界面的微观结构,光滑界面,粗糙界面的概念,杰克逊因子,不同金属结晶时的液固界面,晶体的长大机制,二维晶核长大机制,螺型位错长大机制,垂直长大机制, 液固界面前沿液体中的温度梯度,正温度梯度,负温度梯度。晶体生长的界面形状,晶体形态,树枝晶,等轴晶,长大速度,晶粒大小的控制 三、方法说明: 通过对液固界面的微观结构的讨论,说明金属型界面和非金属型界面的不同,结晶后的晶界相界的形态也不同,即晶粒的形状不同,晶粒的形状和大小对金属的性能有直接影响。液相中的温度梯度对金属的生长速度和生长方式有直接的影响,通过以上的讨论使学生对如何判断金属中的相,和如何得到所需的晶粒大小和形状有一个清楚的认识。 授课内容: 形核之后,晶体长大,其涉及到长大的形态,长大方式和长大速率。长大形态常反映出凝固后晶体的性质,而长大方式决定了长大速率,也就是决定结晶动力学的重要因素。 晶核长大的条件:第一要求液相能不断的向晶体扩散供应原子, 第二要求晶体表面能够不断的牢固的接纳这些原子。 晶核长大需要在过冷的液体中进行,但是需要的过冷度要比形核时的小。 一、固液界面的微观结构 液固界面的微观结构分为两类:光滑界面和粗糙界面 1、光滑界面:如图,在界面的上部,所有原子都处于液体状态,在界面的下部所有的 原子都处于固体状态。这种界面通常为固相的密排面,呈曲折的锯齿状又称为小平面界面。 2、粗糙界面:如图,从微观尺寸看这种界面是平整的,当从原子的尺度看这种界面是 高低不平的,液固界面的原子犬牙交错的分布着,所以又叫非小平面界面。 3、如果界面上有近0%或100%的位置为晶体原子所占有,则界面是光滑界面。 界面自由能的变化可用公式表示: 二、晶体长大机制 1、二维晶核长大机制 光滑界面时晶体的长大只能依靠二维形核机制方式长大。 2、螺型位错长大机制 晶体长大时,难免形成缺陷。实际上,具有光滑界面的晶体是以这种方式长大的,比二维机制方式长大快得多。 3、垂直长大机制 垂直长大速度很快,大部分金属晶体均以这种方式长大。 三、固液界面前沿液体中的温度梯度

晶体生长机理研究综述

晶体生长机理研究综述 摘要 晶体生长机理是研究金属材料的基础,它本质上就是理解晶体内部结构、缺陷、生长条件和晶体形态之间的关系。通过改变生长条件来控制晶体内部缺陷的形成从而改善和提高晶体的质量和性能使材料的强度大大增强开发材料的使用潜能。本文主要介绍了晶体生长的基本过程和生长机理,晶体生长理论研究的技术和手段,控制晶体生长的途径以及控制晶体生长的途径。 关键词:晶体结构晶界晶须扩散成核 一、晶体生长基本过程 从宏观角度看,晶体生长过程是晶体-环境相、蒸气、溶液、熔体、界面向环境相中不断推移的过程,也就是由包含组成晶体单元的母相从低秩序相向高度有序晶相的转变从微观角度来看,晶体生长过程可以看作一个基元过程,所谓基元是指结晶过程中最基本的结构单元,从广义上说,基元可以是原子、分子,也可以是具有一定几何构型的原子分子聚集体所谓的基元过程包括以下主要步骤:(1)基元的形成:在一定的生长条件下,环境相中物质相互作用,动态地形成不同结构形式的基元,这些基元不停地运动并相互转化,随时产生或消失(2)基元在生长界面的吸附:由于对流~热力学无规则的运动或原子间的吸引力,基元运动到界面上并被吸附 (3)基元在界面的运动:基元由于热力学的驱动,在界面上迁移运动 (4)基元在界面上结晶或脱附:在界面上依附的基元,经过一定的运动,可能在界面某一适当的位置结晶并长入固相,或者脱附而重新回到环境相中。 晶体内部结构、环境相状态及生长条件都将直接影响晶体生长的基元过程。环境相及生长条件的影响集中体现于基元的形成过程之中;而不同结构的生长基元在不同晶面族上的吸附、运动、结晶或脱附过程主要与晶体内部结构相关联。不同结构的晶体具有不同的生长形态。对于同一晶体,不同的生长条件可能产生不同结构的生长基元,最终形成不同形态的晶体。同种晶体可能有多种结构的物相,即同质异相体,这也是由于生长条件不同基元过程不同而导致的结果,生长机理如下: 1.1扩散控制机理从溶液相中生长出晶体,首要的问题是溶质必须从过饱和溶液中运送到晶体表面,并按照晶体结构重排。若这种运送受速率控制,则扩散和对流将会起重要作用。当晶体粒度不大于1Oum时,在正常重力场或搅拌速率很低的情况下,晶体的生长机理为扩散控制机理。 1.2 成核控制机理在晶体生长过程中,成核控制远不如扩散控制那么常见但对于很小的晶体,可能不存在位错或其它缺陷。生长是由分子或离子一层一层

晶体生长规律

1.如何知道晶体沿哪个晶面生长?一个晶体有多个晶面,怎么知道它沿哪个晶面生长?是不是沿XRD测出来的峰最强的那个晶面生长?扫描电镜可以观察晶体有多个面,如何知道每个面所对应的晶面?答:一般是晶体的密排面,因为此晶面的自由能最低。这个和温度有关,温度高就是热力学生长,能克服较大势垒,一般沿111面长成球或者四方。温度低的话,就是动力学生长,沿着100面,成为柱状了。对于完美无缺陷的晶体来说,原子间距最小的面最容易生长,如111面,长成球或者四方。改变外界条件,如温度、PH值、表面活性剂等,都会影响晶体的生长。对于缺陷晶体来说,除以上因素外,杂质缺陷、螺旋位错等也会影响晶体的生长。如果按照正常生长的话,都是密排面生长,但是熔体的条件改变后生长方式发生改变,例如铝硅合金的变质,加入变质剂后就不是密排面生长,而是频繁的分枝,各个面可能都有。完美条件下是沿吴立夫面生长,但总会有外界条件影响晶面的表面能,导致吴立夫面不是表面能最低的面,所以晶体露在外边的面就不一定是吴立夫面了,但应该是该生长条件下表面能最低的面。 HRTEM 和SAED可以表征生长方向~晶面能量越高,原子堆积速度越快,垂直该晶面方向的生长速度就快。而这样的后果有两个: 1.晶体沿垂直该晶面的方向快速生长; 2.该晶面在生长过程中消失。 引晶是拉晶里面的一个步骤,一般拉晶是指单晶生长的整个过程,其中包括清炉、装料、抽空、化料、引晶、放肩、转肩、等径、收尾、

停炉。拉晶有些人是叫长晶,引晶一般是指将籽晶(又称晶种)放入溶液硅中,然后沿着籽晶引出一段细晶,这过程主要是为了排除位错和缺陷,使后面的晶体能够较好的生长。

针状晶体生长机理

Journal of Crystal Growth 310(2008)110–115 Crystallization mechanisms of acicular crystals Franc -ois Puel a ,Elodie Verdurand a ,Pascal Taulelle b ,Christine Bebon a ,Didier Colson a , Jean-Paul Klein a ,Ste phane Veesler b,?a LAGEP,UMR CNRS 5007,Universite ′Lyon 1,CPE Lyon,Ba ?t.308G,43Bd du 11novembre 1918,F-69622Villeurbanne Cedex,France b Centre de Recherche en Matie `re Condense ′e et Nanosciences (CRMCN)1—CNRS,Campus de Luminy,Case 913,F-13288Marseille Cedex 09,France Received 10September 2007;accepted 3October 2007 Communicated by K.Sato Available online 9October 2007 Abstract In this contribution,we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals.For all organic crystals studied in this article,layer-by-layer growth of the lateral faces is very slow and clear,as soon as the supersaturation is high enough,there is competition between growth and surface-activated secondary nucleation.This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis;this is explained by regular over-and inter-growths as in the case of twinning.And when supersaturation is even higher,nucleation is fast and random. In an industrial continuous crystallization,the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles,which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds,thus leading to slower growing faces.When an activated mechanism is involved such as a secondary surface nucleation,it is no longer possible to obtain a steady state.Therefore,the crystal number,size and habit vary signi?cantly with time,leading to troubles in the downstream processing operations and to modi?cations of the ?nal solid-speci?c properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals,and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.r 2007Elsevier B.V.All rights reserved. PACS:81.10.Aj;81.10.Dn;78.30.Jw Keywords:A1.Crystal morphology;A2.Growth from solutions;https://www.360docs.net/doc/7619161104.html,anic compounds 1.Introduction Many organic molecules exhibit anisotropic structural properties in their crystalline form,which gives rise to acicular or needle-like crystals.In the chemical and pharmaceutical industry,crystallization from solution is used as a separation technique,and this crystal habit is usually not desirable,especially when the internal length-to-width ratio is high,as it will lead to problems in downstream processes (?ltration,drying,storage,handling,etc.). A better understanding of the mechanisms of nucleation and growth of these needle-like crystals will therefore lead to better control of crystallization processes.In the literature,papers on molecular modeling of these needle-like crystals [1–3]suggest that in the case of needle-like crystals,there is no slow-growing face in the needle direction.Practical aspects have been also studied for a few years now in our different research teams [4–6]. In this contribution,we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular https://www.360docs.net/doc/7619161104.html,/locate/jcrysgro 0022-0248/$-see front matter r 2007Elsevier B.V.All rights reserved.doi:10.1016/j.jcrysgro.2007.10.006 ?Corresponding author.Tel.:+33662922866;fax:+33491418916. E-mail address:veesler@crmcn.univ-mrs.fr (S.Veesler). 1 Laboratory associated to the Universities Aix-Marseille II and III.

NaCo2O4晶体的生长形貌和生长机理英文

第41卷第3期 人工晶体学报Vol.41No.32012年6月JOURNAL OF SYNTHETIC CRYSTALS June ,2012 Growth ,Morphology and Growth Mechanism of NaCo 2O 4Crystals HAN Shu-juan 1,WANG Ji-yang 1,LI Jing 1,GUO Yong-jie 1,WANG Yong-zheng 1, ZHAO Lan-ling 1,YAO Shu-hua 2,CHEN Yan-bin 2,Boughton R.I.3 (1.State Key Laboratory of Crystal Materials ,Shandong University ,Jinan 250100,China ; 2.College of Materials Science and Engineering ,Nanjing University ,Nanjing 210093,China ; 3.Department of Physics and Astronomy ,Bowling Green State University ,Bowling Green ,Ohio 43403,USA ) (Received 28September 2011, accepted 5March 2012)Abstract :Millimetre-sized NaCo 2O 4crystals were grown from a molten flux based on NaCl-Na 2CO 3by spontaneous nucleation method.Details of the preparation and growth procedures are provided.The as- grown crystals were characterized by X-ray powder diffraction (XRPD ).The morphology and growth mechanism were investigated by scanning electron microscopy (SEM )and atomic force microscopy (AFM ).The results show that the obtained crystal are well crystallized and indexed in a hexagonal crystal system with lattice parameters a =b =0.2842nm ,c =1.0894nm ,and V =0.0761997nm 3.The growth of NaCo 2O 4single crystals was controlled by a two-dimensional (2D )layer-by-layer mechanism acting along the c -axis.Furthermore ,the morphology of the crystals was also interpreted in the viewpoint of anionic coordination polyhedron growth units. Key words :layered compounds ;crystal growth ;microstructure Received date :2011-09-28;accepted date :2012-03-05 Foundation item :National Natural Science Foundation of China (50872066);National Fundamental Research Project (2010CB833103);Graduate Independent Innovation Foundation of Shandong University (GIIFSDU ) Biography :HAN Shu-juan (1983-),female ,from Shandong province ,Doctor.E-mail :shujuanhan84@163.com Corresponding author :WANG Ji-yang ,professor.E-mail address :jywang@sdu.edu.cn CLC number :O78Document code :A Article ID :1000-985X (2012)03-0573-05 NaCo 2O 4晶体的生长,形貌和生长机理研究 韩树娟1,王继扬1,李静1,郭永解1,王永政1,赵兰玲1, 姚淑华2,陈延彬2, Boughton R.I.3(1.山东大学晶体材料国家重点实验室,济南250100;2.南京大学材料科学与工程学院,南京210093; 3.博林格林州立大学天文和物理学系,俄亥俄博林格林43403) 摘要:采用自发成核方法,以NaCl-Na 2CO 3为助熔剂,生长了毫米级的NaCo 2O 4晶体。通过X 射线衍射对晶体作了 表征。利用扫描电子显微镜和原子力显微镜研究了晶体的形貌和生长机理。结果表明:所得晶体是NaCo 2O 4,属于 六方晶系,晶胞参数:a =b =0.2842nm ,c =1.0894nm ,V =0.0761997nm 3。NaCo 2O 4晶体是沿c 轴层状生长的,同 时从阴离子配位多面体的角度分析了晶体的形貌。 关键词:层状化合物;晶体生长;微观结构

晶体生长原理与技术

晶体生长原理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:晶体生长原理及电化学基础 所属专业:金属材料物理学 课程性质:专业方向选修课,学位课,必修环节 学分: 4 学时: 72 (二)课程简介、目标与任务; 课程简介:本课程将在绪论中,对人工晶体生长的基本概念,研究范畴,研究历史和晶体生长 方法分类等基本概念进行简要介绍。然后分4篇进行论述。第一篇为晶体生长的基本原理,将分5 章,对晶体生长过程的热力学和动力学原理,结晶界面形貌与结构,形核与生长的动力学过程进行 描述。第二篇为晶体生长的技术基础,将分3章,对晶体生长过程的涉及的传热、传质及流体流动 原理,晶体生长过程的化学原理和晶体生长过程控制涉及的物理原理进行论述。第三篇为晶体生长 技术,将分4章对熔体生长、溶液生长、气相生长的主要方法及其控制原理进行论述。第四篇,晶 体的性能表征与缺陷,将分2章,分别对晶体的结构、性能的主要表征方法,晶体的结构缺陷形成 与控制原理进行论述。 目标与任务:掌握晶体生长的基本物理原理,学会将基本物理知识运用与晶体生长过程分析讨论。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 修完普通物理学及四大力学课程、固体物理课程后才可学习该课程,该课程向前联系基本物理知识的运用,向后衔接研究生科学研究中遇到的实际结晶学问题。 (四)教材与主要参考书。 教材两本: 《晶体生长原理与技术》,介万奇,北京:科学出版社,2010 参考书: 《晶体生长科学与技术》[上、下册],张克从,凝聚态物理学丛书,北京:科学出版社,1997 《人工晶体:生长技术、性能与应用》,张玉龙,唐磊,化学工业出版社,2005 《晶体生长基础》,姚连增,中国科学技术大学出版社,1995

晶体生长成核理论

*********想请教一下Ostwald ripening到底是个怎样的过程?************** Ostwald Ripening 也叫第二相粒子粗化,是第二相粒子脱溶形核后,由于毛细管效应而导致小尺寸粒子周围的母相组元浓度高于大粒子周围的母相组元浓度,(小尺寸粒子Gibbs自由能高于大粒子,致使在两相平衡时母相浓度偏高,这可以由公切线定则看出),两处的母相组元浓度梯度导致了组元向低浓度区扩散,从而为大粒子继续吸收过饱和组元而继续长大提供物质供应,这过程就致使小粒子又溶解消失,组元转移到到了大粒子里。并非小粒子直接被大粒子吸收合并。这一过程的驱动力就是脱溶相粒子大小尺寸前后的自由能之差。 熟化是指:小粒子能量高,不稳定,只有融合成较大的粒子才能稳定存在,所以小粒子经常会聚集成较大的粒子。 Ostwald熟化Wilhelm Ostwald在1896年发现的的一种描述固溶体中多相结构随着时间的变化而变化的一种现象。当一相从固体中析出的时候,一些具有高能的因素会导致大的析出物长大,而小的析出物萎缩。 纳米上,指的是小纳米粒子融合,生成粒径更大了的纳米粒子 看一下zeng huachun的文章吧。 就是小颗粒溶解,大颗粒长大,物质通过这个过程重新分布 形成单晶结构的方式有几种,Ostwald ripening是最经典的一种,就是一楼所说的“从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶”。同时最近几年,Banfiled又提出了一种新的晶体生长机制也能形成单晶结构,oriented attachment, 多个取向不一致的单晶纳米颗,通过粒子的旋转,使得晶格取向一致,向后通过定向附着生长(oreinted attachment)使这些小单晶生长成为一个大单晶,当然定向附着的过程出难免会出现一些位错和缺陷,这种生长机理形成的单晶的特点同Ostwald ripening不同,OR形成的单晶大多是规则的,给材料本身晶体结构相关,而OA形成的单晶结构在形貌上则没有限制,任何形状和结构的单晶材料都能通过此机理形成。还有,Alivisatos最近报道的Kirkendall Effect 也能形成单晶结构,在其论文中报道了通过这种机理形成的直径只有几十个纳米的单晶空心球,这种结构以传统的Ostwald ripening 来看貌似是不可实现的,但通过别的生长机理就能成为现实。 Ostwald发生的过程包括小于一个临界尺寸的粒子的溶解,然后质量转移到大于这个临界尺寸的粒子上. Ostwald过程不同于dissolution-recrystallization过程,因为它强调的是小粒子的溶解,大粒子依靠摄取小粒子的质量进行生长.Ostwald 过程发生的驱动力是粒子相总表面积的降低产生的总界面自由能的降低.

三种晶体生长理论

三种晶体生长理论: 一、层生长理论 科赛尔首先提出,后经斯兰特斯基加以发展的晶体的层生长理论亦称为科赛尔-斯兰特斯基理论。这一模型主要讨论的关键问题是:在一个面尚未生长完全前在一界面上找出最佳生长位置。图8-2表示了一个简单立方晶体模型中一界面上的各种位置,各位上成键数目不同,新支点就位后的稳定程度不同。每个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多、释放出能量最大的位置。图8-2所示质点在生长中的晶体表面上所可能有的各种生长位置:k为曲折面,具有三面凹角,是最有利的生长位置;其次是S阶梯面,具有两面凹角的位置;最不利的生长位置是A。由此可以得出如下的结论:警惕在理想情况下生长时,一旦有三面凹角位存在,质点则优先沿着三面凹角位生长一条行列;而当这一行列长满后,就只有二面凹角位了,质点就只能在二面凹角处就位生长,这时又会产生三面凹角位,然后生长相邻的行列;在长满一层面网后,质点就只能在光滑表面上生长,这一过程就相当于在光滑表面上形成一个二维核,来提供三面凹角和二面凹角,再开始生长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体生长的层生长模型,它可以解释如下一些生长现象:(1)晶体常生长成面平棱直的多面体形态。 (2)晶体在生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状构造 (图8-3)。它表明晶面是平行向外推移生长的。 (3)由于晶面是向外推移生长的,所以同种矿物不同晶面上对应晶面间的夹角不变。 (4)晶体由小长大,许多晶面向外平行移动的轨迹形成以晶体中心为顶点的锥状体,成为生长锥或砂钟状构造(图8-4,图8-5)在薄片中常常能看到。 然而晶体生长的实际情况要比简单层生长模型复杂得多,往往一次沉淀在一个晶面上的物质层的厚度可达几万或几十万个分子层。同时亦不一定是一层一层的顺序堆积,而是一层尚未长完,又有一个新层开始生长。这样继续生长下去的结果,使晶面表面不平坦,成为阶梯状,称为晶面阶梯。 层生长模型虽然有其正确的方面,在实际晶体生长过程中并非完全按照二维层生长的机制进行。因为当晶体的一层面网生长完成之后,再在其上开始生长第二层面网时有很大的困难,其原因是已生长好的面网对溶液中质点的引力较小,不易克服质点的热振动使质点就位。因此,在过饱和度或过冷却度较低的情况下,晶体生长就需要用其他的生长机制加以解释。

晶体的长大机制

晶体的长大机制 界面微观结构不同长大机制不同: 界面的微观结构不同,则其接纳液相中迁移过来的原子的能力也不同,因此在晶体长大时将有不同的机制。 () 一二维晶核长大机制 光滑界面为什么只能是二维晶核长大: 当固液界面为光滑界面时,若液相原子单个的扩散迀移到界面上是很难形成稳定状态的,这是由于它所带来的表面能的增加,远大于其体积自甶能的降低。在这种情况下,晶体的长大只能依靠所谓的二维晶核方式 二维晶核长大机制: ●即依靠液相中的结构起伏和能量起伏,使一定大小的原子集团差不多同时降 落到光滑界面上,形成具有一个原子厚度并且有一定宽度的平面原子集团,如图2-20所示 ●根据热力学的分析,这个原子集团带来的体积自由能的降低必须大于其表面 能的增加,它才能在光滑界面上形成稳定状态。 ●它好像是润湿角0 θ时的非均匀形核一样,形成了一个大于临界半径的晶 = 核。这种晶核即为二维晶核。 ●二维晶核形成后,它的四周就出现了台阶,后迁移来的液相原子一个个填充 到这些台阶处,这样所增加的表面能较小。 ●直到整个界面铺满一层原子后,便又变成了光滑界面,而后又需要新的二维 晶核的形成,否则成长即告中断 二维晶核长大速度:

晶体以这种方式长大时,其长大速度十分缓慢 长大速度 单位时间内晶核长大的线速度称为长大速度,用G表示,单位为1- cm ?s () 二螺型位错长大机制 在通常情况下具有光滑界面的晶体其长大速度比按二维晶核长大方式快得多 这是由于在晶体长大时,总是难以避免形成种种缺陷,这些缺陷所造成的界面台阶使原子容易向上堆砌,因而长大速度大为加快 图2-21表示光滑界面出现螺形位错露头时的晶体长大过程 ●螺型位错在晶体表面露头处,即在晶体表面形成台阶,这样,液相原子一个个 地堆砌到这些台阶处,新增加的表面能很小,完全可以被体积自由能的降低所补偿 ●每铺一排原子,台阶即向前移动一个原子间距 ●所以,台阶各处沿着晶体表面向前移动的线速度相等。 ●但由于台阶的起始点不动,所以台阶各处相对于起始点移动的角速度不等。 ●离起始点越近,角速度越大,离起始点越远,则角速度越小。 ●于是随着原子的铺展,台阶先是发生弯曲,而后即以起始点为中心回旋起来, 如图2-22所示 ●这种台阶永远不会消失,所以这个过程也就一直进行下去 ●台阶每横扫界面一次,晶体就增厚一个原子间距,但由于中心回旋的速度快, 中心必将突出起来,形成螺钉状的晶体。 螺旋上升的晶面叫做生长蜷线 图2-23为SiC品体的生长蜷线,是用光学显微镜观察的结果

相关文档
最新文档