STM32学习笔记-USART程序解释(原子)

STM32学习笔记-USART程序解释(原子)
STM32学习笔记-USART程序解释(原子)

USART程序分析

一 .H文件

#ifndef __USART_H

#define __USART_H

#include

#include "stdio.h"

extern u8 USART_RX_BUF[64]; //接收缓冲,最大63个字节.末字节为换行符extern u8 USART_RX_STA; //接收状态标记

//如果想串口中断接收,请不要注释以下宏定义

//#define EN_USART1_RX 使能串口1接收

void uart_init(u32 pclk2,u32 bound);

#endif

解释:extern 作用域:如果整个工程由多个文件组成,在一个文件中想引用另外一个文件中已经定义的外部变量时,则只需在引用变量的文件中用extern关键字加以声明即可。可见,其作用域从一个文件扩展到多个文件了。

例子:

文件a.c的内容:

#include

int BASE=2; //变量定义

int exe(int x); //外部函数提前声明

int main(int argc, char *agrv[])

{

int a=10;

printf("%d^%d = %d\n",BASE,a,exe(a));

return 0;

}

文件b.c的内容:

#include

extern BASE; //外部变量声明

int exe(int x)

{

int i;

int ret=1;

for(i=0;i

{

ret*=BASE;

}

return ret;

}

利用gcc工具编译gcc a.c b.c –o demo,再运行./demo,结果为2^10

= 1024。其中,在a.c文件中定义BASE=2,在b.c中引用BASE时,需要用extern关键字声明其为外部变量,否则编译会找不到该变量。

二 .C文件

#include "sys.h"

#include "usart.h"

//加入以下代码,支持printf函数,而不需要选择use MicroLIB

#if 1

#pragma import(__use_no_semihosting)

//标准库需要的支持函数

struct __FILE

{

int handle;

/* Whatever you require here. If the only are using is */

/* standard output using printf() for debugging, no */

/* is required. */

};

/* typedef’ d in stdio.h. */

stdout;

//定义_sys_exit()以避免使用半主机模式

_sys_exit(int x)

{

x = x;

}

解释:一些支持的函数。

//重定义fputc函数

int fputc(int ch, FILE *f)

{

while((USART1->SR&0X40)==0);//循环发送,直到发送完毕

USART1->DR = (u8) ch;

return ch;

}

#endif

解释:最后这里就是定义printf的输出执行单元了,比如现在是串口1输出,如果你要串口2,那么设置USART1为USART2即可。

#ifdef EN_USART1_RX //如果使能了接收

//串口1中断服务程序

//注意,读取USARTx->SR能避免莫名其妙的错误

u8 USART_RX_BUF[64]; //接收缓冲,最大64个字节.

//接收状态

//bit7,接收完成标志

//bit6,接收到0x0d

//bit5~0,接收到的有效字节数目

u8 USART_RX_STA=0; //接收状态标记

void USART1_IRQHandler(void)

{

u8 res;

if(USART1->SR&(1<<5))//接收到数据

{

res=USART1->DR;

if((USART_RX_STA&0x80)==0)//接收未完成

{

if(USART_RX_STA&0x40)//接收到了0x0d

{

if(res!=0x0a)USART_RX_STA=0;//接收错误,重新开始

else USART_RX_STA|=0x80; //接收完成了

}else //还没收到0X0D

{

if(res==0x0d)USART_RX_STA|=0x40;

else

{

USART_RX_BUF[USART_RX_STA&0X3F]=res;

USART_RX_STA++;

if(USART_RX_STA>63)USART_RX_STA=0;//接收数据错误,重新开始接收

}

}

}

}

}

#endif

解释:

void USART1_IRQHandler(void)函数是一个串口1 中断响应函数,当串口1 发生了相应的中断后,就会跳到该函数执行。这里我们设计了一个小小的接收协议:通过这个函数,配合一个数组USART_RX_BUF[64],一个接收状态寄存器USART_RX_STA 实现对串口数据的接收管理。USART_RX_BUF 的最大值为64,也就是一次接收的数据最大不能超过64 个字节。USART_RX_STA 是一个接收状态寄存器其各的定义如下表:

设计思路如下:

当接收到从电脑发过来的数据,把接收到的数据保存在USART_RX_BUF 中,同时在接收状态寄存器(USART_RX_STA)中计数接收到的有效数据个数,当收到回车(0X0D,0X0A)的第一个字节0X0D 时,计数器将不再增加,等待0X0A 的到来,而如果0X0A 没有来到,则认为这次接收失败,重新开始下一次接收。如果顺利接收到0X0A,则标记USART_RX_STA的第七位,这样完成一次接收,并等待该位被其他程序清除,从而开始下一次的接收,而如果迟迟没有收到0X0D,那么在接收数据超过64 个了,则会丢弃前面的数据,重新接收。

USART1->SR的第5位:

USART1->DR

通过上述分析,程序便可以理解。

//初始化IO 串口1

//pclk2:PCLK2时钟频率(Mhz)

//bound:波特率

//CHECK OK

//091209

void uart_init(u32 pclk2,u32 bound)

{

float temp;

u16 mantissa;

u16 fraction;

temp=(float)(pclk2*1000000)/(bound*16);//得到USARTDIV

mantissa=temp; //得到整数部分

fraction=(temp-mantissa)*16; //得到小数部分

mantissa<<=4;

mantissa+=fraction;

RCC->APB2ENR|=1<<2; //使能PORTA口时钟

RCC->APB2ENR|=1<<14; //使能串口时钟

GPIOA->CRH&=0XFFFFF00F;

GPIOA->CRH|=0X000008B0;//IO状态设置

RCC->APB2RSTR|=1<<14; //复位串口1

RCC->APB2RSTR&=~(1<<14);//停止复位

//波特率设置

USART1->BRR=mantissa; // 波特率设置

USART1->CR1|=0X200C; //1位停止,无校验位.

#ifdef EN_USART1_RX //如果使能了接收

//使能接收中断

USART1->CR1|=1<<8; //PE中断使能

USART1->CR1|=1<<5; //接收缓冲区非空中断使能

MY_NVIC_Init(2,3,USART1_IRQChannel,2);//组2,最低优先级

#endif

}

解释:STM32的每个串口都有一个自己独立的波特率寄存器USART_BRR,通过设置该寄存器就可以达到配置不同波特率的目的。其各位描述如下图所示:

前面提到STM32的分数波特率概念,其实就是在这个寄存器(USART_BRR)里面体现的。USART_BRR的最低4位(位[3:0])用来存放小数部分DIV_Fraction,紧接着的12位(位[15:4])用来存放整数部分DIV_Mantissa,最高16位未使用。这里,我们简单介绍一下波特率的计算,STM32的串口波特率计算公式如下:

上式中,是给串口的时钟(PCLK1用于USART2、3、4、5,PCLK2用于USART1);USARTDIV是一个无符号定点数。我们只要得到USARTDIV的值,就可以得到串口波特率寄存器USART1->BRR的值,反过来,我们得到USART1->BRR的值,也可以推导出USARTDIV的值。但我们更关心的是如何从USARTDIV的值得到USART_BRR的值,因为一般我们知道的是波特率,和PCLKx的时钟,要求的就是USART_BRR的值。

下面我们来介绍如何通过USARTDIV得到串口USART_BRR寄存器的值。假设我们的串口1要设置为9600的波特率,而PCLK2的时钟为72M。这样,我们根据上面的公式有:

USARTDIV=72000000/(9600*16)=468.75

那么得到:

DIV_Fraction=16*0.75=12=0X0C;

DIV_Mantissa= 468=0X1D4;

这样,我们就得到了USART1->BRR的值为0X1D4C。只要设置串口1的BRR寄存器值为

0X1D4C就可以得到9600的波特率。

当然,并不是任何条件下都可以随便设置串口波特率的,在某些波特率和PCLK2频率下,还是会存在误差的,具体可以参考《STM32参考手册》的第525页的表176。

接下来,我们就可以初始化串口了,需要注意的是这里初始化串口是按8位数据格式,1位停止位,无奇偶校验位的。

RCC->APB2ENR|=1<<14; //使能串口时钟

GPIOA->CRH|=0X000008B0;//IO状态设置

IO设置成上啦或下拉模式,一个输入一个输出。

RCC->APB2RSTR|=1<<14; //复位串口1

RCC->APB2RSTR&=~(1<<14);//停止复位

具体查看RCC->APB2RSTR寄存器的定义。

USART1->CR1|=0X200C; //1位停止,无校验位.

USART1->CR1|=1<<8; //PE中断使能

USART1->CR1|=1<<5; //接收缓冲区非空中断使能

参考控制寄存器1(USART_CR1) 参考手册496页。

MY_NVIC_Init(2,3,USART1_IRQChannel,2);//组2,最低优先级

USART1_IRQChannel是中断编号。

//#define USART1_IRQChannel ((u8)0x25) /* USART1 global Interrupt */

STM32学习笔记

输入模式初始化GPIOE2,3,4 ①IO口初始化:GPIO_InitTypeDef GPIO_InitStructure; ②使能PORTA,PORTE时钟: RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOE,ENABLE); ③PE.2.3.4端口配置:GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4; ④设置成(上拉)输入:GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; ⑤GPIO_Init(GPIOE, &GPIO_InitStructure); 输出模式初始化 ①IO口初始化:GPIO_InitTypeDef GPIO_InitStructure; ②使能PB,PE端口时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOE, ENABLE); ③3LED0-->PB.5 端口配置GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; ④设置(推挽)输出模式GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; ⑤设置IO口速度为50MHz GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; ⑥说明初始化哪个端口GPIO_Init(GPIOB, &GPIO_InitStructure); 在LED灯试验中初始为高电平灭GPIO_SetBits(GPIOB,GPIO_Pin_5); 再初始化相同发输出模式时③④⑤可省略例如(经实验初始化恰好为不同IO口相同IO序号③可省略,应该不规范吧) GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //LED1-->PE.5 端口配置, 推挽输出GPIO_Init(GPIOE, &GPIO_InitStructure); //推挽输出,IO口速度为50MHz GPIO_SetBits(GPIOE,GPIO_Pin_5); //PE.5 输出高 1,头文件可以定义所用的函数列表,方便查阅你可以调用的函数; 2,头文件可以定义很多宏定义,就是一些全局静态变量的定义,在这样的情况下,只要修改头文件的内容,程序就可以做相应的修改,不用亲自跑到繁琐的代码内去搜索。 3,头文件只是声明,不占内存空间,要知道其执行过程,要看你头文件所申明的函数是在哪个.c文件里定义的,才知道。 4,他并不是C自带的,可以不用。 5,调用了头文件,就等于赋予了调用某些函数的权限,如果你要算一个数的N次方,就要调用Pow()函数,而这个函数是定义在math.c里面的,要用这个函数,就必需调用math.h 这个头文件。

STM32学习笔记_STM32F103ZET6

STM32F103 系列芯片的系统架构: 系统结构: 在每一次复位以后,所有除SRAM 和FLITF 以外的外设都被关闭,在使用一个外设之前,必须设置寄存器RCC_AHBENR 来打开该外设的时钟。

GPIO 输入输出,外部中断,定时器,串口。理解了这四个外设,基本就入门了一款MCU。 时钟控制RCC: -4~16M 的外部高速晶振 -内部8MHz 的高速RC 振荡器 -内部40KHz低速RC 振荡器,看门狗时钟 -内部锁相环(PLL,倍频),一般系统时钟都是外部或者内部高速时钟经过PLL 倍频后得到 - 外部低速32.768K 的晶振,主要做RTC 时钟源

ARM存储器映像: 数据字节以小端格式存放在存储器中。一个字里的最低地址字节被认为是该字的最低有效字节,而最高地址字节是最高有效字节。

存储器映像与寄存器映射: ARM 存储器映像 4GB 0X0000 00000X1FFF FFFF 0X2000 00000X3FFF FFFF 0X4000 00000X5FFF FFFF

寄存器说明: 寄存器名称 相对外设基地址的偏移值 编号 位表 读写权限 寄存器位 功能说明 使用C语言封装寄存器: 1、总线和外设基地址封装利用地址偏移 (1)定义外设基地址(Block2 首地址) (2)定义APB2总线基地址(相对外设基地址偏移固定) (3)定义GPIOX外设基地址(相对APB2总线基地址偏移固定)(4)定义GPIOX寄存器地址(相对GPIOX外设基地址偏移固定)(5)使用 C 语言指针操作寄存器进行读/写 //定义外设基地址 #define PERIPH_BASE ((unsigned int)0x40000000) 1) //定义APB2 总线基地址 #define APB2PERIPH_BASE (PERIPH_BASE + 0x00010000) 2) //定义GPIOC 外设基地址 #define GPIOC_BASE (AHB1PERIPH_BASE + 0x0800) 3) //定义寄存器基地址这里以GPIOC 为例 #define GPIOC_CRL *(unsigned int*)(GPIOC_BASE+0x00) 4) #define GPIOC_CRH *(unsigned int*)(GPIOC_BASE+0x04) #define GPIOC_IDR *(unsigned int*)(GPIOC_BASE+0x08) #define GPIOC_ODR *(unsigned int*)(GPIOC_BASE+0x0C) #define GPIOC_BSRR *(unsigned int*)(GPIOC_BASE+0x10) #define GPIOC_BRR *(unsigned int*)(GPIOC_BASE+0x14) #define GPIOC_LCKR *(unsigned int*)(GPIOC_BASE+0x18) //控制GPIOC 第0 管脚输出一个低电平5) GPIOC_BSRR = (0x01<<(16+0)); //控制GPIOC 第0 管脚输出一个高电平 GPIOC_BSRR = (0x01<<0);

STM32固件库的学习(重要,要常看)

1. stm32的编程中,在stdperiph_drive中添加的misc.c文件是干什么用的啊? 因为STM32 V3.5版本的库函数中没有原来版本中单独对于NVIC(中断向量嵌套)的外设驱动,把NVIC的外设驱动放在了misc.c中,实际上是代替原来的stm32f10x_nvic.c。 2. STM32F10XXX V 3.5标准外设库文件夹描述 标准外设库的第一部分是CMSIS 和STM32F10x_StdPeriph_Driver,CMSIS 是独立于供应商的Cortex-M处理器系列硬件抽象层,为芯片厂商和中间件供应商提供了简单的处理器软件接口,简化了软件复用工作,降低了Cortex-M上操作系统的移植难度,并减少了新入门的微控制器开发者的学习曲线和新产品的上市时间。 STM32F10x_StdPeriph_Driver则包括了分别对应包括了所有外设对应驱动函数,这些驱动函数均使用C语言编写,并提供了统一的易于调用的函数接口,供开发者使用。Project 文件夹中则包括了ST官方的所有例程和基于不同编译器的项目模板,这些例程是学习和使用STM32的重要参考。Utilities包含了相关评估板的示例程序和驱动函数,供使用官方评估板的开发者使用,很多驱动函数同样可以作为学习的重要参考。 3.文件功能说明

4.CMSIS文件夹结构

在实际开发过程中,根据应用程序的需要,可以采取2种方法使用标准外设库

(StdPeriph_Lib): (1)使用外设驱动:这时应用程序开发基于外设驱动的API(应用编程接口)。用户只需要配置文件”stm32f10x_conf.h”,并使用相应的文件”stm32f10x_ppp.h/.c”即可。 (2) 不使用外设驱动:这时应用程序开发基于外设的寄存器结构和位定义文件。 5. STM32F10XXX标准外设库的使用 标准外设库中包含了众多的变量定义和功能函数,如果不能了解他们的命名规范和使用规律将会给编程带来很大的麻烦,本节将主要叙述标准外设库中的相关规范,通过这些规范的学习可以更加灵活的使用固件库,同时也将极大增强程序的规范性和易读性,同时标准外设库中的这种规范也值得我们在进行其他相关的开发时使用和借鉴。 a.缩写定义 标准外设库中的主要外设均采用了缩写的形式,通过这些缩写可以很容易的辨认对应的外设。

stm32学习 c语言笔记

这是前段时间做彩屏显示时候遇到的难题, *(__IO uint16_t *) (Bank1_LCD_C)这个就是将后面的数据转换为地址,然后对地址单元存放数据。可如下等效: __IO uint16_t *addr; addr = (__IO uint16_t *) Bank1_LCD_C; #ifdef和#elif连用,语法和if。。。else if语句一样 推挽输出增加驱动,可以驱动LED起来 static int count=0 count++ 这个语句中,count仅仅被初始化一次 以后加加一次期中的值就不会变化了 SysTick_CTRL(控制和状态寄存器) SysTick_LOAD(重装载寄存器) SysTick_VAL(当前值寄存器) SysTick_CALIB(校准值寄存器)

TFT经验:弄多大的相片,必须先把那个相片的尺寸改掉,再去取模,才可以,要不会有重影的嘿嘿嘿嘿 VBAT 是电池供电的引脚 VBAT和ADD同时都掉电时才能让备份区复位。 volatile一个变量的存储单元可以在定义该变量的程序之外的某处被引用。 volatile主要是程序员要告诉编译器不要对其定义的这个变量进行优化,防止其不能被引用,不能被改变。 VDDA>2.4V ADC才能工作 VDDA>2.7V USB才能工作 VDD(1.8-3.6v) VBAT=1.8-3.6v VSS VSSA VREF必须接到地线 没有外部电源供电时必须VBAT接上VDD 使用PLL时,VDDA必须供电

printf("abs(x)=%d\n",x<0?(-1)*x:x) 条件编译是问号前边为真则取冒号前边的值,为假的,则取后边的值。 所以说上边这条打印的语句是打印x的绝对值。 //stm32f10x_nvic.c stm32f10x_lib.c stm32f10x_gpio.c stm32f10x_flash.c stm32f10x_rcc.c TIM6 TIM7基本定时器 (只有这两个定时器不能产生PWM) TIM1 TIM8高级控制定时器 TIM2 TIM3 TIM4 TIM5为通用定时器 其中高级定时器TIM1和TIM8可以同时产生多达7路的PWM输出。而通用定时器也能同时产生多达4路的PWM输出,这样,STM32最多可以同时产生30路PWM输出! 修改和自己写代码时候

stm32入门C语言详解

阅读flash:芯片内部存储器flash操作函数我的理解——对芯片内部flash进行操作的函数,包括读取,状态,擦除,写入等等,可以允许程序去操作flash上的数据。 基础应用1,FLASH时序延迟几个周期,等待总线同步操作。推荐按照单片机系统运行频率,0—24MHz时,取Latency=0;24—48MHz时,取Latency=1;48~72MHz时,取Latency=2。所有程序中必须的 用法:FLASH_SetLatency(FLASH_Latency_2); 位置:RCC初始化子函数里面,时钟起振之后。 基础应用2,开启FLASH预读缓冲功能,加速FLASH的读取。所有程序中必须的 用法:FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); 位置:RCC初始化子函数里面,时钟起振之后。 3、阅读lib:调试所有外设初始化的函数。 我的理解——不理解,也不需要理解。只要知道所有外设在调试的时候,EWRAM需要从这个函数里面获得调试所需信息的地址或者指针之类的信息。 基础应用1,只有一个函数debug。所有程序中必须的。 用法:#ifdef DEBUG debug(); #endif 位置:main函数开头,声明变量之后。 4、阅读nvic:系统中断管理。 我的理解——管理系统内部的中断,负责打开和关闭中断。 基础应用1,中断的初始化函数,包括设置中断向量表位置,和开启所需的中断两部分。所有程序中必须的。 用法:void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; //中断管理恢复默认参数 #ifdef VECT_TAB_RAM //如果C/C++ Compiler\Preprocessor\Defined symbols中的定义了 VECT_TAB_RAM(见程序库更改内容的表格) NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); //则在RAM调试 #else //如果没有定义VECT_TAB_RAM NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);//则在Flash里调试 #endif //结束判断语句 //以下为中断的开启过程,不是所有程序必须的。 //NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC优先级分组,方式。 //注:一共16个优先级,分为抢占式和响应式。两种优先级所占的数量由此代码确定, NVIC_PriorityGroup_x可以是0、1、2、3、4,分别代表抢占优先级有1、2、4、8、16个和响应优先级有16、8、4、2、1个。规定两种优先级的数量后,所有的中断级别必须在其中选择,抢占级别高的会打断其他中断优先执行,而响应级别高的会在其他中断执行完优先执行。 //NVIC_InitStructure.NVIC_IRQChannel = 中断通道名; //开中断,中断名称见函数库 //NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级 //NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级 //NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //启动此通道的中断 //NVIC_Init(&NVIC_InitStructure); 中断初始化

stm32库函数解释

部分库函数简介 一、通用输入/输出(GPIO)--------------------------------------------------------------------------------------------3 二、外部中断/事件控制器(EXTI)-----------------------------------------------------------------------------------7 三、通用定时器(TIM)-------------------------------------------------------------------------------------------------9四:ADC寄存器------------------------------------------------------------------------25 五:备份寄存器(BKP)-------------------------------------------------------------------------------------------------33 六、DMA控制器(DMA)---------------------------------------------------------------37 七、复位和时钟设置(RCC)------------------------------------------------------------------------------------------41 八、嵌套向量中断控制器(NVIC)-----------------------------------------------------------------------------------49

STM32学习笔记

STM32学习笔记——时钟频率 ******************************** 本学习笔记基于STM32固件库V3.0 使用芯片型号:STM32F103 开发环境:MDK ******************************** 第一课时钟频率 STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。目前TI的M3系列芯片最高频率可以达到80M。 在stm32固件库3.0中对时钟频率的选择进行了大大的简化,原先的一大堆操作都在后台进行。系统给出的函数为SystemInit()。但在调用前还需要进行一些宏定义的设置,具体的设置在system_stm32f10x.c文件中。 文件开头就有一个这样的定义: //#define SYSCLK_FREQ_HSE HSE_Value //#define SYSCLK_FREQ_20MHz 20000000 //#define SYSCLK_FREQ_36MHz 36000000 //#define SYSCLK_FREQ_48MHz 48000000 //#define SYSCLK_FREQ_56MHz 56000000 #define SYSCLK_FREQ_72MHz 72000000 ST 官方推荐的外接晶振是8M,所以库函数的设置都是假定你的硬件已经接了8M 晶振来运算的.以上东西就是默认晶振8M 的时候,推荐的CPU 频率选择.在这里选择了: #define SYSCLK_FREQ_72MHz 72000000 也就是103系列能跑到的最大值72M 然后这个C文件继续往下看 #elif defined SYSCLK_FREQ_72MHz const uint32_t SystemFrequency = SYSCLK_FREQ_72MHz; const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz; const uint32_t SystemFrequency_AHBClk = SYSCLK_FREQ_72MHz; const uint32_t SystemFrequency_APB1Clk = (SYSCLK_FREQ_72MHz/2); const uint32_t SystemFrequency_APB2Clk = SYSCLK_FREQ_72MHz; 这就是在定义了CPU跑72M的时候,各个系统的速度了.他们分别是:硬件频率,系统时 钟,AHB总线频率,APB1总线频率,APB2总线频率.再往下看,看到这个了: #elif defined SYSCLK_FREQ_72MHz static void SetSysClockTo72(void); 这就是定义72M 的时候,设置时钟的函数.这个函数被SetSysClock ()函数调用,而SetSysClock ()函数则是被SystemInit()函数调用.最后SystemInit()函数,就是被你调用的了

STM32固件库详解42324

STM32固件库详解 最近考试较多,教材编写暂停了一下,之前写了很多,只是每一章都感觉不是特别完整,最近把其中的部分内容贴出来一下,欢迎指正。本文内容基于我对固件库的理解,按照便于理解的顺序进行整理介绍,部分参考了固件库的说明,但是也基本上重新表述并按照我理解的顺序进行重新编写。我的目的很简单,很多人写教程只是告诉你怎么做,不会告诉你为什么这么做,我就尽量吧前因后果都说清楚,这是我的出发点,水平所限,难免有很大的局限性,具体不足欢迎指正。基于标准外设库的软件开发 STM32标准外设库概述 STM32标准外设库之前的版本也称固件函数库或简称固件库,是一个固件函数包,它由程序、数据结构和宏组成,包括了微控制器所有外设的性能特征。该函数库还包括每一个外设的驱动描述和应用实例,为开发者访问底层硬件提供了一个中间API,通过使用固件函数库,无需深入掌握底层硬件细节,开发者就可以轻松应用每一个外设。因此,使用固态函数库可以大大减少用户的程序编写时间,进而降低开发成本。每个外设驱动都由一组函数组成,这组函数覆盖了该外设所有功能。每个器件的开发都由一个通用API (application programming interface 应用编程界面)驱动,API对该驱动程序的结构,函数和参数名称都进行了标准化。

ST公司2007年10月发布了版本的固件库,MDK 之前的版本均支持该库。2008年6月发布了版的固件库,从2008年9月推出的MDK 版本至今均使用版本的固件库。以后的版本相对之前的版本改动较大,本书使用目前较新的版本。 使用标准外设库开发的优势 简单的说,使用标准外设库进行开发最大的优势就在于可以使开发者不用深入了解底层硬件细节就可以灵活规范的使用每一个外设。标准外设库覆盖了从GPIO到定时器,再到CAN、I2C、SPI、UART和ADC 等等的所有标准外设。对应的C源代码只是用了最基本的C编程的知识,所有代码经过严格测试,易于理解和使用,并且配有完整的文档,非常方便进行二次开发和应用。 STM32F10XXX标准外设库结构与文件描述 1. 标准外设库的文件结构 在上一小节中已经介绍了使用标准外设库的开发的优势,因此对标准外设库的熟悉程度直接影响到程序的编写,下面让我们来认识一下STM32F10XXX的标准外设库。STM32F10XXX的标准外设库经历众多的更新目前已经更新到最新的版本,开发环境中自带的标准外设库为版本,本书中以比较稳定而且较新的版本为基础介绍标准外设库的结构。

献给新手:解析STM32的库函数

意法半导体在推出STM32微控制器之初,也同时提供了一套完整细致的固件开发包,里面包含了在STM32开发过程中所涉及到的所有底层操作。通过在程序开发中引入这样的固件开发包,可以使开发人员从复杂冗余的底层寄存器操作中解放出来,将精力专注应用程序的开发上,这便是ST推出这样一个开发包的初衷。 但这对于许多从51/AVR这类单片机的开发转到STM32平台的开发人员来说,势必有一个不适应的过程。因为程序开发不再是从寄存器层次起始,而要首先去熟悉STM32所提供的固件库。那是否一定要使用固件库呢?当然不是。但STM32微控制器的寄存器规模可不是常见的8位单片机可以比拟,若自己细细琢磨各个寄存器的意义,必然会消耗相当的时间,并且对于程序后续的维护,升级来说也会增加资源的消耗。对于当前“时间就是金钱”的行业竞争环境,无疑使用库函数进行STM32的产品开发是更好的选择。本文将通过一个简单的例子对STM32的库函数做一个简单的剖析。 以最常用的GPIO设备的初始化函数为例,如下程序段一: GPIO_InitTypeDef GPIO_InitStructure; 1 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; 2 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 3 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 4 GPIO_Init(GPIOA , &GPIO_InitStructure 5 这是一个在STM32的程序开发中经常使用到的GPIO初始化程序段,其功能是将GPIOA.4口初始化为推挽输出状态,并最大翻转速率为50MHz。下面逐一分解: 首先是1,该语句显然定义了一个GPIO_InitTypeDef类型的变量,名为GPIO_InitStructure,则找出GPIO_InitTypeDef的原型位于“stm32f10x_gpio.h” 文件,原型如下: typedef struct { u16 GPIO_Pin; GPIOSpeed_TypeDef GPIO_Speed; GPIOMode_TypeDef GPIO_Mode; }GPIO_InitTypeDef; 由此可知GPIO_InitTypeDef是一个结构体类型同义字,其功能是定义一个结构体,该结构体有三个成员分别是u16类型的GPIO_Pin、 GPIOSpeed_TypeDef 类型的GPIO_Speed和GPIOMode_TypeDef 类型的 GPIO_Mode。继续探查GPIOSpeed_TypeDef和GPIOMode_TypeDef类型,在“stm32f10x_gpio.h”文件中找到对GPIOSpeed_TypeDef的定义: typedef enum { GPIO_Speed_10MHz = 1,

STM32学习笔记(5)通用定时器PWM输出

STM32学习笔记(5):通用定时器PWM输出 2011年3月30日TIMER输出PWM 1.TIMER输出PWM基本概念 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。简单一点,就是对脉冲宽度的控制。一般用来控制步进电机的速度等等。 STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出。 1.1PWM输出模式 STM32的PWM输出有两种模式,模式1和模式2,由TIMx_CCMRx寄存器中的OCxM位确定的(“110”为模式1,“111”为模式2)。模式1和模式2的区别如下: 110:PWM模式1-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。 111:PWM模式2-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为有效电平,否则为无效电平。 由此看来,模式1和模式2正好互补,互为相反,所以在运用起来差别也并不太大。 而从计数模式上来看,PWM也和TIMx在作定时器时一样,也有向上计数模式、向下计数模式和中心对齐模式,关于3种模式的具体资料,可以查看《STM32参考手册》的“14.3.9 PWM模式”一节,在此就不详细赘述了。 1.2PWM输出管脚 PWM的输出管脚是确定好的,具体的引脚功能可以查看《STM32参考手册》的“8.3.7 定时器复用功能重映射”一节。在此需要强调的是,不同的TIMx有分配不同的引脚,但是考虑到管脚复用功能,STM32提出了一个重映像的概念,就是说通过设置某一些相关的寄存器,来使得在其他非原始指定的管脚上也能输出PWM。但是这些重映像的管脚也是由参考手册给出的。比如

stm32启动文件详解

STM32启动文件详解 一、启动文件的作用 1.初始化堆栈指针SP; 2.初始化程序计数器指针PC; 3.设置堆、栈的大小; 4.设置异常向量表的入口地址; 5.配置外部SRAM作为数据存储器(这个由用户配置,一般的开发板可没有外部SRAM); 6.设置C库的分支入口__main(最终用来调用main函数); 7.在版的启动文件还调用了在文件中的SystemIni()函数配置系统时钟。

二、汇编指令

三、启动代码 ----- 栈 Stack_Size EQU 0x00000400 ; 栈的大小 AREA STACK, NOINIT, READWRITE,ALIGN=3 Stack_Mem SPACE Stack_Size ; 分配栈空间 __initial_sp ; 栈的结束地址(栈顶地址) 分配名为STACK,不初始化,可读可写,8(2^3)字节对齐的1KB空间。 栈:局部变量,函数形参等。栈的大小不能超过内部SRAM大小。 AREA:汇编一个新的代码段或者数据段。STACK段名,任意命名;NOINIT表示不初始化;READWRITE可读可写;ALIGN=3(2^3= 8字节对齐)。 __initial_sp紧挨了SPACE放置,表示栈的结束地址,栈是从高往低生长,结束地址就是栈顶地址。

----- 堆 Heap_Size EQU 0x00000200 ; 堆的大小(512Bytes) AREA HEAP, NOINIT, READWRITE,ALIGN=3 __heap_base ; 堆的起始地址 Heap_Mem SPACE Heap_Size ; 分配堆空间 __heap_limit ; 堆的结束地址 分配名为HEAP,不初始化,可读可写,8(2^3)字节对齐的512字节空间。__heap_base堆的起始地址,__heap_limit堆的结束地址。堆由低向高生长。动态分配内存用到堆。 PRESERVE8 -- 指定当前文件的堆/栈按照8 字节对齐。 THUMB-- 表示后面指令兼容THUMB 指令。THUBM 是ARM 以前的指令集,16bit;现在Cortex-M 系列的都使用THUMB-2 指令集,THUMB-2 是32 位的,兼容16 位和32 位的指令,是THUMB 的超级。 3.向量表 AREA RESET, DATA, READONLY EXPORT __Vectors E XPORT __Vectors_End E XPORT __Vectors_Size 定义一个名为RESET,可读的数据段。并声明__Vectors、__Vectors_End 和__Vectors_Size 这三个标号可被外部的文件使用。 __Vectors DCD __initial_sp ; Top of Stack DCD Reset_Handler ; Reset Handler

STM32学习笔记

1、GPIO函数: 输出: HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12, GPIO_PIN_RESET);//此例以PA12口为例 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12, GPIO_PIN_SET); //此例以PA12口为例 HAL_GPIO_ TogglePin(GPIOA,GPIO_PIN_12); //此例以PA12口为例 2、串口函数: 1、串口发送/接收函数 HAL_UART_Transmit();串口轮询模式发送,使用超时管理机制 HAL_UART_Receive();串口轮询模式接收,使用超时管理机制 HAL_UART_Transmit_IT();串口中断模式发送 HAL_UART_Receive_IT();串口中断模式接收 HAL_UART_Transmit_DMA();串口DMA模式发送 HAL_UART_Transmit_DMA();串口DMA模式接收 2、串口中断函数 HAL_UART_TxHalfCpltCallback();一半数据发送完成时调用 HAL_UART_TxCpltCallback();数据完全发送完成后调用 HAL_UART_RxHalfCpltCallback();一半数据接收完成时调用 HAL_UART_RxCpltCallback();数据完全接受完成后调用 HAL_UART_ErrorCallback();传输出现错误时调用 例程:串口接收中断 uint8_t aTxStartMessages[] = "\r\n******UART commucition using IT******\r\nPlease enter 10 characters:\r\n"; uint8_t aRxBuffer[20]; 2、在main函数中添加两个语句通过串口中断发送aTxStartMessage数组的数据和接收数据10个字符,保存在数组aRxBuffer中 HAL_UART_Transmit_IT(&huart1 ,(uint8_t*)aTxStartMessages,sizeof(aTxStartMessages)); //sizeof()可读取目标长度 HAL_UART_Receive_IT(&huart1,(uint8_t*)aRxBuffer,10); 3、在main.c文件后面添加中断接收完成函数,将接收到的数据又通过串口发送回去。 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { UNUSED(huart); HAL_UART_Transmit(&huart1,(uint8_t*)aRxBuffer,10,0xFFFF);//(uint8_t*)aRxBuffer为字符串地址,10为字符串长度,0xFFFF为超时时可以在中间加任何可执行代码。 }

STM32库函数功能详解

STM32库函数简介 一、通用输入/输出(GPIO)--------------------------------------------------------------------------------------------3 二、外部中断/事件控制器(EXTI)-----------------------------------------------------------------------------------7 三、通用定时器(TIM)-------------------------------------------------------------------------------------------------9 四:ADC寄存器------------------------------------------------------------------------25 五:备份寄存器(BKP)-------------------------------------------------------------------------------------------------33 六、DMA控制器(DMA)---------------------------------------------------------------37 七、复位和时钟设置(RCC)------------------------------------------------------------------------------------------41 八、嵌套向量中断控制器(NVIC)-----------------------------------------------------------------------------------49

STM32固件库详解

STM32固件库详解基于标准外设库的软件开发 STM32标准外设库概述 STM32标准外设库之前的版本也称固件函数库或简称固件库,是一个固件函数包,它由程序、数据结构和宏组成,包括了微控制器所有外设的性能特征。该函数库还包括每一个外设的驱动描述和应用实例,为开发者访问底层硬件提供了一个中间API,通过使用固件函数库,无需深入掌握底层硬件细节,开发者就可以轻松应用每一个外设。因此,使用固态函数库可以大大减少用户的程序编写时间,进而降低开发成本。每个外设驱动都由一组函数组成,这组函数覆盖了该外设所有功能。每个器件的开发都由一个通用API (application programming interface 应用编程界面)驱动,API对该驱动程序的结构,函数和参数名称都进行了标准化。 ST公司2007年10月发布了版本的固件库,MDK 之前的版本均支持该库。2008年6月发布了版的固件库,从2008年9月推出的MDK 版本至今均使用版本的固件库。以后的版本相对之前的版本改动较大,本书使用目前较新的版本。 使用标准外设库开发的优势 简单的说,使用标准外设库进行开发最大的优势就在于可以使开发者不用深入了解底层硬件细节就可以灵活规范的使用每一个外设。标准外设库覆盖了从GPIO到定时器,再到CAN、I2C、SPI、UART和ADC等等的所有标准外设。对应的C源代码只是用了最基本的C编程的知识,所有代码经过严格测试,易于理解和使用,并且配有完整的文档,非常方便进行二次开发和应用。 STM32F10XXX标准外设库结构与文件描述 1. 标准外设库的文件结构 在上一小节中已经介绍了使用标准外设库的开发的优势,因此对标准外设库的熟悉程度直接影响到程序的编写,下面让我们来认识一下STM32F10XXX的标准外设库。STM32F10XXX的标准外设库经历众多的更新目前已经更新到最新的版本,开发环境中自带的标准外设库为版本,本书中以比较稳定而且较新的版本为基础介绍标准外设库的结构。

STM32学习心得笔记

STM32学习心得笔记 时钟篇 在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。 ①、HSI是高速内部时钟,RC振荡器,频率为8MHz。 ②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为 4MHz~16MHz。 ③、LSI是低速内部时钟,RC振荡器,频率为40kHz。 ④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。 ⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍, 但是其输出频率最大不得超过72MHz。 其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外, 实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。 STM32中有一个全速功能的USB 模块,其串行接口引擎需要一个频率为48MHz的时

钟源。该时钟源只能 从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL 必须使能, 并且时钟频率配置为48MHz或72MHz。 另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。 系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL 输出、HSI或者HSE。系统时钟最 大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分 频。其中AHB分频器输出的时钟送给5大模块使用: ①、送给AHB 总线、内核、内存和DMA使用的HCLK时钟。 ②、通过8分频后送给Cortex的系统定时器时钟。 ③、直接送给Cortex的空闲运行时钟FCLK。 ④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz), 另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。

STM32学习笔记(18)-数据的保存和毁灭

数据的保存和毁灭(2) 和以前学到的有关数据保存不同,这里的数据保存还有“保密”之意,即一旦受到意外的侵入,STM32将毁灭数据。这是通过Tamper机制来实现的。 以下是数据手册中的有关说明: 5.3.1 侵入检测 当TAMPER引脚上的信号从0变成1或者从1变成0(取决于备份控制寄存器BKP_CR的TPAL 位),会产生一个侵入检测事件。侵入检测事件将所有数据备份寄存器内容清除。然而为了避免丢失侵入事件,侵入检测信号是边沿检测的信号与侵入检测允许位的逻辑与,从而在侵入检测引脚被允许前发生的侵入事件也可以被检测到。 ●当 TPAL=0 时:如果在启动侵入检测TAMPER引脚前(通过设置TPE位)该引脚已经为高电平,一旦启动侵入检测功能,则会产生一个额外的侵入事件(尽管在TPE位置’1’后并没有出现上升沿)。 ●当 TPAL=1 时:如果在启动侵入检测引脚TAMPER前(通过设置TPE位)该引脚已经为低电平,一旦启动侵入检测功能,则会产生一个额外的侵入事件(尽管在TPE位置’1’后并没有出现下降沿)。 设置BKP_CSR寄存器的TPIE位为’1’,当检测到侵入事件时就会产生一个中断。 在一个侵入事件被检测到并被清除后,侵入检测引脚TAMPER应该被禁止。然后,在再次写入备份数据寄存器前重新用TPE位启动侵入检测功能。这样,可以阻止软件在侵入检测引脚上仍然有侵入事件时对备份数据寄存器进行写操作。这相当于对侵入引脚TAMPER进行电平检测。 注:当V DD电源断开时,侵入检测功能仍然有效。为了避免不必要的复位数据备份寄存器,TAMPER引脚应该在片外连接到正确的电平。 显然,Tamper需要硬件与之配合。以上数据手册描述了硬件配置时的一些注意事项。 (1)可以是把引脚由低电平到高电平认为是一次侵入,也可以把引脚从高电平变到低电平认为是一次侵入,这通过TPAL来设置。

stm32DAC函数库详解

DAC固件库函数 DAC固件库函数 函数名描述 void DAC_DeInit(void) DAC外围寄存器默认复位值。VoidDAC_Init(uint32_tDAC_Channel,DAC_InitTypeDef* DAC_InitStruct) 根据外围初始化指定的DAC void DAC_StructInit(DAC_InitTypeDef* DAC_InitStruct) 把DAC_StructInit 中的每一个参 数按缺省值填入 voidDAC_Cmd(uint32_t DAC_Channel, FunctionalState NewState) 使能或使能指定的DAC通道。 void DAC_ITConfig(uint32_t DAC_Channel, uint32_t DAC_IT, FunctionalState NewState) 使能或者失能指定的DAC 的中断 voidDAC_DMACmd(uint32_tDAC_Channel,FunctionalState NewState) 使能或者失能指定的DAC通道DMA请求。 void DAC_SoftwareTriggerCmd(uint32_t DAC_Channel, FunctionalState NewState) 使能或者失能用选定的DAC通道软件触发 voidDAC_DualSoftwareTriggerCmd(FunctionalState NewState) 使能或者使能双软件触发命令 void DAC_WaveGenerationCmd(uint32_t DAC_Channel, uint32_t DAC_Wave, FunctionalState NewState) 使能或者使能选定的DAC通道波的产生。 void DAC_SetChannel1Data(uint32_t DAC_Align, uint16_t Data) 设置通道1 的数据 void DAC_SetChannel2Data(uint32_t DAC_Align, uint16_t Data) 设置通道2 的数据 void DAC_SetDualChannelData(uint32_t DAC_Align, uint16_t Data2, uint16_t Data1) 设置双通道的数据 uint16_tDAC_GetDataOutputValue(uint32_t DAC_Channel) 返回选定DAC通道最后的数据输出值。 FlagStatus DAC_GetFlagStatus(uint32_t DAC_Channel, uint32_t DAC_FLAG) 检查指定的DAC标志位设置与否。 void DAC_ClearFlag(uint32_t DAC_Channel, uint32_t DAC_FLAG) 清除指定的DAC标志位。 ITStatus DAC_GetITStatus(uint32_t DAC_Channel, uint32_t DAC_IT) 检查指定的DAC 中断是否发生 void DAC_ClearITPendingBit(uint32_t DAC_Channel, uint32_t DAC_IT) 清除DACx 的中断待处理位

相关文档
最新文档