山东科技大学数值分析试题真题答案

山东科技大学数值分析试题真题答案
山东科技大学数值分析试题真题答案

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

计算数学排名

070102 计算数学 计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程组、微分方程的数值数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性差分析等理论问题。我们知道五次及五次以上的代数方程不存在求根公式,因此,要求出五次以上的高次代一般只能求它的近似解,求近似解的方法就是数值分析的方法。对于一般的超越方程,如对数方程、三角方采用数值分析的办法。怎样找出比较简洁、误差比较小、花费时间比较少的计算方法是数值分析的主要课题的办法中,常用的办法之一是迭代法,也叫做逐次逼近法。迭代法的计算是比较简单的,是比较容易进行的以用来求解线性方程组的解。求方程组的近似解也要选择适当的迭代公式,使得收敛速度快,近似误差小。 在线性代数方程组的解法中,常用的有塞德尔迭代法、共轭斜量法、超松弛迭代法等等。此外,一些比消去法,如高斯法、追赶法等等,在利用计算机的条件下也可以得到广泛的应用。在计算方法中,数值逼近本方法。数值逼近也叫近似代替,就是用简单的函数去代替比较复杂的函数,或者代替不能用解析表达式表值逼近的基本方法是插值法。 初等数学里的三角函数表,对数表中的修正值,就是根据插值法制成的。在遇到求微分和积分的时候,的函数去近似代替所给的函数,以便容易求到和求积分,也是计算方法的一个主要内容。微分方程的数值解法。常微分方程的数值解法由欧拉法、预测校正法等。偏微分方程的初值问题或边值问题,目前常用的是有限元素法等。有限差分法的基本思想是用离散的、只含有限个未知数的差分方程去代替连续变量的微分方程求出差分方程的解法作为求偏微分方程的近似解。有限元素法是近代才发展起来的,它是以变分原理和剖分的方法。在解决椭圆形方程边值问题上得到了广泛的应用。目前,有许多人正在研究用有限元素法来解双曲方程。计算数学的内容十分丰富,它在科学技术中正发挥着越来越大的作用。 排名学校名称等级 1 北京大学A+ 2 浙江大学 A+ 3 吉林大学A+ 4 大连理工大学A+ 5 西安交通大学A 北京大学:http:https://www.360docs.net/doc/776135209.html,/NewsSpecialDetailsInfo.aspx?SID=4 浙江大学:http:https://www.360docs.net/doc/776135209.html,/NewsSpecialDetailsInfo.aspx?SID=21847 吉林大学:http:https://www.360docs.net/doc/776135209.html,/NewsSpecialDetailsInfo.aspx?SID=5506 大连理工大学:http:https://www.360docs.net/doc/776135209.html,/NewsSpecialDetailsInfo.aspx?SID=4388 西安交通大学:http:https://www.360docs.net/doc/776135209.html,/NewsSpecialDetailsInfo.aspx?SID=18285

数值分析试卷及答案

二 1 求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式时才能保证A一定有LU分解。 3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,, 4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2)

(3)由事后误差估计式,右端为 而左端 这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7 讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵 ,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 , 故高斯-赛德尔法收敛的充要条件是。 9 设求解方程组的雅可比迭代格式为,其中,求证:若,则相应的高斯-赛德尔法收敛。证明由于是雅可比法的迭代矩阵,故 又,故, 即,故故系数矩阵A按行严格对角占优,从而高斯-赛德尔法收敛。 10设A为对称正定矩阵,考虑迭代格式 求证:(1)对任意初始向量,收敛; (2)收敛到的解。 证明(1)所给格式可化为 这里存在是因为,由A对称正定,,故也对称正定。 设迭代矩阵的特征值为,为相应的特征向量,则与做内积,有 因正定,故,从而,格式收敛。

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

数值分析试卷及答案

二 1求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式 时才能保证A一定有LU分解。

3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,,

4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2) (3)由事后误差估计式,右端为 而左端

这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方 法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵

,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 ,

数值分析考试题

山东科技大学 2008-2009 学年第一学期 《数值分析》考试 [][]。 构造一个复化求积公式利用该求积公式 ,等分,并记作,)将区间并说明理由。 否为高斯型求积公式,)试判断该求积公式是数精度。代数精度,并指出其代,使其具有尽可能高的)试确定求积系数七、给定积分公式多项式。上的一次最佳一致逼近,在区间六、求使得 次多项式五、做一个迭代格式收敛。在什么范围取值时以上)分析性。迭代格式并分析其收敛迭代格式与)写出为非零常数。 其中四、给定线性方程组 并指出收敛阶数。造迭代格式的收敛性,的迭代格式,证明所构)构造一个可以求的近似值。 求代格式 )说明不能用下面的迭为正数,记为正整数,三、设的直线。点二、求一条拟合和相对误差限。 的绝对误差限和位有效数字。试分析均具有,一、设,,1,0,1,2 11-32,,1) 1()0()1()(: 10)(,2)2(,1)2(',2)1(',3)4(,1)2(,3)1()(52eidel -auss acobi 126241011-01-422,1,0,1c 2)2,2(),3,1(),1,0(35486.101234.91 1 2*321**11*33n i ih x n h n C B A f Bf Af d x f x x f H H H H H H x H a S G J a x x x a x x k cx x c x n C B A y x y x y x i x n k k n ??=+-==++-≈=====-==???? ??????=????????????????????? ?===≥+-==? --+

[]??? ??=++=++=++????? =-≤≤++++=≤≤+=-=? ??=≤≤=+20 531825214 3210,)),(,(2),(3. 0,,n )(),,('32 132132101x x x x x x x x x y n i y x hf y h x f y x f h y y n i ih a x n a b h a y b x a y x f y i i i i i i i i i ,求解方程组 九用矩阵的三角分解法式。时局部截断误差的表达相应的阶数,并给出此具有最高阶精度,指出值求解公式 试确定常数使得下列数记, 取正整数值问题八、考虑常微分方程初ηααη

山东科技大学数学专业考研数学分析真题

一.求极限(20分): 1、曲线)(x f y =与x y sin =在原点相切,证明:2)2(lim =∞→n nf n 。 2、求极限:??? ??-→x x x x cot 11lim 0。 3、求5020)]cos(1[lim x dt t x x ?-+→。 4、求极限???? ? ?++++++∞→32323212111lim n n n n n n n n Λ。 二.导数及高阶导数(20分): 1、设35x x x y ++=,求'y 。 2、已知x x y -=14 ,求)4()(>n y n 。 3、由方程?-=+x y dt t y x 022)cos(确定了y 是x 的函数,求dx dy 。 4、设)()('),('t f t tf y t f x -==,)('''t f 存在且)(''t f 不为零,求三阶导数33dx y d 。 三.证明题(17分): 1、设)(x f 在)0(],[>a b a 上连续,在),(b a 内可导。 证明:存在),(,b a ∈ηξ 使)('2)('ηη ξf b a f += 。 2、证明:方程)2(11≥=+++-n x x x n n Λ在)1,0(内必有惟一实根n x ,并求n n x ∞→lim 。 四.积分计算(18分): 1、计算不定积分:?+2) 1(x e dx 。 2、计算定积分:dx e x ?-2ln 01。 3、讨论反常积分 )0()1)(1(02>++?∞+ααx x dx 的敛散性,若收敛,求出其值。

五. 解下列各题(30分) 1、设22 ()z f x y =+ , 其中f 具有二阶导数, 求22z x ??, 2z x y ???。 2、计算积分 (),l x y ds +? :l 顶点为(0,0), (1,0), (1,1)的三角形边界。 3、计算积分 xdydz ydzdx zdxdy ∑ ++??,∑为锥面22y x z +=在平面 4=z 下方的部分,取外法线方向。 六. 解下列各题(20分) 1、计算积分 0 (0)ax bx e e dx b a x --+∞->>?。 2、假设(,)(,)f x y x y x y ?=-,其中(,)x y ?在点(0,0)的邻域中连续,问 1)(,)x y ?满足什么条件时,(,)f x y 在(0,0)点偏导数存在; 2)(,)x y ?满足什么条件时,(,)f x y 在(0,0)点可微。 七.(13分) 求椭圆线2211 x y x y z ?+=?++=?上长半轴和短半轴的长。 八.(12分) 1、证明:当1≥t 时,不等式2 ln(1)t t +< 成立。 2、设 )1ln(1)(223x n n x u n +=,Λ,2,1=n .证明函数项级数∑∞=1)(n n x u 在]1,0[上一致收敛,并讨论其和函数在]1,0[的连续性、可积性与可微性。

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表 x -1 1 2 ()f x -3 0 4 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1)k x -1 1 2 k y -3 0 4 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- k x ()k f x 一阶 二阶 -1 -3 1 0 3/ 2 2 4 4 5/6 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有

2017年山东科技大学统计学(数据分析方向)专业人才培养方案

统计学(数据分析方向)专业培养方案 Statistics(Data Analysis Specialty) (门类:理学;二级类:统计学;专业代码:071201) 一、专业培养目标 本专业培养德、智、体、美全面发展,在具备一定的数学、统计学和计算机科学等方面知识的基础上,较全面掌握大数据处理和分析的基本理论、基本方法和基本技术,能够运用所学知识解决实际问题,具备较高的综合业务素质、创新与实践能力,能从事大数据分析、大数据应用开发、大数据系统开发、大数据可视化以及大数据决策等工作,具有较强的专业技能和良好外语运用能力的应用型创新人才,或继续攻读本学科及其相关学科的硕士学位研究生。 二、毕业要求 本专业是一门涉及数学、统计学、计算机科学等多领域的交叉学科。学生主要学习数学、统计学、计算机科学的基本理论和基本知识,打好坚实的数学基础,受到系统而扎实的计算机编程训练,具备较强的数据分析和信息处理能力,能在大数据科学与工程技术领域从事数据分析管理、系统设计开发、大数据处理应用、科学研究等方面的工作,具备综合运用所学知识分析和解决实际问题的能力。 本专业学生培养分为两个主要阶段,第一阶段着重于数据科学理论体系的培养,即发展和完善数据科学理论体系,为数据科学人才培养提供必要的理论和知识基础;第二阶段重视实践能力的培养,即在夯实数据科学理论的基础上,重视培养学生利用大数据的方法解决具体行业应用问题的能力。 本专业毕业生在知识、能力和素质方面的具体要求: 1.具有正确的世界观、人生观和价值观;具有良好的道德品质、高度的社会责任感与职业道德;具有良好的人文社会科学素养。 2.具有良好的人际交往能力和团队协作精神;有较强的自学能力和适应能力。 3.具有良好的数学、统计学和计算机科学基础,掌握数据科学与大数据技术、统计学和计算机科学的基本知识、方法和技能。

数值分析试卷及其答案1

1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知6 5.0102 1 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620*2102 1 ,6,0,10325413.0-?= -=-=?=ε绝对误差限n k k X 2分 2. 已知?? ???=0 01 A 220- ?????440求21,,A A A ∞ (6分) 解: {}, 88,4,1max 1==A 1分 {}, 66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=0 1 A A T 4 2 ???? ? -420?????0 01 2 20 - ???? ?440= ?????0 01 80 ???? ?3200 2分 {}32 32,8,1max )(max ==A A T λ

1分 24322==A 3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (0,1……)产生的序列{}k x 收敛于 2 解: ①迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3 分 ②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-= a a x a x ?? 3分 4. 给定线性方程组,其中:?? ?=13A ?? ?2 2,?? ? ???-=13b 用迭代公式 )()()()1(k k k Ax b x x -+=+α(0,1……)求解,问取什么实数α ,可使 迭代收敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --???--=-=ααααα21231A I B 2分

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

贵州大学数值分析往年试题(6套)

贵州大学2009级工程硕士研究生考试试卷 数值分析 注意事项: 1.请考生按要求在下列横线内填写姓名、学号和年级专业。 2.请仔细阅读各种题目的回答要求,在规定的位置填写答案。 3.不要在试卷上乱写乱画,不要在装订线内填写无关的内容。 4.满分100分,考试时间120分钟。 专业 学号 姓名 一、(12分)用牛顿迭代法求3220--=x x 在区间[1.5,2]内的一个近似根,要求3 1||10-+-

二、(20分)已知()f x 的一组实验数据如下: (1)用三次插值公式求(1.28)f 的近似值; (2)用中心差商微分公式,求(1.5)' ?与求(2.0)'?的近似值。

三、(20分)设方程组12312312 335421537 ++=-+=--?? ??+=?x x x x x x x x x (1)用列主法求解方程组; (2)构造使G-S 方法收敛的迭代法,并取(0) (0,0,0)=T x ,求方程组的二次迭代近似解根。

四、(16分)将积分区间2等分,分别用复化梯形公式与复化辛普森公式求 2 1 ?x e dx的近似值。 五、(9分)设 32 11 ?? = ? -- ?? A, 3 1 ?? = ? -?? x,求 2 ||||x;谱半径() s A及条件数 1() cond A。

六、(16分)取步长0.1=h ,用Euler 预报-校正公式求微分方程 024| 2 ='=--?? =?x y y x y 的解()y x 在x =0.1与x =0.2处的近似值(2) (0.1)y ,(2)(0.2)y 。 七、(7分)设A 为非奇异矩阵,0≠b ,%x 是=Ax b 的近似解,x 是=Ax b 的解,证明 1|||||||| .()|||||||| --≤%%b Ax x x cond A b x 。

数学分析考研2021复旦与山东科大考研真题库

数学分析考研2021复旦与山东科大考研真题库 一、山东科技大学《603数学分析》考研真题

二、复旦大学数学系 第1部分数项级数和反常积分

第9章数项级数 一、判断题 1.若收敛,则存在.[重庆大学2003研] 【答案】错查看答案 【解析】举反例:,虽然,但是 发散. 2.若收敛,,则收敛.[南京师范大学研] 【答案】错查看答案 【解析】举反例:满足条件,而且很容易知道 但是发散,所以发散. 二、解答题 1.求级数的和.[深圳大学2006研、浙江师范大学2006研] 解: 2.讨论正项级数的敛散性.[武汉理工大学研]

解:由于,所以当a>1时收敛,当0<a<1时发散;当a=1时,由于 ,故发散. 3.证明:收敛.[东南大学研] 证明:因为所以 又因为 而收敛,故收敛. 4.讨论:,p∈R的敛散性.[上海交通大学研] 证明:因为为增数列,而为减数列,所以.从而

所以.于是当p>0时,由积分判别法知收敛,故由Weierstrass判别法知 收敛:当p=0时,因为发散,所以发散:当p<0时, 发散. 5.设级数绝对收敛,证明:级数收敛.[上海理工大学研] 证明:因为绝对收敛,所以.从而存在N>0,使得当n>N 时,有,则有 ,故由比较判别法知级数收敛. 6.求.[中山大学2007研] 解:由于,所以绝对收敛. 7.设,且有,证明: 收敛.[大连理工大学研] 证明:因为,所以对任意的ε,存在N,当n>N时,有

, 即 取ε充分小,使得,即.因为,所以单调递减,且 现在证明.因为,即则 . 所以对任意的ε,存在N,当n>N时,有.对任意的0<c-ε<r,有 所以存在N,当n>N时,,则 因此 ,

数值分析整理版试题及答案

例1、 已知函数表 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1) 故所求二次拉格朗日插值多项式为 (2)一阶均差、二阶均差分别为 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平 方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 所以,法方程为

011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6 a = 故,所求最佳平方逼近多项式为* 111()46S x x =+ 例3、 设()x f x e =,[0,1]x ∈,试求()f x 在[0,1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近 多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,这样,有 所以,法方程为 解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为 例4、 用4n = 的复合梯形和复合辛普森公式计算积分1 ? 。 解: (1)用4n =的复合梯形公式 由于2h =,( )f x =()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式 由于2h =,( )f x =()121,2,3k x k k =+=,()12 220,1,2,3k x k k + =+=,所以,有 例5、 用列主元消去法求解下列线性方程组的解。 解:先消元 再回代,得到33x =,22x =,11x = 所以,线性方程组的解为11x =,22x =,33x = 例6、 用直接三角分解法求下列线性方程组的解。 解: 设 则由A LU =的对应元素相等,有 1114u = ,1215u =,1316u =, 2111211433l u l =?=,3111311 22 l u l =?=, 2112222211460l u u u +=?=-,2113232311 545l u u u +=?=-,

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

数值分析2010-2011试卷

山东科技大学 2010-2011 学年第一学期 《数值分析》考试试卷 []。 及截断误差的复化梯形公式写出计算积分,等分,并记做将区间及截断误差表达式; 的梯形公式写出计算积分八、考虑定积分精度。 数精度,并指出其代数使其具有尽可能高的代试确定求积系数七、给定求积公式: 平方误差方逼近设多项式构造差商表解。 三角分解法求方程组的用迭代格式的收敛性; 试分析迭代格式; 迭代格式与写出线性方程组 公式立方根方程试求绝对分析一、)()(,2,1,0,,n .2)()(.1)()(,,,) 1()0()1()(。 多项项式上的一次最佳平[0,1]在区间)( ,试试 )( 六、。 值的三次牛顿三 )( ,1,3,2,5 )(时,0,2,3,5 已知当 五、oolittle .3eidel -auss .2eidel -auss acobi .12721 3522-给定 四、。 的迭代 导出求 0,-应用牛顿法于 三、,,,,784641347,4-21设x 二、限和相对和相对误 误差y 的x 位有效数字。试 5 均有80.115y 6.1025, x 设近似值 n 1 1-231213213321f T f I n i ih a x n a b h b a f T f I d x f f I C B A Cf Bf Af d x f x f x x f x f x f x D S G S G J x x x x x x x a a x Ax x x x A i x b a x ??=+=-==++-====?? ???=+-=+-=+=???? ??????-=??????????=+==??∞∞

数值计算方法试题集及答案要点

《数值计算方法》复习试题 一、填空题: 1、 ?? ??? ?????----=410141014A ,则A 的LU 分解为 A ? ???????? ???=????????? ?? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(, 0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求 得?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(, 1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对 1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公

山东科技大学数据库原理试卷A与参考答案及评分标准

山东科技大学泰山科技学院2012 —2013 学年第一学期 《数据库原理》考试试卷(A卷) 班级姓名学号 1、数据库系统的核心是____________ 。 2、两段锁协议中的两段指的是:____________ 和___________ 。 3、数据管理技术经过了、和三个阶段。 4、索引的建立有利也有弊。建立索引可以___________,但过多地建立索引会__________。 5、_____________是一个非常特殊但又非常有用的函数,它可以计算出满足约束条件的一组条件的行数。 3、数据库恢复是将数据库从状态恢复到的功能。 4、数据库系统在运行过程中,可能会发生故障。故障主要有、、介质故障和四类。 8、在SQL中,____________ 子句用来消除重复出现的元组。 9、在关系模式R(U) 中,如果X →Y ,Y →Z ,且Y 不是X 的子集,不存在X ←→Y 的情况,则称Z ____________依赖于X 。 10、判断一个并发调度是否正确,可用 __________ 概念来衡量。 二、选择题(20分,每题1分) 1、三个模式之间存在下列映射关系,将正确的填入括号中( ) A. 外模式/ 内模式 B. 外模式/ 模式 C. 模式/ 模式 D. 内模式/ 外模式 2、数据的逻辑独立性是指( ) A. 存储结构与物理结构的逻辑独立性 B. 数据与存储结构的逻辑独立性 C. 数据与程序的逻辑独立性 D. 数据元素之间的逻辑独立性 3、以下关于外码和相应的主码之间的关系,正确的是( ) A. 外码并不一定要与相应的主码同名 B. 外码一定要与相应的主码同名 C. 外码一定要与相应的主码同名而且唯一 D. 外码一定要与相应的主码同名,但并不一定唯一 4、数据库和文件系统的根本区别在于:( ) A.提高了系统效率 B.方便了用户使用 C.数据的结构化 D.节省了存储空间

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

数值线性代数实验

数值线性代数实验 题目:数值线性代数 专业:信息与计算科学班级:班姓名: 山东科技大学 2013年 1 月16日

实验报告说明 学院:信息学院专业:信息班级10-2 姓名: 一、主要参考资料: (1)《Matlab数值计算-案例分析》北京航空出版(2)《Matlab数值分析》机械工业出版 二、课程设计应解决的主要问题: (1)平方根 (2)QR方法 (3)最小二乘法 三、应用软件: (1)Matlab7.0 (2)数学公式编辑器 四、发出日期:课程设计完成日期: 指导教师签字:系主任签字:

指导教师对课程设计的评语 指导教师签字: 年月日

一、问题描述 先用你所熟悉的计算机语言将平方根和改进的平方根法编成写通用的子程序,然后用你编写的程序求解对称正定方程组b x =A ,其中 (1)b 随机的选取,系数矩阵位100阶矩阵 ?? ? ??? ???? ????????????1011101110111011101110 (2)系数矩阵为40阶Hilbert 矩阵,即系数矩阵A 的第i 行第j 列元素为 11-+=j i a ij ,向量b 的第i 个分量为∑=-+=n j i j i b 11 1 。 二、分析与程序 1. 平方根法函数程序如下: function [x,b]=pingfanggenfa(A,b) n=size(A); n=n(1); x=A^-1*b; disp('Matlab 自带解即为x'); for k=1:n A(k,k)=sqrt(A(k,k)); A(k+1:n,k)=A(k+1:n,k)/A(k,k); for j=k+1:n; A(j:n,j)=A(j:n,j)-A(j:n,k)*A(j,k); end end for j=1:n-1 b(j)=b(j)/A(j,j);

相关文档
最新文档