复变函数的极限与连续

一、多元函数、极限与连续解读

一、多元函数、极限与连续 ㈠二元函数 1 .二元函数的定义:设 D 是平面上的一个点集,如果对于每个点 P (x,y)∈ D ,变量按照 一定法则总有确定的值与它对应,则称是变量 x 、y 的二元函数(或点 P 的函数),记为 (或),点集 D 为该函数的定义域, x 、y 为自 变量,为因变量,数集为该函数值域。由此也可定义三元函数以及三元以上的函数。二元函数的图形通常是 一张曲面。例如是球心在原点,半径为 1 的上半球面。 ㈡二元函数的极限 ⒈设函数 f(x,y)在开区域(或闭区域) D 内有定义, 是 D 的内点或边界点,如果对于任意给定的正数,总存在正 数,使得对于适合不等式的一切点 ,都有成立,则称常数 A 为函数f(x,y)当 时的极限,记作或, 这里 。为了区别一元函数的极限,我们把二元函数的极限叫做二重极限。

⒉注意:二重极限存在是指沿任意路径趋于,函数 都无限接近 A 。因此,如果沿某一特殊路径,例如沿着一 条定直线或定曲线趋于时,即使函数无限接近于某一确定值,我们也不能由此判定函数的极限存在。 ㈢多元函数的连续性 1 .定义:设函数 f(x,y)在开区间(或闭区间) D 内有定 义,是 D 的内点或边界点且。如果 ,则称函数 f(x,y)在点连续。如果函数 f(x,y)在开区间(或闭区间) D 内的每一点连续,那么就称函数 f(x,y)在 D 内连续,或者称 f(x,y)是 D 内的连续函数。 2 .性质 ⑴一切多元初等函数在其定义域内是连续的; ⑵在有界闭区域 D 上的多元连续函数,在 D 上一定有最大值和最小值; ⑶在有界闭区域 D 上的多元连续函数,如果在 D 上取两个不同的函数值,则它在 D 上取得介于这两

复变函数经典例题

第一章例题 例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线? (1)以原点为心,2为半径,在第一象项里的圆弧; (2)倾角的直线; (3)双曲线。 解设,则 因此 (1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周。(2)在平面上对应的图形为:射线。 (3)因,故,在平面上对应的图形为:直线 。 例1.2设在点连续,且,则在点的某以邻域内恒不为0. 证因在点连续,则,只要,就有 特别,取,则由上面的不等式得 因此,在邻域内就恒不为0。 例1.3设 试证在原点无极限,从而在原点不连续。

证令变点,则 从而(沿正实轴) 而沿第一象限的平分角线,时,。 故在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1在平面上处处不可微 证易知该函数在平面上处处连续。但 当时,极限不存在。因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1。故处处不可微。 例 2.2函数在满足定理2.1的条件,但在不可微。 证因。故 但

在时无极限,这是因让沿射线随 而趋于零,即知上式趋于一个与有关的值。 例2.3讨论的解析性 解因, 故 要使条件成立,必有,故只在可微,从而,处处不解析。例2.4讨论的可微性和解析性 解因, 故 要使条件成立,必有,故只在直线上可微,从而,处处不解析。 例2.5讨论的可微性和解析性,并求。 解因, 而 在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。且 。 例2.6设确定在从原点起沿负实轴割破了的平面上且,试求 之值。 解设,则

由代入得 解得:,从而 。 例2.7设则 且的主值为。 例2.8考查下列二函数有哪些支点 (a) (b) 解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即 从而 故的终值较初值增加了一个因子,发生了变化,可见0是的支点。同理1 也是其支点。 任何异于0,1的有限点都不可能是支点。因若设是含但不含0,1的简

1.6复数的极限及连续性

1.6复数的极限及连续性 一.函数的极限 定义:若存在数A ,0) 0,,δρεδ ε<≤?>?(()当00z z δ<-<时,有()f z A ε-<,则称A 为()f z 为0z z →时的极限,记作0 lim ()z z f z A →=或当0z z →时,()f z A →。 通俗定义:设函数0(),(,)w f z z U z ρ=∈ ,如果)()(lim 00 z f z f z z =→成立,则称) (z f 在0z 处连续;如果)(z f 在E 中每一点连续,则称)(z f 在E 上连续。 几何意义: 当变点z 一旦进入0z 的充分小去心邻域时,它的象点()f z 就落入A 的一个预先给定的ε邻域中 注:1.意义中0z z →的方式是任意的。与一元函数相比较要求更高。 2. A 是复数;若()f z 在z 出有极限,则极限是唯一。 二、极限的运算法则 复变函数极限与其实部和虚部极限的关系: 定理一.如果000iy x z +=,则 00 000 00,0000,lim (,)(,)lim ()lim (,)(,)x x y y z z x x y y u x y u x y f z A u iv v x y v x y →→→→→=??==+??=?? 即一个复变函数的连续性等价于两个实变二元函数的连续性,给出了证明复变函数连续性的方法。 定理二.若0 lim ()lim ()z z z z f z A g z B →→==,则: []0 lim ()()lim ()lim ()z z z z z z f z g z f z g z A B →→→±=±=± lim ()()lim ()lim ()z z z z z z f z g z f z g z AB →→→==

(整理)多元函数的极限与连续习题.

多元函数的极限与连续习题 1. 用极限定义证明:14)23(lim 1 2=+→→y x y x 。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-=),(; (2) y x y x y x f 1s i n 1s i n )(),(+=; (3) y x y x y x f ++=23 3),(; (4) x y y x f 1 s i n ),(=。 3. 求极限 (1)2 20 ) (lim 22 y x x y x y +→→; (2)1 1lim 2 2 220 0-+++→→y x y x y x ; (3)2 20 01 sin )(lim y x y x y x ++→→; (4)22220 0) sin(lim y x y x y x ++→→。 4. 试证明函数?? ???=≠+=0 0)1ln(),(x y x x xy y x f 在其定义域上是连续的。

1. 用极限定义证明:14)23(lim 2 1 2=+→→y x y x 。 因为1,2→→y x ,不妨设0|1|,0|2|<-<-y x , 有54|2||42||2|<+-≤+-=+x x x , |22123||1423|2 2 -+-=-+y x y x |1|2|2|15|1|2|2||2|3-+-<-++-≤y x y x x |]1||2[|15-+-?ε,要使不等式 ε<-+-<-+|]1||2[|15|1423|2 y x y x 成立 取}1,30 min{ ε δ=,于是 0>?ε, 0}1,30 min{ >=?ε δ,),(y x ?:δδ<-<-|1|,|2|y x 且 )1,2(),(≠y x ,有ε<-+|1423|2 y x ,即证。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-= ),(; 1lim lim 00=+-→→y x y x y x , 1l i m l i m 00-=+-→→y x y x x y , 二重极限不存在。 或 0l i m 0=+-=→y x y x x y x , 3 1l i m 20-=+-=→y x y x x y x 。

高数8多元函数的极限与连续

二元函数的极限 二元极限存在常用夹逼准则证明 例1 14)23(lim 2 12=+→→y x y x 例2 函数?? ???+=01sin 1sin ),(,x y y x y x f .00=≠xy xy ,在原点(0,0)的极限是0. 二元极限不存在常取路径 例3 证明:函数)),(,,00)(()y (442≠+=y x y x y x x f 在原点(0,0)不存在极限. 与一元函数极限类似,二元函数极限也有局部有限性、极限保序性、四则运算、柯西收敛准则等. 证明方法与一元函数极限证法相同,从略. 上述二元函数极限)(lim 0 0y x f y y x x ,→→是两个自变量x 与y 分别独立以任意方式无限趋近于0x 与0y .这是个二重极限. 二元函数还有一种极限: 累次极限 定义 若当a x →时(y 看做常数),函数)(y x f ,存在极限,设当b y →时,)(y ?也存在极限,设 B y x f y a x b y b y ==→→→)(lim lim )(lim ,?, 则称B 是函数)(y x f ,在点)(b a P ,的累次极限.同样,可定义另一个不同次序的累次极限,即 C y x f b y a x =→→)(lim lim ,. 那么二重极限与累次极限之间有什么关系呢?一般来说,它们之间没有蕴含关系. 例如: 1)两个累次极限都存在,且相等,但是二重极限可能不存在. 如上述例3. 2)二重极限存在,但是两个累次极限可能都不存在. 如上述的例2. 多重极限与累次极限之间的关系 定理 若函数)(y x f ,在点),000(y x P 的二重极限与累次极限(首先0→y ,其次0→x )都存在,则 )(lim lim (lim 0 000y x f y x f y y x x y y x x ,),→→→→=. 二元函数的连续性 定理 若二元函数)(P f 与()P g 在点0P 连续,则函数)()(P g P f ±,)()(P g P f ,) ()(P g P f (0)(0≠P g )都在点0P 连续

复变函数极限

复变函数的极限 于秀芝 (渤海大学数学系辽宁锦州121000 中国) 摘要:这是一篇讨论复变函数极限的论文,把我们所熟悉的数学分析中实变函数极限的定义、定理、性质,推广到复变函数中,并加以证明。但是实变函数极限的定义、定理、性质,并不完全适用于复变函数。例如:复变函数的极限没有保序性、正性,复变函数没有左、右极限等等。同时,复变函数极限的定义与数学分析中的二元函数极限的定义相似,故它又具有二元函数的某些性质。本篇论文由四个方面组成。首先,我们讨论的是复变函数在某个定点时极限的定义,即描述性极限的定义和表达式极限的定义。其次,我们讨论的是复变函数极限的定理,如Heine定理、Cauchy 准则、复合函数极限的定理等等,并给出了详细的证明。再次,我们讨论的是复变函数极限的性质,即唯一性、绝对值的极限、局部有界性、四则运算法则等等,同时,我们也给了详细的证明。最后,我们讨论的是复变函数在无穷远点的极限。在这方面,我们将极限从有限的定点逐渐引入到无穷远点,进而给出了函数在无穷远点处极限的定义、运算法则、定理,并给予了相应的应用。 关键词:Heine 定理Cauchy 准则极限复数列 Complex variable function limit Yu Xiuzhi (Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:This is a discussion about complex variable function limit paper. It promotes the definition, theorem, nature of the real variable function limit to the complex variable function limit and performs to prove it .But the definition, the theorem, the nature of the real variable function limit aren’t completely suitable for the complex variablefunction.For example, complex variable f unction limit doesn’t have order nature,positive nature , and complex variable function doesn’t have left limit and right limit , and so on . Simultaneously,the definition of the complex variable function limit and the definition of the dual function limit of mathematica lanalysis is similar.So it also has some natures of dual function limit.This paper has four aspects.First,We discuss the defination of the complex variable function in some apex time , namely the definition of description limit and the definition of expression limit.Next,we discuss the theorem of the complex variable function limit.For example ,Heine theorem, Cauchy criterion,the theorem of composite function limit,and so on. And it has produced the detailed proof. Once more,we discuss the nature of the complex variable function limit. Namely unique nature , absolute value limit nature ,partially having nature, mathematical operations principle nature ,and so on . At the same time, we have also gave the detailed proof. Finally ,we discuss the complex variable function limit in the infinite point. In this aspect, we gradually introduce the limit from the limited fixed point to the infinite point, and then we have produced the definition and the theorem of limit in the infinite point . And we have gave the corresponding application. Key words: Heine theorem Cauchy criterion Limit Duplicate sequence 一、复变函数极限的定义 1.定义

(整理)多元函数的极限与连续

数学分析 第16章多元函数的极限与连续计划课时: 1 0 时

第16章 多元函数的极限与连续 ( 1 0 时 ) § 1 平面点集与多元函数 一. 平面点集: 平面点集的表示: ),(|),{(y x y x E =满足的条件}. 余集c E . 1. 常见平面点集: ⑴ 全平面和半平面 : }0|),{(≥x y x , }0|),{(>x y x , }|),{(a x y x >, }|),{(b ax y y x +≥等. ⑵ 矩形域: ],[],[d c b a ?, 1||||),{(≤+y x y x }. ⑶ 圆域: 开圆 , 闭圆 , 圆环,圆的一部分. 极坐标表示, 特别是 }cos 2|),{(θθa r r ≤和}sin 2|),{(θθa r r ≤. ⑷ 角域: }|),{(βθαθ≤≤r . ⑸ 简单域: -X 型域和-Y 型域. 2. 邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域. 空心邻域和实心邻域 , 空心方邻域与集 }||0 , ||0|),{(00δδ<-<<-

二元函数的极限与连续5页word文档

§2.3 二元函数的极限与连续 定义设二元函数在点的某邻域内有意义, 若存在 常数A,,当(即)时,都有 则称A是函数当点趋于点时的极限,记作 或 或或。必须注意这个极限值与点趋于点的方式无关,即不论P 以什么方 向和路径(也可是跳跃式地,忽上忽下地)趋向。只要P与充分接近, 就能 使与A 接近到预先任意指定的程度。注意:点P趋于点点方式可有无穷多 种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。 图8-7 同样我们可用归结原则,若发现点P按两个特殊的路径趋于点时,极限 存在,但不相等, 则可以判定在该点极限不存在。这是判断多元函数极限不 存在的重要方法之一。 一元函数极限中除了单调有界定理外,其余的有关性质和结论, 在二

元函数极 限理论中都适用,在这里就不一一赘述了。 例如若有, 其中 求多元函数的极限, 一般都是转化为一元函数的极限来求, 或利用夹逼定理 来计算。例4 求。解由于 而,根据夹逼定理知 ,所以 例5求(a≠0)。解。例6求。解由于且 ,所以根据夹逼定理知 . 例7 研究函数在点处极限是否存在。解当x2+y2≠0时,我们研究函数,沿x→0,y=kx→0这一方式趋于 (0,0)的极限,有,。很显然,对于不同的k值,可得到不同的极

限值,所以极限不存在,但 。注意:的区别, 前面两个求极限方式的 本质是两次求一元函数的极限, 我们称为累次极限, 而最后一个是求二元函数的 极限,我们称为求二重极限。 例8 设函数。它关于原点的两个累次极限都不存在,因 为对任何,当时,的第二项不存在极限;同理对任何 时,的第 一项也不存在极限,但是, 由于, 因此 由例7知, 两次累次极限存在, 但二重极限不存在。由例8可知,二重极限存 在,但二个累次极限不存在。我们有下面的结果: 定理1若累次极限和二重极限 都存在,则 三者相等(证明略)。推论若存在但

多元函数的概念极限与连续性

§5.1 多元函数的概念、极限与连续性 一、多元函数的概念 1. 二元函数的定义及其几何意义 设D 是平面上的一个点集,如果对每个点()p x y D ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x y ,的二元函数,记以()z f x y =,,D 称为定义域。 二元函数()z f x y =,的图形为空间一块曲面,它在xy 平面上的投影区域就是定义域D 。 例如 22: 1z D x y =+≤二元函数的图形为以原点为球心,半径为1 的上半球面,其定义域D 就是xy 平面上以原点为圆心, 半径为1的闭圆。 2. 三元函数与n 元函数。 ()()u f x y z x y z =∈ΩΩ,,,,,,为空间一个点 集则称()u f x y z =,,为三元函数 ()12n u f x x x =,,,,称为n 元函数。 它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。条件极值中,可能会遇到超过三个自变量的多元函数。 【例1】 求函数arcsin 3 x z = 解 要求13 x ≤,即33x -≤≤; 又要求0xy ≥即00x y ≥≥,或00x y ≤≤, 综合上述要求得定义域300x y -≤≤??≤?或030 x y ≤≤??≥?

【例2】 求函数()2ln 21z y x =-+的定义域。 解 要求2240x y --≥和2210y x -+> 即 2222212x y y x ?+≤??+>?? 函数定义域D 在圆2222x y +≤的内部 (包括边界)和抛物线212y x +=的左侧(不包括抛物线上的点) 【例3】 设()22 f x y x y x y y +-=+,,求()f x y ,。 解 设x y u x y v +=-=,解出()()1122 x u v y u v = +=-, 代入所给函数化简 ()()()()221184 f u v u v u v u v +-+-,= 故 ()()()()221184f x y x y x y x y +-+-,= 【例4】 设()22 35f x y xy x xy y ++++,=,求()f x y ,。 解 ()22223525x xy y x xy y xy +++=++++ ()25x y xy =+++ ∴ ()25f x y x y =++, 二、 二元函数的极限 设()f x y ,在点()00x y ,的去心邻域内有定义;如果对任意0ε>,存在0δ>,只要 0δ<,就有()f x y A ε-<, 则记以()00lim x x y y f x y A →→=,或()() ()00lim x y x y f x y A →=,,, 称当()x y ,趋于()00x y ,时,()f x y ,的极限存在,极限值为A ,否则,称为极限不存在.

数学分析16多元函数的极限与连续总练习题

第十六章 多元函数的极限与连续 总练习题 1、设E ?R 2是有界闭集,d(E)为E 的直径. 证明:存在P 1,P 2∈E , 使得ρ(P 1,P 2)=d(E). 证:由d(E)=E Q ,P sup ∈ρ(P ,Q)知,对εn =n 1, ? P n ,Q n ∈E ,使d(E)<ρ(P n ,Q n )+n 1. {P n },{Q n }均为有界闭集E 中的点列,从而有收敛子列{Pn k },{Qn k }, 记Pn k →P 1, Qn k →P 2,k →∞. ∵ρ(Pn k ,Qn k )≤d(E)<ρ(Pn k ,Qn k )+k n 1 , 令k →∞得ρ(P 1,P 2)≤d(E)≤ρ(P 1,P 2),即d(E)=ρ(P 1,P 2). 又∵E 为闭集,∴P 1,P 2∈E ,得证! 2、设f(x,y)= x y 1 ,r=22y x +,k>1,D 1={(x,y)|k x ≤y ≤kx}, D 2={(x,y)|x>0,y>0}. 分别讨论i=1,2时极限i D )y ,x (r lim ∈+∞ →f(x,y)是否存在,为什么? 解:1 D )y ,x (r lim ∈+∞→f(x,y)存在;2 D )y ,x (r lim ∈+∞ →f(x,y)不存在. 理由如下: (1)当(x,y)∈D 1时,k k 12 +|x|≤r=22y x +≤2k 1+|x|, ∴由r →+∞可得x →∞,又|f(x,y)|=|x y 1|≤2x k →0, x →∞, ∴1 D )y ,x (r lim ∈+∞→f(x,y)=1 D )y ,x (x lim ∈∞ →f(x,y)=0存在. (2)对y=x k , 当x>0时,y>0,∴(x,x k )∈D 2,且 当x →∞时,r=22y x +=22x k x + →+∞,但f(x,y)=x y 1=k 1,

二元函数的极限与连续

第6章多元微分学 教学目的: 1.理解多元函数的概念和二元函数的几何意义。 2.了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念并掌握其计算方法。 5.掌握多元复合函数偏导数的求法。 6.会求隐函数(包括由方程组确定的隐函数)的偏导数。 7.了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值。 9.会用拉格郎日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 教学重点: 1.二元函数的极限与连续性; 2.函数的偏导数和全微分; 3.方向导数与梯度的概念及其计算;

4.多元复合函数偏导数; 5.隐函数的偏导数 6.曲线的切线和法平面及曲面的切平面和法线; 7.多元函数极值和条件极值的求法。 教学难点: 1.二元函数的极限与连续性的概念; 2.全微分形式的不变性; 3.复合函数偏导数的求法; 4.隐函数(包括由方程组确定的隐函数)的偏导数; 5.拉格郎日乘数法; 6.多元函数的最大值和最小值。 6.1 二元函数的极限与连续6.1.1 区域

1.平面点集 由平面解析几何知道, 当在平面上引入了一个直角坐标系后, 平面上的点P 与有序二元实数组),(y x 之间就建立了一一对应. 于是, 我们常把有序实数组 ),(y x 与平面上的点P 视作是等同的. 这种建立了坐标系的平面称为坐标平面. 二元的序实数组),(y x 的全体, 即{}R y x y x R R R ∈=?=,),(2就表示坐标平面. 坐标平面上具有某种性质B 的点的集合, 称为平面点集, 记作: {} B y x y x E 具有性质),(),(=。 例如, 平面上以原点为中心、r 为半径的圆内所有点的集合是 {} 222),(r y x y x C <+= 如果我们以点P 表示),(y x ,以OP 表示点P 到原点O 的距离, 那么集合C 可表成 {} r OP P C <= . 2.邻域 设),(000y x P 是xoy 平面上的一个点, δ是某一正数. 与点),(000y x P 距离小于 δ的点),(y x P 的全体, 称为点P 0的δ邻域, 记为),(0δP U , 即 }|| |{),(00δδ<=PP P P U 或} )()( |) ,{(),(20200δδ<-+-=y y x x y x P U . 邻域的几何意义:),(0δP U 表示xoy 平面上以点),(000y x P 为中心、δ >0为半径的圆的内部的点),(y x P 的全体. 点0P 的去心δ邻域, 记作) ,(0δP U ο , 即 :}||0 |{) ,(00δδ<<=P P P P U ο . 注:如果不需要强调邻域的半径δ, 则用)(0P U 表示点0P 的某个邻域, 点0P 的去心邻域记作)(0P U ο . 3.点与点集之间的关系 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种:

《数学分析》第十六章_多元函数的极限与连续

第十六章 多元函数的极限与连续 ( 1 0 时 ) §1 平面点集与多元函数 ( 3 时 ) 一. 平面点集: 平面点集的表示: ),(|),{(y x y x E =满足的条件}. 1. 常见平面点集: ⑴ 全平面和半平面: }0|),{(≥x y x , }0|),{(>x y x , }|),{(a x y x >, }|),{(b ax y y x +≥等. ⑵ 矩形域: ],[],[d c b a ?, 1|||| ),{(≤+y x y x }. ⑶ 圆域: 开圆, 闭圆, 圆环. 圆的个部分. 极坐标表示, 特别是 }cos 2|),{(θθa r r ≤和}sin 2|),{(θθa r r ≤. ⑷ 角域: }|),{(βθαθ≤≤r . ⑸ 简单域:-X 型域和-Y 型域. 2. 邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域. 空心邻域和实心邻域, 空心方邻域与集 }||0 , ||0|),{(00δδ<-<<-

多元函数的极限与连续习题课

第十六章 多元函数的极限与连续习题课 一 概念叙述题 1.叙述0 lim ()P P f P A →=,其中0,P P 的坐标为00(,),(,)x y x y . lim ()0,0,P P f P A εδ→=??>?>当00(;)P U P D ∈I δ时,有()f P A ε-< (方形邻域)0,0,εδ??>?>当0x x δ-<,0y y δ-<, 00(,)(,)x y x y ≠,有(,)f x y A ε-< (圆形邻域)0,0,εδ??>?>当0δ<,有(,)f x y A ε-<. 2. 叙述 00(,)(,) lim (,)x y x y f x y →=+∞,00(,)(,) lim (,)x y x y f x y →=-∞, 00(,)(,) lim (,)x y x y f x y →=∞的定义. 000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=+∞??>?>-<-<≠>当时,有 0,0,0(,)G f x y G δδ??>?>< <>当时,有000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=-∞??>?>-<-<≠<-当时,有 000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=∞??>?>-<-<≠>当时,有. 3.叙述 0(,)(,) lim (,)x y y f x y A →+∞=的定义. 00(,)(,) lim (,)0,0,0,,(,)x y y f x y A M x M y y f x y A εδδε→+∞=??>?>?>>-<-<当时,有 4.叙述 0(,)(,) lim (,)x y x f x y →-∞=+∞的定义. 00(,)(,) lim (,)0,0,0,,(,)x y x f x y G M x x y M f x y G δδ→-∞=+∞??>?>?>-<<->当时,有 5. 叙述 (,)(,) lim (,)x y f x y →-∞+∞=-∞的定义. (,)(,) lim (,)0,0,,(,)x y f x y G M x M y M f x y G →-∞+∞=-∞??>?><-><-当时,有. 注:类似写出(,)(,) lim (,)x y f x y →=VW d 的定义,其中d 取,,,A ∞+∞-∞,?取0,,,x ∞+∞-∞, W 取0,,,y ∞+∞-∞. 6.叙述f 在点0P 连续的定义. f 在点0P 连续?ε?, 0δ?>,只要0(;)P U P D δ∈I ,就有0()()f P f P ε-< ?ε?, 0δ?>,当0x x δ-<,0y y δ-<,就有00(,)(,)f x y f x y ε-< ?ε?, 0δ?>,δ,就有00(,)(,)f x y f x y ε-<.

多元函数的极限与连续习题

多元函数的极限与连续习题14?y)3x?2lim(。1.用极限定义证明:2x?1y?)处的两个累次极限,并讨论在该点处的二重极限的存0,0讨论下列函数在(2. 在性。y?x?y)f(x,;1)(y?x11nnsis?(x?y)if(x,y) (2) ; yx33yx??y)(x,f;(3) 2y?x1ni?ysf(x,y)。(4) x22yx22)x?ylim(;(1)3. 求极限0?x0?y22yx?lim;)(2 220?x11?x?y?0?y1sin)x?ylim(;3()22y?x0x?0y?22)y?sin(xlim。)(4 22y?x0?x0?y ln(1?xy)??x?0?y)xf(,在其定义域上是连续的。试证明函数4. ?x?0?yx? 214)??2ylim(3x。1.用极限定义证明:2?x1?y x?2,y?1|x?2|?0,|y?1|?0,,不妨设因为5?|?4?|x?2|x?2|?|x?2?4|有,22|?12?2y22y?14|?|3x?x|3? ?3|x?2||x?2|?2|y?1|?15|x?2|?2|y?1| ?15[|x?2|?|y?1|] ???0,要使不等式 2??1|]|y?x?15[|?2|?|3x?2y?14|成立 ??,1?min{},于是取30?????)x,y?(0???|y?|?1,||x?20???min{1,}:,, 30 2?)12,,y)?((x?|?14x?2y|3,即证。且,有

2.讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 x?y?,y)(fx;(1)yx?x?yx?y?1limllimlimim??1,, yxy?x?0??x0y?00xy?二重极限不存在。 x?yx?y1?0lilimm??。,或3?xx?yy0x?x0?xy?x?y2 11siny)sin)?(x?f(x,y;(2) yx110?|(x?y)sinsin|?|x|?|y| yxlim(|x|?|y|)?0limf(x,y)?0。可以证明所以x?x?00y?0y?0 111?xf(x,y)?(x?y)sinsin0y?极限不存在,,当时,?kxy 11nnsii(x?y)slimlim不存在,因此yx0x?0y?11nnsi?y)silimlim(x同理不存在。yx0??0xy 33yx?f(x,y)?;(3) 2yx?3x2limf(x,y)?lim?0, 2x?x0x?x?0x?y23xx??y? 0,0)时有当P(x, y)沿着趋于(3323)x?xx?(f(xlim,y)?lim?1,322x?x?x0?x0x?32x?y?x?limf(x,y)不存在;所以0?x0?y 0?,y)limlimf(xlimlimf(x,y)?0。,0x??0y?0x?0y 1sin?y(x,y)f(4) x1|y?ysin||0?|x0?y)f(x,lim,∴ 0?x0?y11nmysin?0limlilimlimysi不存在。,xx0?y0y?0x?x?0

相关文档
最新文档