高三物理知识点梳理--电磁感应与交变电流

高三物理知识点梳理--电磁感应与交变电流
高三物理知识点梳理--电磁感应与交变电流

2018高三物理知识点梳理

电磁感应、交变电流

【知识网络】

【考试说明解读】

一、电磁感应现象 楞次定律

1.磁通量 公式:Φ=BS . 适用条件:(1)匀强磁场.(2)S 为垂直磁场的有效面积.磁通量是标量,有正负,不代表大小但计算时应带正负. 磁通量的意义:磁通量可以理解为穿过某一面积的磁感线的条数.

如图所示,面积大小不等的两个圆形线圈A 和B 共轴套在一条形磁铁上,磁铁内部向上的磁感线的总条数是相同的,但由于线圈A 的面积大于B 的,外部穿过线圈向下的磁感线的条数A 的大于B 的,所以A ?<B ?。

2.磁通量变化量:ΔΦ=|Φ2-Φ1 |

二、产生感应电流的条件:穿过闭合回路的磁通量发

生变化.

能量转化:发生电磁感应现象时,机械能或其他形式的能转化为电能.

深化拓展 当回路不闭合时,没有感应电流,但有感应电动势,且产生感应电动势的那部分导体或线圈相当于电源.

三、感应电流方向的判断

1. 楞次定律 适用情况:所有的电磁感应现象.

内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.

步骤:①确定原磁场的方向;注意:原磁场是指引起回路产生电磁感应现象的磁场. ②判断穿过回路的磁通量的变化,是增加还是减少;

③根据楞次定律,判断感应电流的磁场方向;(增反减同)

④用安培定则(右手螺旋定则)确定感应电流的方向.

楞次定律推广应用

推广1:阻碍原磁通量的变化——“增反减同”.

推广2:阻碍相对运动——“来拒去留”.

推广3:使线圈面积有扩大或缩小的趋势

推广4:阻碍原电流的变化(自感现象)——“增反减同”.

总之:在各种电磁感应现象中,电磁感应的效果总是阻碍引起电磁感应的原因,若是由相对运动引起的,则阻碍相对运动;若是由电流变化引起的,则阻碍电流变化的趋势。

2. 右手定则 适用情况:导体棒切割磁感线产生感应电流.

【例1】(基础题)现将电池组、滑动变阻器、带铁芯的线圈A 、线圈B 、电流计及电键按如图所示连接.下列说法中正确的是 ( )

A .电键闭合后,线圈A 插入或拔出都会引起电流计指针偏转

B .线圈A 插入线圈B 中后,电键闭合和断开的瞬间电流计指针均不会偏转

C .电键闭合后,滑动变阻器的滑片P 匀速滑动,会使电流计指针静止在中央零刻度

D .电键闭合后,只有滑动变阻器的滑片P 加速滑动,电流计指针才能偏转

【例2】(经典题)如图(a)所示,两个闭合圆形线圈A 、B 的圆心重合,放在同一水平面内,线圈A 中通以如图(b)所示的交变电流,t =0时电流方向为顺时针(如图中箭头所示),在t 1~t 2时间段内,对于线圈B ,下列说法中正确的是 ( )

A .线圈

B 内有顺时针方向的电流,线圈有扩张的趋势

B .线圈B 内有顺时针方向的电流,线圈有收缩的趋势

C .线圈B 内有逆时针方向的电流,线圈有扩张的趋势

D .线圈B 内有逆时针方向的电流,线圈有收缩的趋势

【例3】(经典题)(2011·上海单科,20)如图所示,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布,一铜制圆环用丝线悬挂于O 点,将圆环拉至位置a 后无初速释放,在圆环从a 摆向b 的过程中( ).

A .感应电流方向先逆时针后顺时针再逆时针

B .感应电流方向一直是逆时针

C .安培力方向始终与速度方向相反

D .安培力方向始终沿水平方向

四、法拉第电磁感应定律

1. 画等效电路:产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内

阻.遵循闭合电路欧姆定律I =E R +r

. 2. 法拉第电磁感应定律:E =n ΔΦΔt . (k=ΔΦΔt

,Φ-t 图像斜率) 一般求解平均电动势,求电量q =I Δt =n ΔΦΔt (R +r )

·Δt =n ΔΦR +r .(电量q 与ΔΦΔt 无关,只与ΔΦ有关)

(1)感生电动势:B 变化E =n ΔBS Δt =nkS (k=ΔB Δt

,B —t 图像斜率)(方向判断楞次定律)

(2)动生电动势(导体切割磁感线):E =n B ΔS Δt

=Blv . (方向判断右手定则) 条件:Blv 两两垂直,l 有效长度(B ∥l ,E =0),一般求解瞬时电动势

注意:导体棒在磁场中转动切割:导体棒以端点为轴,在匀强磁场中垂直于磁感

线方向匀速转动产生感应电动势E =Bl v =12Bl 2ω(平均速度等于中点位置线速度12

lω). 3.注意:Φ、ΔΦ、ΔΦΔt

均与线圈匝数无关。 4、一个有用结论:含电容C 的金属导轨L ,垂直放在磁感应强度为B 的磁场中,质量为m

的金属棒跨在导轨上,在恒力F 的作用下,做匀加速运动,且加速度a=c L B m F

22 。

五.电磁感应中的能量及功能关系问题

系统克服安培力做功转换为闭合回路的电能:|W F 安|=E 电

(1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算.也可利用功能关系、能量守恒

(2)若电流变化,则只能利用功能关系、能量守恒求解:①利用功能关系求系统安培力做的功求解:电磁感应中产生的电能等于系统克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.

六、自感与涡流

1. 自感现象

(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.

(2)表达式:E =L ΔI Δt

. (3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.

2. 涡流

当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水中的旋涡,所以叫涡流.

(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的相对运动.

(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流使导体受到安培力的作用,安培力使导体运动起来.

(3)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用.

【例4】(基础题)如图所示为新一代炊具——电磁炉,无烟、无明火、无污染、不产生有害气体、无微波辐射、高效节能等是电磁炉的优势所在.电磁炉是利用电流通过线圈产生磁场,当磁场的磁感线通过含铁质锅底部时,即会产生无数小涡流,使锅体本身自行高速发热,然后再加热锅内食物.下列相关说法中正确的是 ( )

A .锅体中的涡流是由恒定的磁场产生的

B .恒定磁场越强,电磁炉的加热效果越好

C .锅体中的涡流是由变化的磁场产生的

D .提高磁场变化的频率,可提高电磁炉的加热效果

【例5】(经典题) 如图甲所示,电路的左侧是一个电容为C 的电容器,电路的右侧是一个环形导体,环形导体所围的面积为S .在环形导体中有一垂直纸面向里的匀强磁场,磁感应强度的大小随时间变化的规律如图乙所示.则在0~t 0时间内电容器 ( )

【例6】(经典题) 一个边长为L 的正方形导线框在倾角为θ的光滑固定斜面上由静止开

始沿斜面下滑,随后进入虚线下方方向垂直于斜面的匀强磁场中.如图所示,磁场的上边界线水平,线框的下边ab 边始终水平,斜面以及下方的磁场往下方延伸到足够远.下列推理判断正确的是( )

A .线框进入磁场过程b 点的电势比a 点高

B .线框进入磁场过程一定是减速运动

C .线框中产生的焦耳热一定等于线框减少的机械能

D.线框从不同高度下滑时,进入磁场过程中通过线框导线横截面的电荷量不同

【例7】(经典题)如图13所示有理想边界的两个匀强磁场,磁感应强度均为B=0.5 T,两边界间距s=0.1 m,一边长L=0.2 m的正方形线框abcd由粗细均匀的电阻丝围成,总电阻为R=0.4 Ω,现使线框以v=2 m/s的速度从位置Ⅰ匀速运动到位置Ⅱ,则下列能正确反映整个过程中线框a、b两点间的电势差U ab随时间t变化的图线是(

)

【例8】(经典题)如图所示电路,两根光滑金属导轨平行放置在倾角为θ的斜面上,导轨下端接有电阻R,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒ab质量为m,受到沿斜面向上且与金属棒垂直的恒力F的作用.金属棒沿导轨匀速下滑,则它在下滑高度h的过程中,以下说法正确的是() A.作用在金属棒上各力的合力做功为零

B.重力做的功等于系统产生的电能

C.金属棒克服安培力做的功等于电阻R上产生的焦耳热

D.金属棒克服恒力F做的功等于电阻R上产生的焦耳热

(八)电磁感应答案

【例1】A【例2】A【例3】AD【例4】CD【例5】A【例6】C【例7】A【例8】AC

交变电流部分

【知识网络】

【考试说明解读】

一、交变电流的产生和变化规律

1.交变电流:大小和方向都随时间做周期性变化的电流.如图(a)、(b)、(c)、(d)所示都属于交变电流.其中按正(余)弦规律变化的交变电流叫正弦式交变电流,简称正弦式电

流,如图(a)所示.

2.正弦交流电的产生和图象

(1)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动.

(2)中性面①定义:与磁场方向垂直的平面.

②特点:a.线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零.b.线圈转动一周,两次经过中性面.线圈每经过中性面一次,电流的方向就改变一次.

(3)图象:用以描述交流电随时间变化的规律,如果线圈从中性面位置开始计时,其图象为正弦函数曲线.如果线圈从峰值面位置开始计时,其图象为余弦函数曲线.

二、正弦交变电流的函数表达式、峰值和有效值

1.

2.

(1)线圈平面与中性面重合时,S⊥B,Φ最大,ΔΦ

Δt=0,e=0,i=0,电流方向将发生改

变.

(2)线圈平面与中性面垂直时,S∥B,Φ=0,ΔΦ

Δt最大,e最大,i最大,电流方向不改变.

特别提醒:1.只要线圈平面在匀强磁场中绕垂直于磁场的轴匀速转动,就产生正弦式交流电,e=NBSωsinωt.线圈平面垂直于磁场时Ε=0,平行于磁场时Em=NBSω。与线圈的形状、转动轴处于线圈平面内的位置无关.

3.Φ-t图象与对应的e-t图象是互余的.

的图象,当调整线圈转速后,所产生正弦交流电的图象如图线b 所示,以下关于这两个正弦交流电的说法正确的是 ( )

A .在图中t =0时刻穿过线圈的磁通量均为零

B .线圈先后两次转速之比为3∶2

C .交流电a 的瞬时值表达式为u =10sin 5πt (V)

D .交流电b 的最大值为5 V

【例2】(基础题)如图所示,图甲和图乙分别表示正弦脉冲波和方波的交变电流与时间的变化关系.若使这两种电流分别通过两个完全相同的电阻,则经过1 min 的时间,两电阻消耗的电功之比W 甲∶W 乙为 ( )

A .1∶ 2

B .1∶2

C .1∶3

D .1∶6

【例3】(经典题) 如图所示,矩形线圈面积为S ,匝数为N ,线圈电阻为r ,在磁感应强度为B 的匀强磁场中绕OO ′轴以角速度ω匀速转动,外电路电阻为R ,当线圈由图示位置转过60°的过程中,下列判断正确的是( )

A .电压表的读数为NBSωR 2 R +r

B .通过电阻R 的电荷量为q =NBS 2 R +r

C .电阻R 所产生的焦耳热为Q =N 2B 2S 2ωR

π4 R +r 2

D .当线圈由图示位置转过60°时的电流为NBSω2 R +r

三、理想变压器

1. 工作原理:互感现象.

2. 基本关系式

(1)功率关系:P 入=P 出.

(2)电压关系:只有一个副线圈时,U 1n 1=U 2n 2;有多个副线圈时,U 1n 1=U 2n 2=U 3n 3

=…. (3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1

. 由P 入=P 出及P =UI 推出有多个副线圈时,n 1I 1=n 2I 2+n 3I 3+….

()

四、远距离输电(如图所示)

1.输送电流 (1)I =P U ;I =P'U' (2)I =ΔU R =U -U ′R

. 2.电压损失 (1)ΔU =U -U ′;(2)ΔU =IR .

3. 功率损失 (1)ΔP =P -P ′;(2)ΔP =I 2R =(P U )2R

4. 降低输电损耗的两个途径

(1)减小输电线的电阻,由电阻定律R =ρl S 可知,在输电距离一定的情况下,为了减小

电阻,应采用电阻率小的材料,也可以增加导线的横截面积.

(2)减小输电导线中的输电电流,当输送功率一定时,输电电压增大到原来的n 倍,输

电线上损耗的功率就减小到原来的1n 2. 5.远距离高压输电的几个基本关系

(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3.

(2)电压、电流关系:U 1U 2=n 1n 2=I 2I 1,U 3U 4=n 3n 4=I 4I 3

,U 2=ΔU +U 3,I 2=I 3=I 线.

(3)输电电流:I 线=P 2U 2=P 3U 3=U 2-U 3R 线

. (4)输电线上损耗的电功率:P 损=I 线ΔU =I 2线R 线=(P 2U 2

)2R 线.

【例4】(基础题)电流互感器和电压互感器如图所示.其中n

1、n

2、n

3、n 4分

别为四组线圈的匝数,a 、b 为两只交流电表,则( )

A .A 为电流互感器,且n 1

B .A 为电压互感器,且n 1>n 2,a 是电压表

C .B 为电流互感器,且n 3

D .B 为电压互感器,且n 3>n 4,b 是电压表

【例5】(经典题)图甲中理想变压器原、副线圈的匝数之比n 1∶n 2=5∶1,电阻

R =20 Ω,L 1、L 2为规格相同的两只小灯泡,S 1为单刀双掷开关.原线圈接正弦交变电源,输入电压u 随时间t 的变化关系如图乙所示.现将S 1接1,S 2闭合,此时L 2正常发光.下列说法正确的是( )

A .输入电压u 的表达式u =202sin (50πt ) V

B .只断开S

2后,L 1、L 2均正常发光

C .只断开S 2后,原线圈的输入功率增大

D .若S 1换接到2后,R 消耗的电功率为0.8 W

【例6】(经典题)如图所示的电路中,有一自耦变压器,左侧并联一只理想电压表V 1后接在稳定的交流电源上;右侧串联灯泡L 和滑动变阻器R ,R 上并联一只理想电压表V

2.下列说法中正确的是( )

A .若F 不动,滑片P 向下滑动时,V 1示数变大,V 2示数变小

B .若F 不动,滑片P 向下滑动时,灯泡消耗的功率变小

C .若P 不动,滑片F 向下移动时,V 1、V 2的示数均变小

D .若P 不动,滑片F 向下移动时,灯泡消耗的功率变大

【例7】(基础题)在远距离输电时,输送的电功率为P ,输电电压为U ,所用导线电阻率为ρ,横截面积为S ,总长度为l ,输电线损失的电功率为P ′,用户得到的电功率为P 用,则下列关系式中正确的是 ( ) A .P ′=U 2S ρl B .P ′=P 2ρl U 2S

C.P用=P-U2S

ρl D.P用=P(1-

Pρl

U2S)

(八):交变电流部分答案

【例1】BC【例2】C【例3】AB【例4】AD【例5】D【例6】B【例7】BD

高二物理-选修3-2-电磁感应-期末重点复习资料

电磁感应专题复习 知识网络 第一部分电磁感应现象、楞次定律 知识点一——磁通量 ▲知识梳理 1.定义 磁感应强度B与垂直场方向的面积S的乘积叫做 穿过这个面积的磁通量,。如果面积S与B不垂直,如图所示,应以B乘以在垂直于磁场方向上的投影面积,即 。 2.磁通量的物理意义 磁通量指穿过某一面积的磁感线条数。 3.磁通量的单位:(韦伯)。 特别提醒: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别;另外,磁通量与线圈匝数无关。

(2)磁通量的变化,它可由B、S或两者之间的夹角的变化引起。 ▲疑难导析 一、磁通量改变的方式有几种 1.线圈跟磁体间发生相对运动,这种改变方式是S不变而相当于B变化。 2.线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 3.线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B不变,而S增大或减小。 4.线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。 二、对公式的理解 在磁通量的公式中,S为垂直于磁感应强度B方向上的有效面积,要正确理解三者之间的关系。 1.线圈的面积发生变化时磁通量是不一定发生变化的,如图(a),当线圈面积由变为时,磁通量并没有变化。 2.当磁场范围一定时,线圈面积发生变化,磁通量也可能不变,如图(b)所示,在空间有磁感线穿过线圈S,S外没有磁场,如增大S,则不变。

3.若所研究的面积内有不同方向的磁场时,应是将磁场合成后,用合磁场根据去求磁通量。 例:如图所示,矩形线圈的面积为S(),置于磁感应强度为B(T)、方向水平向右的匀强磁场中,开始时线圈平面与中性面重合。求线圈平面在下列情况的磁通量的改变量:绕垂直磁场的轴转过(1);(2);(3)。 (1); (2); (3)。负号可理解为磁通量在减少。 知识点二——电磁感应现象 ▲知识梳理 1.产生感应电流的条件 只要穿过闭合电路的磁通量发生变化,即,则闭合电路中就有感应电流产生。 2.引起磁通量变化的常见情况 (1)闭合电路的部分导体做切割磁感线运动。 (2)线圈绕垂直于磁场的轴转动。 (3)磁感应强度B变化。 ▲疑难导析

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

物理电磁感应知识点的归纳

物理电磁感应知识点的归纳 物理电磁感应知识点的归纳 1.电磁感应现象 利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb (2)求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右

手定则只适用于导线切割磁感线运动的`情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式:E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为 E=BLvsin。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。 (2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。 ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势 E=Nbs/t。

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析 一、电磁感应现象的两类情况 1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。 (1)求ab棒沿斜面向上运动的最大速度; (2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q; (3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。 【答案】(1) (2)q=40C (3) 【解析】 【分析】 (1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。 (2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。 (3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。 【详解】 (1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知 对物体,有;对ab棒,有 又、 联立解得: (2) 感应电荷量

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

电磁感应知识点总结

《电磁感应》知识点总结 1、 磁通量Φ、磁通量变化?Φ、磁通量变化率 t ??Φ 对比表 234、 感应电动势 在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。 (1) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就会产生感应电动势,它相 当于一个电源 (2) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感应电动势,磁通量发生变 化的那部分相当于电源。

5、 公式 n E ?Φ =与E=BLvsin θ 的区别与联系 6、 楞次定律 (2) 楞次定律中“阻碍”的含义

(3)对楞次定律中“阻碍”的含义还可以推广为感应电流的效果总是要阻碍产生感应电流的原因1)阻碍原磁通量的变化或原磁场的变化,即“增反减同”; 2)阻碍相对运动,可理解为“来拒去留”; 3)使线圈面积有扩大或缩小趋势,可理解为“增缩减扩”; 4)阻碍原电流的变化,即产生自感现象。 7、电磁感应中的图像问题 (3)解决这类问题的基本方法 1)明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像 2)分析电磁感应的具体过程 3)结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。 4)根据函数方程,进行数学分析,如斜率及其变化,两轴的截距等。 5)画图像或判断图像。 8、自感涡流

(2 ) 自感电动势和自感系数 1) 自感电动势:t I L E ??=,式中t I ??为电流的变化率,L 为自感系数。 2) 自感系数:自感系数的大小由线圈本身的特性决定,线圈越长,单位长度的匝数越多,横截面 积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大。 (3) 日关灯的电路结构及镇流器、启动器的作用 1) 启动器:利用氖管的辉光放电,起着自动把电路接通和断开的作用。 2) 镇流器:在日光灯点燃时,利用自感现象,产生瞬时高压;在日关灯正常发光时,利用自感现 象起降压限流作用。

高中物理电磁感应核心知识点归纳

高中物理《电磁感应》核心知识点归 纳 一、电磁感应现象 1、产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 2、感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3、关于磁通量变化 在匀强磁场中,磁通量,磁通量的变化有多种形式,主要有: ①S、α不变,B改变,这时

②B、α不变,S改变,这时 ③B、S不变,α改变,这时 二、楞次定律 1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 (1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 (2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。 (3)从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象中产生的自感电动势总是阻碍自身电流的变化。 2、实质:能量的转化与守恒 3、应用:对阻碍的理解: (1)顺口溜“你增我反,你减我同”

电磁感应知识点总结

第16章:电磁感应 一、知识网络 二、重、难点知识归纳 1、 法拉第电磁感应定律 (1)、产生感应电流的条件:穿过闭合电路的磁通量发生变化。 以上表述就是充分必要条件。不论什么情况,只要满足电路闭合与磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定就是闭合的,穿过该电路的磁通量也一定发生了变化。 当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。这个表述就是充分条件,不就是必要的。在导体做切割磁感线运动时用它判定比较方便。 (2)、感应电动势产生的条件:穿过电路的磁通量发生变化。 闭合电路中磁通量发生变化时产生感应电流 当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量:φ=BS 如果该面积与磁场夹角为α,则其投影面积为S sin α,则磁通量为Φ =BS sin α。磁通量的单位: 韦伯,符号:Wb 产生感应电流的方法 自感 电磁感应 自感电动势 灯管 镇流器 启动器 闭合电路中的部分导体在做切割磁感线运动 闭合电路的磁通量发生变 感应电流方向的判定 右手定则, 楞次定律 感应电动势的大小 E=BL νsin θ t n E ??=φ 实验:通电、断电自感实验 大小:t I L E ??= 方向:总就是阻碍原电流的变化方向 应用 日光灯构造 日光灯工作原理:自感现象 感应现象:

这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路就是否闭合,电动势总就是存在的。但只有当外电路闭合时,电路中才会有电流。 (3)、引起某一回路磁通量变化的原因 a磁感强度的变化 b线圈面积的变化 c线圈平面的法线方向与磁场方向夹角的变化 (4)、电磁感应现象中能的转化 感应电流做功,消耗了电能。消耗的电能就是从其它形式的能转化而来的。 在转化与转移中能的总量就是保持不变的。 (5)、法拉第电磁感应定律: a决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢 b注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同 —磁通量,—磁通量的变化量, c定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。 (6)在匀强磁场中,磁通量的变化ΔΦ=Φt-Φo有多种形式,主要有: ①S、α不变,B改变,这时ΔΦ=ΔB?S sinα ②B、α不变,S改变,这时ΔΦ=ΔS?B sinα ③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1) 在非匀强磁场中,磁通量变化比较复杂。有几 种情况需要特别注意: ①如图16-1所示,矩形线圈沿a→b→c在条形 磁铁附近移动,穿过上边线圈的磁通量由方向向上 减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减小到 零,再变为方向向上增大。 ②如图16-2所示,环形导线a中有顺时针方向的电流,a环外有两个同心导线圈b、c,与环形导线a在同一平面内。当a中的电流增大时,b、 a b c 图16-1 图16-2

高考物理电磁感应现象的两类情况(大题培优 易错 难题)及详细答案

高考物理电磁感应现象的两类情况(大题培优 易错 难题)及详细答案 一、电磁感应现象的两类情况 1.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿 Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“ ”字型(如图乙)通电后使 其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的 MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力 f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“ ”字型线圈依次通 电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进. (1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相) (2)求列车能达到的最大速度m v ; (3)列车以最大速度运行一段时间后,断开接在“ ” 字型线圈上的电源,使线圈 与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ?、磁感应强度为 B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“ ”字型线圈 时,电容器中贮存的电量Q . 【答案】(1) 012() BL v v R -2222 101 22BL B L kR v B L +-2 4nB Lb R ' 【解析】 【详解】 解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =-

高三物理电磁感应知识点

2019届高三物理电磁感应知识点物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

电磁感应知识点总结

电磁感应 1、 磁通量Φ、磁通量变化?Φ、磁通量变化率t ??Φ 对比表 2、 电磁感应现象与电流磁效应的比较 3、 产生感应电动势和感应电流的条件比较

4、 感应电动势 在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。 (1) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就会产生 感应电动势,它相当于一个电源 (2) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感应电动 势,磁通量发生变化的那部分相当于电源。 5、 公式 n E ?Φ =与E=BLvsin θ 的区别与联系 6、 楞次定律 (1) 感应电流方向的判定方法

(2)楞次定律中“阻碍”的含义 (3)对楞次定律中“阻碍”的含义还可以推广为感应电流的效果总是要阻碍产生感应电流的原因 1)阻碍原磁通量的变化或原磁场的变化; 2)阻碍相对运动,可理解为“来拒去留”。 3)使线圈面积有扩大或缩小趋势; 4)阻碍原电流的变化。 7、电磁感应中的图像问题 (1)图像问题 (3)解决这类问题的基本方法 1)明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像 2)分析电磁感应的具体过程 3)结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。 4)根据函数方程,进行数学分析,如斜率及其变化,两轴的截距等。 5)画图像或判断图像。 8、自感涡流 (1)通电自感和断电自感比较

(2) 自感电动势和自感系数 1) 自感电动势:t I L E ??=,式中t I ??为电流的变化率,L 为自感系数。 2) 自感系数:自感系数的大小由线圈本身的特性决定,线圈越长,单位长度的匝 数越多,横截面积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大。 (3) 涡流 9、电磁感应中的“棒-----轨”模型

物理电场磁场电磁感应知识点

电场知识点 一、电荷、电荷守恒定律 1、两种电荷:“+”“-”用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。 2、元电荷:所带电荷的最小基元,一个元电荷的电量为1.6×10-19C,是一个电子(或质子)所带的电量。 说明:任何带电体的带电量皆为元电荷电量的整数倍。 荷质比(比荷):电荷量q与质量m之比,(q/m)叫电荷的比荷 3、起电方式有三种 ①摩擦起电, ②接触起电注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。 ③感应起电——切割B,或磁通量发生变化。 4、电荷守恒定律: 电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的. 二、库仑定律 1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。方向由电性决定(同性相斥、异性相吸) 2.公式:k=9.0×109N·m2/C2 极大值问题:在r和两带电体电量和一定的情况下,当Q1=Q2时,有F最大值。 3.适用条件:(1)真空中;(2)点电荷. 点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。点电荷很相似于我们力学中的质点. 注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律

初中物理电磁感应知识点小结

初中物理电磁感应知识点小结 初中物理电磁感应知识点小结 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流,这种现象叫电磁感应。接下来的内容是初中物理电学知识点总之电磁感应。 电磁感应 产生感应电流的条件:①电路必须闭合;②只是电路的一部分导体做切割磁感线运动. 感应电流的方向:跟导体运动方向和磁感线方向有关. 温馨提示::,产生的电流叫感应电流.应用:发电机 中考试题练习之欧姆定律 欧姆定律 (2010,乌鲁木齐)如图2-2-46所示的电路中,当ab两点间接入4Ω的电阻时,其消耗的功率为16W。当ab两点间接入9Ω的电阻时,其消耗的功率仍为16W。求: (1)ab两点间接入4Ω和9Ω的电阻时,电路中的电流; (2)电源的电压。 中考试题之欧姆定律 下面是对中考欧姆定律的题目知识学习,同学们认真完成下面的题目练习哦。 欧姆定律

(2010,安徽)实际的电源都有一定的电阻,如干电池,我们需要用它的电压U和电阻r两个物理量来描述它。实际计算过程中,可以把它看成是由一个电压为U、电阻为0的理想电源与一个电阻值为r的电阻串联而成,如图2-2-45甲所示: 在图2-2-45乙中R1=14W,R2=9W。当只闭合S1时,电流表读数I1=0.2A;当只闭合S2时,电流表读数I2=0.3A,把电源按图甲中的等效方法处理。求电源的电压U和电阻r。 通过上面对物理中欧姆定律知识的题目练习学习,相信同学们已经能很好的.完成了吧,希望同学们对上面涉及到的知识点都能很好的掌握。 欧姆定律计算题练习 欧姆定律 如图2-2-43所示电路,电源电压U0不变,初始时滑动变阻器的滑片P在最右端,但由于滑动变阻器某处发生断路,合上电键后滑片P向左滑过一段距离后电流表才有读数。且电压表读数U与x、电流表读数I与x的关系如图2-2-44所示,则 (1)根据图象可知:断点位置在x等于cm处,电源电压U0等于V; (2)电阻R等于多少欧姆? (3)从断点处滑片P向左滑动的过程中,该滑动变阻器滑片P 每滑动1cm的阻值变化为多少欧姆?该滑动变阻器电阻丝没有断路时的总电阻值是多少欧姆? 相信上面对欧姆定律题目的知识练习学习,同学们已经很好的掌握了吧,希望同学们很好的完成上面的知识点。 初中物理电学公式:并联电路 对于物理中并联电路知识的学习,我们做了下面的介绍,希望同学们认真学习。

电磁感应知识点速填

电磁感应知识点速填 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做。 (2)由电磁感应现象产生的电流,叫。 二、产生感应电流的条件 1、产生感应电流的条件:中。 2、产生感应电流的常见情况 . (1)线圈在磁场中转动。(法拉第电动机) (2)闭合电路一部分导线运动(切割磁感线)。 (3)磁场强度B变化或有效面积S变化。(比如有电流产生的磁场,电流大小变化或者开关断开) 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要 (2)“阻碍”的含义 . 从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。 从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。 (3)“阻碍”的作用 . 楞次定律中的“阻碍”作用,正是的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。 (4)“阻碍”的形式 . 1.阻碍原磁通量的变化,即“”。 2.阻碍相对运动,即“”。 3. 使线圈面积有扩大或缩小的趋势,即“”。 4. 阻碍原电流的变化(自感现象),即“”。 (5)适用范围:一切电磁感应现象 . (6)使用楞次定律的步骤: ①明确(引起感应电流的)的方向 . ②明确穿过闭合电路的磁通量的,是增加还是减 少 ③根据楞次定律确定感应电流 .

备战高考物理电磁感应现象的两类情况(大题培优 易错 难题)及答案

备战高考物理电磁感应现象的两类情况(大题培优 易错 难题)及答案 一、电磁感应现象的两类情况 1.如图,光滑金属轨道POQ 、′′′P O Q 互相平行,间距为L ,其中′′O Q 和OQ 位于同一水 平面内,PO 和′′P O 构成的平面与水平面成30°。正方形线框ABCD 边长为L ,其中AB 边和CD 边质量均为m ,电阻均为r ,两端与轨道始终接触良好,导轨电阻不计。BC 边和AD 边为绝缘轻杆,质量不计。线框从斜轨上自静止开始下滑,开始时底边AB 与OO ′相距L 。在水平轨道之间,′′ MNN M 长方形区域分布着有竖直向上的匀强磁场,′OM O N L =>,′′N M 右侧区域分布着竖直向下的匀强磁场,这两处磁场的磁感应强度大小均为B 。在右侧磁场区域内有一垂直轨道放置并被暂时锁定的导体杆EF ,其质量为m 电阻为r 。锁定解除开关K 与M 点的距离为L ,不会阻隔导轨中的电流。当线框AB 边经过开关K 时,EF 杆的锁定被解除,不计轨道转折处OO ′和锁定解除开关造成的机械能损耗。 (1)求整个线框刚到达水平面时的速度0v ; (2)求线框AB 边刚进入磁场时,AB 两端的电压U AB ; (3)求CD 边进入磁场时,线框的速度v ; (4)若线框AB 边尚未到达′′ M N ,杆EF 就以速度23 123B L v mr =离开M ′N ′右侧磁场区域,求此时线框的速度多大? 【答案】(132gL 2)16BL gL ;(3)23 323B L gL mr ;(4)23 3223B L gL mr 【解析】 【分析】 【详解】 (1)由机械能守恒 2 01sin 302sin 30022 mgL mg L mv += ??- 可得 032 v gL =

高中物理-电磁感应知识梳理+练习

高中物理-电磁感应知识梳理+练习 一.电磁感应现象 1、电磁感应:闭合电路的一部分在磁场中做切割磁感线的运动时,导体中产生电流。由电磁感应产生的电流叫做感应电流。 2、磁通量:有“穿过一个闭合电路的磁感线的多少”来形象地理解“穿过这个闭合电路的磁通量”。 3、产生感应电流的条件:只要穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生。 二.法拉第电磁感应定律 1、磁通量Φ、磁通量的变化量?Φ和磁通量的变化率 t ??Φ 2、法拉第电磁感应定律:电路中感应电动势E 的大小,跟穿过这一电路的磁通量的变化率 t ??Φ成正比。 t n E ??Φ = n 为线圈匝数 3、从能量角度理解电磁感应现象:其他形式的能转化为电能。 三.交变电流 1、发电机的结构及基本原理:各种发电机由定子和转子组成,当转子转动时,穿过线圈的磁通量发生变化,线圈中产生感应电动势。 2、正弦式电流的波形:正弦函数的规律变化 瞬时值表达式:t I i m ωsin =,t U u m ωsin = 3、正弦式电流的周期T :交流完成一次周期性变化所用的时间。单位:s 频率f :交流在1s 内发生周期性变化的次数。单位:Hz f T 1 = 4、交流电的峰值(m m I U ,):电流或电压的最大值。 有效值(e e I U ,):把交流和直流分别通过相同的电阻,如果在相等的时间内它们产生的热量相等,我们就把这个直流电压、电流的数值称做交流电压、电流的有效值。 对于正弦式交流电有:2 m e U U = ,2 m e I I = 5、电容器对交流的作用:隔直流、通交流。

四.变压器 1、变压器的基本结构:原线圈、副线圈和铁芯。 2、变压器的匝数与电压的关系:原、副线圈中,匝数多的线圈电压高。 3、升压变压器:原线圈匝数小于副线圈匝数;降压变压器:原线圈匝数大于副线圈匝数。 五.高压输电 1、输电过程中的电能损失:输电线上有电流的热效应。 2、高压输电的优点:提高电压来降低输电电流,根据Rt I Q2 ,可以有效地降低输电线上电能的损失。 3、电网的重要作用和电网安全的重要性 六.自感现象涡流 1、自感现象:线圈中电流的变化引起的磁通量变化,也会在自身激发感应电动势。 2、电感器:电感器的性能用自感系数来描述。自感系数:线圈越大、匝数越多、加入铁芯等。电感器的作用:对交流有阻碍作用。 3、涡流:只要空间有变化的磁通量,其中的导体中就会产生感应电流。 应用:电磁炉、金属探测器。 减小涡流危害的方法:电机、变压器的铁芯用电阻率很大的硅钢片叠成。 例题解析:例题:科学家探索自然界的奥秘,要付出艰辛的努力。19世纪,英国科学家法拉第经过10年坚持不懈的努力,发现了电磁感应现象。下图中可用于研究电磁感应现象的实验是() 检测卷一、选择题 1.第一个发现电磁感应现象的科学家是() 图选1-1-23 A D C B

高中物理电磁感应知识点详解和练习

电磁感应 一、知识网络 二、画龙点睛 概念 1、磁通量

设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S,如图所示。 (1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S 的乘积,叫做穿过这个面的磁通量,简称磁通。 (2)公式:Φ=BS 当平面与磁场方向不垂直时,如图所示。 Φ=BS⊥=BScosθ (3)物理意义 物理学中规定:穿过垂直于磁感应强度方向的单位面积的磁感线条数等于磁感应强度B。所以,穿过某个面的磁感线条数表示穿过这个面的磁通量。 (4)单位:在国际单位制中,磁通量的单位是韦伯,简称韦,符号是Wb。 1Wb=1T·1m2=1V·s。 (5) 磁通密度:B=Φ S⊥ 磁感应强度B为垂直磁场方向单位面积的磁通量,故又叫磁通

密度。 2、电磁感应现象 (1)电磁感应现象:利用磁场产生电流的现象,叫做电磁感应现象。 (2)感应电流:在电磁感应现象中产生的电流,叫做感应电流。 (3)产生电磁感应现象的条件 ①产生感应电流条件的两种不同表述 a.闭合电路中的一部分导体与磁场发生相对运动 b.穿过闭合电路的磁场发生变化 ②两种表述的比较和统一 a.两种情况产生感应电流的根本原因不同 闭合电路中的一部分导体与磁场发生相对运动时,是导体中的自由电子随导体一起运动,受到的洛伦兹力的一个分力使自由电子发生定向移动形成电流,这种情况产生的电流有时称为动生电流。 穿过闭合电路的磁场发生变化时,根据电磁场理论,变化的磁场周围产生电场,电场使导体中的自由电子定向移动形成电流,这种情况产生的电流有时称为感生电流。 b.两种表述的统一 两种表述可统一为穿过闭合电路的磁通量发生变化。 ③产生电磁感应现象的条件 不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。

高中物理选修3-2电磁感应与力学综合知识点

高中物理选修3-2知识点 电磁感应与力学综合 又分为两种情况: 一、与运动学与动力学结合的题目(电磁感应力学问题中,要抓好受力情况和运动情况的动态分析), (1)动力学与运动学结合的动态分析,思考方法是: 导体受力运动产生E 感→I 感→通电导线受安培力→合外力变化→a 变化→v 变化→E 感变化→……周而复始地循环。 循环结束时,a=0,导体达到稳定状态.抓住a=0时,速度v 达最大值的特点. 例:如图所示,足够长的光滑导轨上有一质量为m ,长为L ,电阻为R 的金属棒ab ,由静止沿导轨运动,则ab 的最大速度为多少(导轨电阻不计,导轨与水平面间夹角为θ,磁感应强度B 与斜面垂直)金属棒ab 的运动过程就是上述我们谈到的变化过程,当ab 达到最大速度时: BlL =mgsin θ……① I= E /R ………② E =BLv ……③ 由①②③得:v=mgRsin θ/B 2L 2。 (2)电磁感应与力学综合方法:从运动和力的关系着手,运用牛顿第二定律 ①基本思路:受力分析→运动分析→变化趋向→确定运动过程和最终的稳定状态→由牛顿第二定律列方程求解. ②)注意安培力的特点: ③纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化,在分析问题时要注意上述联系. 电磁感应中的动力学问题 解题关键:在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等, 基本思路方法是: ①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向. ②求回路中电流强度. ③分析研究导体受力情况(包含安培力,用左手定则确定其方向). ④列动力学方程或平衡方程求解. ab 沿导轨下滑过程中受四个力作用,即重力mg ,支持力F N 、摩擦力F f 和安培力F 安,如图所示,ab 由静止开始下滑后,将是↓↑→↑→↑→↑→a F I E v 安(↑为 增大符号),所以这是个变加速过程,当加速度减到a =0时,其速度即增到最大v =v m , 此时必将处于平衡状态,以后将以v m 匀速下滑()22cos sin L B R mg v m θμθ-= F=BIL 临界状态 v 与a 方向关系 运动状态的分析 a 变化情况 F=ma 合外力 运动导体所受的安培力感应电流 确定电源(E ,r ) r R E I +=

高考物理电磁学知识点之电磁感应知识点复习(7)

高考物理电磁学知识点之电磁感应知识点复习(7) 一、选择题 1.无线充电技术已经被应用于多个领域,其充电线圈内磁场与轴线平行,如图甲所示;磁感应强度随时间按正弦规律变化,如图乙所示。则( ) A .2 T t = 时,线圈产生的电动势最大 B .2 T t = 时,线圈内的磁通量最大 C .0~ 4T 过程中,线圈产生的电动势增大 D . 3~4 T T 过程中,线圈内的磁通量增大 2.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s 时间拉出,外力所做的功为W 1,通过导线截面的电荷量为q 1;第二次用0.9 s 时间拉出,外力所做的功为W 2,通过导线截面的电荷量为q 2,则( ) A .W 1W 2,q 1=q 2 D .W 1>W 2,q 1>q 2 3.如图所示,用粗细均匀的同种金属导线制成的两个正方形单匝线圈a 、b ,垂直放置在磁感应强度为B 的匀强磁场中,a 的边长为L ,b 的边长为2L 。当磁感应强度均匀增加时,不考虑线圈a 、b 之间的影响,下列说法正确的是( ) A .线圈a 、b 中感应电动势之比为E 1∶E 2=1∶2 B .线圈a 、b 中的感应电流之比为I 1∶I 2=1∶2 C .相同时间内,线圈a 、b 中产生的焦耳热之比Q 1∶Q 2=1∶4 D .相同时间内,通过线圈a 、b 某截面的电荷量之比q 1∶q 2=1∶4 4.如图所示,MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.4m ,电阻不计。导轨所在平面与磁感应强度B 为0.5T 的匀强磁场垂直。质量m 为6.0× 10-3kg 电阻为1Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有滑动变阻器R 2和阻值为3.0Ω的电阻R 1。当杆ab 达到稳定状态时以速率v 匀速下滑,整个电路消耗的电功率P 为0.27W 。则( )

相关文档
最新文档