Matlab ode函数 微分方程的数值解

Matlab   ode函数  微分方程的数值解
Matlab   ode函数  微分方程的数值解

ode45

百科名片

ode45,常微分方程的数值求解。MA TLAB提供了求常微分方程数值解的函数。当难以求得微分方程的解析解时,可以求其数值解,Matlab中求微分方程数值解的函数有五个:ode45,ode23,ode113,ode15s,ode23s。

目录

概述

语法

示例

展开

编辑本段

概述

ode是Matlab专门用于解微分方程的功能函数,他有ode23,ode45,ode23s等等,采用的是Runge-Kutta算法。ode45表示采用四阶,五阶runge-kutta单步算法,截断误差为(Δx)3。解决的是Nonstiff(非刚性)的常微分方程.是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,换用ode23来解.

编辑本段

语法

[T,Y] = ode45(odefun,tspan,y0)

[T,Y] = ode45(odefun,tspan,y0,options)

[T,Y,TE,YE,IE] = ode45(odefun,tspan,y0,options)

sol = ode45(odefun,[t0tf],y0...)

[T,Y] = ode45(odefun,tspan,y0)

odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名

tspan 是区间[t0 tf] 或者一系列散点[t0,t1,...,tf]

y0 是初始值向量《Simulink与信号处理》

T 返回列向量的时间点

Y返回对应T的求解列向量

[T,Y] = ode45(odefun,tspan,y0,options)

options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等

[T,Y,TE,YE,IE] =ode45(odefun,tspan,y0,options)

在设置了事件参数后的对应输出

TE 事件发生时间

YE 事件解决时间

IE The index i of the event functionthat vanishes.

sol =ode45(odefun,[t0 tf],y0...)

sol 结构体输出结果

编辑本段

示例

求解一阶常微分方程

odefun=@(t,y) (y+3*t)/t^2; %定义函数

tspan=[1 4]; %求解区间

y0=-2; %初值

[t,y]=ode45(odefun,tspan,y0);plot(t,y) %作图

title('t^2y''=y+3t,y(1)=-2,1

xlabel('t')

ylabel('y')

% 精确解

% dsolve('t^2*Dy=y+3*t','y(1)=-2')

% ans =一阶求解结果图% (3*Ei(1) - 2*exp(1))/exp(1/t) - (3*Ei(1/t))/exp(1/t) 求解高阶常微分方程

关键是将高阶转为一阶,odefun的书写.

F(y,y',y''...y(n-1),t)=0用变量替换,y1=y,y2=y'...注意odefun方程定义为列向量dxdy=[y(1),y(2)....]

程序:

function Testode45

tspan=[3.9 4.0]; %求解区间

y0=[2 8]; %初值

高阶微分方程求解结果

[t,x]=ode45(@odefun,tspan,y0);plot(t,x(:,1),'-o',t,x(:,2),'-*')

高阶微分方程求解结果legend

('y1','y2')

title('y'' ''=-t*y + e^t*y'' +3sin2t')

xlabel('t')

ylabel('y')

function y=odefun(t,x)

y=zeros(2,1); % 列向量

y(1)=x(2);

y(2)=-t*x(1)+exp(t)*x(2)+3*sin(2*t);

end

end

基于Simulink进行系统仿真(微分方程、传递函数)

实验四 基于Simulink 进行系统仿真(微 分方程、传递函数) 一.实验目的 1) 熟悉Simulink 的工作环境; 2) 掌握Simulink 数学工具箱的使用; 3) 掌握在Simulink 的工作环境中建立系统仿真模型。 二.实验内容 系统微分方程:)(10)(10) (10) (83322t u t y dt t dy dt t y d =++ 系统传递函数:8328 101010)()()(++==s s s U s Y s G 1)(=t u ,)314sin()(t t u =,)90314sin()(o t t u += 模型 微分方程时的过程 Ut=1时

t u 时)(t 314 ) sin(

t t u+ =时 )(o ) sin( 90 314 传递函数时的过程

u时 t )(= 1 t u=时 )(t sin( 314 )

t t )(o =时 u+ ) sin( 90 314 结论及感想 从两种种不同方法的仿真结果,我们可以看出分别用微分方程和传递函数在Simulink中,仿真出来的结果没有很明显的区别,说明两种方法的精度都差不多。但是,不同的电压源得出的仿真结果不一样,阶跃电源开始时震荡,后来幅度逐渐变小,趋近于1;正弦电源,初相不同时,初始时刻的结果也不相同,有初相时开始震荡会更剧烈,但最后都会变为稳态值,即为正弦值。通过本次实验,我认识到了建模与仿真的一般性方法,收获甚多,也更进一步了解了

Matlab,Matlab不仅仅在平时的编程方面功能强大,在仿真方面也熠熠生辉。

Matlab求解微分方程组及偏微分方程组

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t 上的解,则令 tspan 012[,,, ]f t t t t =(要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.

用Matlab解微分方程

用Matlab 软件求解微分方程 1.解析解 (1)一阶微分方程 求21y dx dy +=的通解:dsolve('Dy=1+y^2','x') 求y x dx dy -+=21的通解:dsolve('Dy=1+x^2-y','x') 求?????=+=1 )0(12y y dx dy 的特解:dsolve('Dy=1+y^2',’y(0)=1’,'x') (2)高阶微分方程 求解???-='==-+'+''. 2)2(,2)2(,0)(222πππy y y n x y x y x 其中,21=n ,命令为: dsolve('x^2*D2y+x*Dy+(x^2-0.5^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x') 求042=-+'-'''x y y y 的通解,命令为: dsolve('D3y-2*Dy+y-4*x=0','x') 输出为: ans=8+4*x+C1*exp(x)+C2*exp(-1/2*(5^(1/2)+1)*x)+C3*exp(1/2*(5^(1/2)-1)*x) (3)一阶微分方程组 求???+-='+='). (3)(4)(),(4)(3)(x g x f x g x g x f x f 的通解:[f,g]=dsolve('Df=3*f+4*g','Dg=-4*f+3*g','x') 输出为: f =exp(3*x)*(cos(4*x)*C1+sin(4*x)*C2) g =-exp(3*x)*(sin(4*x)*C1-cos(4*x)*C2) 若再加上初始条件1)0(,0)0(==g f ,则求特解: [f,g]=dsolve('Df=3*f+4*g','Dg=-4*f+3*g','f(0)=0,g(0)=1','x') 输出为: f =exp(3*x)*sin(4*x) g =exp(3*x)*cos(4*x) 2.数值解 (1)一阶微分方程

Matlab求解微分方程(组)及偏微分方程(组)

第四讲Matlab求解微分方程(组) 理论介绍:Matlab求解微分方程(组)命令 求解实例:Matlab求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到得方程,绝大多数都就是微分方程,真正能得到代数方程得机会很少、另一方面,能够求解得微分方程也就是十分有限得,特别就是高阶方程与偏微分方程(组)、这就要求我们必须研究微分方程(组)得解法:解析解法与数值解法、 一.相关函数、命令及简介 1、在Matlab中,用大写字母D表示导数,Dy表示y关于自变量得一阶导数,D2y 表示y关于自变量得二阶导数,依此类推、函数dsolve用来解决常微分方程(组)得求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解、 注意,系统缺省得自变量为t 2、函数dsolve求解得就是常微分方程得精确解法,也称为常微分方程得符号解、但就是,有大量得常微分方程虽然从理论上讲,其解就是存在得,但我们却无法求出其解析解,此时,我们需要寻求方程得数值解,在求常微分方程数值解方 面,MATLAB具有丰富得函数,我们将其统称为solver,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver为命令ode45、ode23、ode113、ode15s、ode23s、ode23t、ode23tb、ode15i之一、 (2)odefun就是显示微分方程在积分区间tspan上从到用初始条件求解、 (3)如果要获得微分方程问题在其她指定时间点上得解,则令tspan(要求就是单调得)、 (4)因为没有一种算法可以有效得解决所有得ODE问题,为此,Matlab提供了多种求解器solver,对于不同得ODE问题,采用不同得solver、 表1 Matlab中文本文件读写函数

用MATLAB解常微分方程

实验四 求微分方程的解 一、问题背景与实验目的 实际应用问题通过数学建模所归纳而得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法,既要研究微分方程(组)的解析解法(精确解),更要研究微分方程(组)的数值解法(近似解). 对微分方程(组)的解析解法(精确解),Matlab 有专门的函数可以用,本实验将作一定的介绍. 本实验将主要研究微分方程(组)的数值解法(近似解),重点介绍 Euler 折线法. 二、相关函数(命令)及简介 1.dsolve ('equ1','equ2',…):Matlab 求微分方程的解析解.equ1、equ2、…为方程(或条件).写方程(或条件)时用 Dy 表示y 关于自变量的一阶导数,用用 D2y 表示 y 关于自变量的二阶导数,依此类推. 2.simplify(s ):对表达式 s 使用 maple 的化简规则进行化简. 例如: syms x simplify(sin(x)^2 + cos(x)^2) ans=1 3.[r,how]=simple(s):由于 Matlab 提供了多种化简规则,simple 命令就是对表达式 s 用各种规则进行化简,然后用 r 返回最简形式,how 返回形成这种形式所用的规则. 例如: syms x [r,how]=simple(cos(x)^2-sin(x)^2) r = cos(2*x) how = combine 4.[T,Y] = solver(odefun,tspan,y 0) 求微分方程的数值解. 说明: (1) 其中的 solver 为命令 ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 之一. (2) odefun 是显式常微分方程:?????==0 0)() ,(y t y y t f dt dy (3) 在积分区间 tspan =],[0f t t 上,从0t 到f t ,用初始条件0y 求解.

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,, ,f t t t t 上的解,则令 tspan 012[,,,]f t t t t =(要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供

数学应用软件作业6-用Matlab求解微分方程(组)的解析解和数值解

数学应用软件作业6-用Matlab 求解微分方程(组)的解析解和数值解

注:上机作业文件夹以自己的班级姓名学号命名,文件夹包括如下上机报告和Matlab程序。 上机报告模板如下: 佛山科学技术学院 上机报告 课程名称数学应用软件 上机项目用Matlab求解微分方程(组)的解析解和数值解 专业班级姓名学号 一. 上机目的 1.了解求微分方程(组)的解的知识。 2.学习Matlab中求微分方程的各种解的函数,如 dsolve命令、ode45函数等等,其中注意把方程化为新的方程的形式。 3.掌握用matlab编写程序解决求解微分方程的问 题。 二. 上机内容 1、求高阶线性齐次方程:y’’’-y’’-3y’+2y=0。 2、求常微分方程组

2 210cos,2 24,0 t t t dx dy x t x dt dt dx dy y e y dt dt = - = ? +-== ?? ? ?++== ?? 3、求解 分别用函数ode45和ode15s计算求解,分别画出图形,图形分别标注标题。 4、求解微分方程 ,1 )0( ,1 '= + + - =y t y y 先求解析解,在[0,1]上作图; 再用ode45求数值解(作图的图形用“o”表示),在同一副图中作图进行比较,用不同的颜色表示。 三. 上机方法与步骤 给出相应的问题分析及求解方法,并写出Matlab 程序,并有上机程序显示截图。 题1:直接用命令dsolve求解出微分方程的通解。 Matlab程序:

dsolve('D3y-D2y-3*Dy+2*y','x') 题2:将微分方程组改写为 5cos2exp(2) 5cos2exp(2) (0)2,(0)0 dx t t x y xt dy t t x y dt x y ? =+--- ? ? ? =-+-+- ? ? == ? ? ? , 再用命令dsolve求解微分方程的通解。 Matlab程序: 建立timu2.m如下: [x,y]=dsolve('Dx=5*cos(t)+2*exp(-2*t)-x-y','Dy=-5*cos(t)+2*exp(-2*t)+x-y ','x(0)=2,y(0)=0','t') x=simple(x) y=simple(y)

试求图示电路的微分方程和传递函数

2-1 习 题 2-1 试求图示电路的微分方程和传递函数。 2-2 ur 为输入量,电动机的转速ω为输 出量,试绘制系统的方框图,并求系统的传递函数 ) () ( ,)( )(s M s s U s L r ΩΩ。(ML 为负载转矩,J 为电动机的转动惯量,f 为粘性摩擦系数,Ra 和La 分别为电枢回路的总电阻和总电感,Kf 为测速发动机的反馈系数)。 2-3 图示电路,二极管是一个非线性元件,其电流d i 和电压d u 之间的关系为)1(10026 .0/6-=-d u d e i ,假设系统 工作在u 0=2.39V ,i 0=2.19×10-3A 平衡点,试求在工作点 (u 0,i 0)附近d i =f (d u )的线性化方程。 2-4 试求图示网络的传递函数,并讨论负载效应问题。

2-2 2-5 求图示运算放大器构成的网络的传递函数。 2-6 已知系统方框图如图所示,试根据方框图简化规则,求闭环传递函数。 2-7 分别求图示系统的传递函数 )()(11s R s C 、)()(12s R s C 、)()(21s R s C 、) () (22s R s C 2-8 绘出图示系统的信号流图,并求传递函数)(/)()(s R s C s G

2-3 2-9 试绘出图示系统的信号流图,求系统输出C (s )。 2-10 求图示系统的传递函数C (s )/R (s )。 2-11 已知单位负反馈系统的开环传递函数 ] 4)4)[(1(2 34)(22 23++++++=s s s s s s s G 1. 试用MA TLAB 求取系统的闭环模型; 2. 试用MA TLAB 求取系统的开环模和闭环零极点。 2-12 如图所示系统 1. 试用MA TLAB 化简结构图,并计算系统的闭环传递函数;

利用matlab编写S函数求解微分方程

利用matlab编写S函数求解微分方程自动化专业综合设计报告 自动化专业综合设计报告

函数求解微S编写设计题目:利用 matlab 分方程 自动化系统仿真实验室所在 实验室: 郭卫平 指导教师: 律迪迪学生姓名 200990519114 班级文自0921 学号 成绩评定: 自动化专业综合设计报告

一、设计目的 了解使用simulink的扩展工具——S-函数,s函数可以利用matlab的丰富资源,而不仅仅局限于simulink提供的模块,而用c或c++等语言写的s函数还可以实现对硬件端口的操作,还可以操作windows API 等的,它的魅力在于完美结合了simulink 框图简洁明快的特点和编程灵活方便的优点,提供了增强和扩展sinulink能力的强大机制,同时也是使用RTW实现实时仿真的关键。 二、设计要求 求解解微分方程 y'=y-2x/y 自动化专业综合设计报告 y(0)=1 要求利用matlab编写S函数求解 三、设计内容(可加附页) 【步骤1】获取状态空间表达式。

在matlab中输入 dsolve(‘Dy=y-2*x/y','y(0)=1', 'x') 得到 y=(2*x+1).^(1/2); 【步骤2】建立s函数的m文件。 利用21·用S函数模板文件。 以下是修改之后的模板文件sfuntmpl.m 的内容。 function [sys,x0,str,ts] = sfuntmpl(t,x,u,flag) %SFUNTMPL S-function M-file General template define you can With % M-file S-functions, you own ordinary differential system equations (ODEs), discrete % equations, and/or just about any type of algorithm to be used within a %

数学模型之微分方程及其MATLAB求解

数学模型之微分方程及其MATLAB求解 ---卫星轨迹等经典例题求解分析1. 考虑初值问题画图 y'''?3y ''?y 'y = 0 y(0) = 0 y '(0) =1 y ' '(0) = ?1 2、 3、 【实验步骤与程序】 1. M -文件建立m函数文件

function y=f(t,x) y=[x(2);x(3);9*x(3)^2+x(1)*x(2)]; 求解微分方程,命令如下: x0=[0;1;-1]; [t,y]=ode45(@mm,[0,2.5],x0); plot(y(:,1),y(:,2)); figure(2); plot3(y(:,1),y(:,2),y(:,3))

2、M -文件建立m函数文件 function dx=appollo(t,x) mu=1/82.45; mustar=1-mu; r1=sqrt((x(1)+mu)^2+x(3)^2); r2=sqrt((x(1)-mustar)^2+x(3)^2); dx=[x(2) 2*x(4)+x(1)-mustar*(x(1)+mu)/r1^3-mu*(x(1)-mustar)/r2^3 x(4) -2*x(2)+x(3)-mustar*x(3)/r1^3-mu*x(3)/r2^3];

求解微分方程,命令如下: x0=[1.2;0;0;-1.04935751]; options=odeset('reltol',1e-8); [t,y]=ode45(@appollo,[0,20],x0,options); plot(y(:,1),y(:,3)) title('Appollo卫星运动轨迹') xlabel('x') ylabel('y')

用matlab求解常微分方程

实验六 用matlab 求解常微分方程 1.微分方程的概念 未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。常微分方程的一般形式为 0),,",',,()(=n y y y y t F 如果未知函数是多元函数,成为偏微分方程。联系一些未知函数的一组微分方程组称为微分方程组。微分方程中出现的未知函数的导数的最高阶解数称为微分方程的阶。若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,一般表示为 )()(')()(1)1(1)(t b y t a y t a y t a y n n n n =++++-- 若上式中的系数n i t a i ,,2,1),( =均与t 无关,称之为常系数。 2.常微分方程的解析解 有些微分方程可直接通过积分求解.例如,一解常系数常微分方程1+=y dt dy 可化为 dt y dy =+1,两边积分可得通解为 1-=t ce y .其中c 为任意常数.有些常微分方程可用一些技巧,如分离变量法,积分因子法,常数变异法,降阶法等可化为可积分的方程而求得解析解. 线性常微分方程的解满足叠加原理,从而他们的求解可归结为求一个特解和相应齐次微分方程的通解.一阶变系数线性微分方程总可用这一思路求得显式解。高阶线性常系数微分方程可用特征根法求得相应齐次微分方程的基本解,再用常数变异法求特解。 一阶常微分方程与高阶微分方程可以互化,已给一个n 阶方程 ),,",',()1()(-=n n y y y t f y 设)1(21,,',-===n n y y y y y y ,可将上式化为一阶方程组 ?????????====-),,,,(''''2113221n n n n y y y t f y y y y y y y 反过来,在许多情况下,一阶微分方程组也可化为高阶方程。所以一阶微分方程组与高阶常微分方程的理论与方法在许多方面是相通的,一阶常系数线性微分方程组也可用特征根法求解。 3.微分方程的数值解法 除常系数线性微分方程可用特征根法求解,少数特殊方程可用初等积分法求解外,大部分微分方程无限世界,应用中主要依靠数值解法。考虑一阶常微分方程初值问题 ???=<<=000)()),(,()('y t y t t t t y t f t y f

Matlab解微分方程(ODE+PDE)

常微分方程: 1 ODE解算器简介(ode**) 2 微分方程转换 3 刚性/非刚性问题(Stiff/Nonstiff) 4 隐式微分方程(IDE) 5 微分代数方程(DAE) 6 延迟微分方程(DDE) 7 边值问题(BVP) 偏微分方程(PDEs)Matlab解法 偏微分方程: 1 一般偏微分方程组(PDEs)的命令行求解 2 特殊偏微分方程(PDEs)的PDEtool求解 3 陆君安《偏微分方程的MATLAB解法 先来认识下常微分方程(ODE)初值问题解算器(solver) [T,Y,TE,YE,IE] = odesolver(odefun,tspan,y0,options) sxint = deval(sol,xint) Matlab中提供了以下解算器: 输入参数: odefun:微分方程的Matlab语言描述函数,必须是函数句柄或者字符串,必须写成Matlab

规范格式(也就是一阶显示微分方程组),这个具体在后面讲解 tspan=[t0 tf]或者[t0,t1,…tf]:微分变量的范围,两者都是根据t0和tf的值自动选择步长,只是前者返回所有计算点的微分值,而后者只返回指定的点的微分值,一定要注意对于后者tspan必须严格单调,还有就是两者数据存储时使用的内存不同(明显前者多),其它没有任何本质的区别 y0=[y(0),y’(0),y’’(0)…]:微分方程初值,依次输入所有状态变量的初值,什么是状态变量在后面有介绍 options:微分优化参数,是一个结构体,使用odeset可以设置具体参数,详细内容查看帮助 输出参数: T:时间列向量,也就是ode**计算微分方程的值的点 Y:二维数组,第i列表示第i个状态变量的值,行数与T一致 在求解ODE时,我们还会用到deval()函数,deval的作用就是通过结构体solution计算t 对应x值,和polyval之类的很相似! 参数格式如下: sol:就是上次调用ode**函数得道的结构体解 xint:需要计算的点,可以是标量或者向量,但是必须在tspan范围内 该函数的好处就是如果我想知道t=t0时的y值,不需要重新使用ode计算,而直接使用上次计算的得道solution就可以 [教程] 微分方程转换为一阶显示微分方程组方法 好,上面我们把Matlab中的常微分方程(ODE)的解算器讲解的差不多了,下面我们就具体开始介绍如何使用上面的知识吧! 现实总是残酷的,要得到就必须先付出,不可能所有的ODE一拿来就可以直接使用,因此,在使用ODE解算器之前,我们需要做的第一步,也是最重要的一步,借助状态变量将微分

MATLAB求解常微分方程数值解

利用MATLAB求解常微分方程数值解

目录 1. 内容简介 (1) 2. Euler Method(欧拉法)求解 (1) . 显式Euler法和隐式Euler法 (2) . 梯形公式和改进Euler法 (3) . Euler法实用性 (5) 3. Runge-Kutta Method(龙格库塔法)求解 (6) . Runge-Kutta基本原理 (6) . MATLAB中使用Runge-Kutta法的函数 (8) 4. 使用MATLAB求解常微分方程 (8) . 使用ode45函数求解非刚性常微分方程 (8) . 刚性常微分方程 (9) 5. 总结 (10) 参考文献 (11) 附录 (12) 1. 显式Euler法数值求解 (12) 2. 改进Euler法数值求解 (12) 3. 四阶四级Runge-Kutta法数值求解 (13) 4. 使用ode45求解 (14)

1.内容简介 把《高等工程数学》看了一遍,增加对数学内容的了解,对其中数值解法比较感兴趣,这大概是因为在其它各方面的学习和研究中经常会遇到数值解法的问题。理解模型然后列出微分方程,却对着方程无从下手,无法得出精确结果实在是让人难受的一件事情。 实际问题中更多遇到的是利用数值法求解偏微分方程问题,但考虑到先从常微分方程下手更为简单有效率,所以本文只研究常微分方程的数值解法。把一个工程实际问题弄出精确结果远比弄清楚各种细枝末节更有意思,因此文章中不追求非常严格地证明,而是偏向如何利用工具实际求解出常微分方程的数值解,力求将课程上所学的知识真正地运用到实际方程的求解中去,在以后遇到微分方程的时候能够熟练运用MATLAB得到能够在工程上运用的结果。 文中求解过程中用到MATLAB进行数值求解,主要目的是弄清楚各个函数本质上是如何对常微分方程进行求解的,对各种方法进行MATLAB编程求解,并将求得的数值解与精确解对比,其中源程序在附录中。最后考察MATLAB中各个函数的适用范围,当遇到实际工程问题时能够正确地得到问题的数值解。 2.Euler Method(欧拉法)求解 Euler法求解常微分方程主要包括3种形式,即显式Euler法、隐式Euler法、梯形公式法,本节内容分别介绍这3种方法的具体内容,并在最后对3种方法精度进行对比,讨论Euler法的实用性。 本节考虑实际初值问题 使用解析法,对方程两边同乘以得到下式

matlab常微分方程和常微分方程组的求解

常微分方程和常微分方程组的求解 一、实验目的: 熟悉Matlab 软件中关于求解常微分方程和常微分方程组的各种命令,掌握利用Matlab 软件进行常微分方程和常微分方程组的求解。 二、相关知识 在MATLAB 中,由函数dsolve()解决常微分方程(组)的求解问题,其具体格式如下: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解。 例1:求解常微分方程1dy dx x y = +的MATLAB 程序为:dsolve('Dy=1/(x+y)','x'), 注意,系统缺省的自变量为t ,因此这里要把自变量写明。 结果为:-lambertw(-C1*exp(-x-1))-x-1 其中:Y=lambertw(X)表示函数关系Y*exp(Y)=X 。 例2:求解常微分方程 2 '''0yy y -=的MATLAB 程序为:Y2=dsolve('y*D2y-Dy^2=0’,’x’) 结果为: Y2 =[ exp((x+C2)/C1)] [ C2] 我们看到有两个解,其中一个是常数。 例3:求常微分方程组253t t dx x y e dt dy x y e dt ?++=??? ?--=??通解的MATLAB 程序为: [X,Y]=dsolve('Dx+5*x+y=exp(t),Dy-x-3*y=exp(2*t)','t') 例4:求常微分方程组020 210cos ,224,0 t t t dx dy x t x dt dt dx dy y e y dt dt =-=?+-==??? ?++==??通解的MATLAB 程序 为:

试求图示电路的微分方程和传递函数.docx

2-1试求图示电路的微分方程和传递函数。 题2?1图 2-2移恒速控制系统的原理图如图所示,给定电压ui ?为输入最,电动机的转速3为输 出 就,试绘制系统的方框图,并求系统的传递函数丄型,卫型。(ML 为负载转矩,J 为 匕($) M L (S ) 电动机的转动惯量,f 为粘性摩擦系数,Rn 和La 分别为电枢凹路的总电阻和总电感,Kf 为 测速发动机的反馈系数)。 和电压间的关系为仃=10-6(^/0026 - 1),假设系统 工作在M O =2.39V, /O =2.19X1O _3A 平衡点,试求在工作点 2-4试求图示网络的传递函数,并讨论负载效应问题。 题24图 2-3图示电路,二极管是一个非线性元件,其电流i (w ()Jo )附近匚=/(叫)的线性化方程。 题2-3图 Cl Ci Ko

2-5求图示运算放大器构成的网络的传递函数。 题2-5图 2-6已知系统方框图如图所示,试根据方框图简化规则,求闭环传递函数。 题2-6图 2-8绘出图示系统的信号流图,并求传递函数 G(s) = C($)//?(s) 2 7 分别求图示系统的传递函数If 、xf C]($) C2") /?2($)、心⑴ (O (4) C($) RM (b)

艮3 题2-7图题2-8图2-9试绘出图示系统的信号流图,求系统输出C(5)o 题2?9图 2-10求图示系统的传递函数C(s)/R(s)o 2 题2?10图 2-11已知单位负反馈系统的开环传递函数 +4疋+3$ + 2 52(5 + 1)[(5 + 4)2+4] 1.试用MATLAB求取系统的闭环模型; 2.试用MATLAB求取系统的开环模和闭环零极点。 2-12如图所示系统 1.试川MATLAB化简结构图,并计算系统的闭坏传递函数;

Matlab偏微分方程求解方法

Matlab 偏微分方程求解方法 目录: §1 Function Summary on page 10-87 §2 Initial Value Problems on page 10-88 §3 PDE Solver on page 10-89 §4 Integrator Options on page 10-92 §5 Examples” on page 10-93 §1 Function Summary 1.1 PDE Solver” on page 10-87 1,2 PDE Helper Functi on” on page 10-87 1.3 PDE Solver This is the MATLAB PDE solver. PDE Helper Function §2 Initial Value Problems pdepe solves systems of parabolic and elliptic PDEs in one spatial variable x and time t, of the form )x u ,u ,t ,x (s ))x u ,u ,t ,x (f x (x x t u )x u ,u ,t ,x (c m m ??+????=????- (10-2) The PDEs hold for b x a ,t t t f 0≤≤≤≤.The interval [a, b] must be finite. m

can be 0, 1, or 2, corresponding to slab, cylindrical, or spherical symmetry,respectively. If m > 0, thena ≥0 must also hold. In Equation 10-2,)x /u ,u ,t ,x (f ?? is a flux term and )x /u ,u ,t ,x (s ?? is a source term. The flux term must depend on x /u ??. The coupling of the partial derivatives with respect to time is restricted to multiplication by a diagonal matrix )x /u ,u ,t ,x (c ??. The diagonal elements of this matrix are either identically zero or positive. An element that is identically zero corresponds to an elliptic equation and otherwise to a parabolic equation. There must be at least one parabolic equation. An element of c that corresponds to a parabolic equation can vanish at isolated values of x if they are mesh points.Discontinuities in c and/or s due to material interfaces are permitted provided that a mesh point is placed at each interface. At the initial time t = t0, for all x the solution components satisfy initial conditions of the form )x (u )t ,x (u 00= (10-3) At the boundary x = a or x = b, for all t the solution components satisfy a boundary condition of the form 0)x u ,u ,t ,x (f )t ,x (q )u ,t ,x (p =??+ (10-4) q(x, t) is a diagonal matrix with elements that are either identically zero or never zero. Note that the boundary conditions are expressed in terms of the f rather than partial derivative of u with respect to x-x /u ??. Also, of

微分方程传递函数的定义

求解微分方程可求出系统的输出响应,但如果方程阶次较高,则计算非常繁琐,因此对系统的设计分析不便,所以应用传递函数将实数中的微分运算变成复数中的代数运算,可使问题分析大大简化。 一、传递函数的概念及意义 (1)传递函数的定义: 线性系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比。 线性定常系统微分方程的一般表达式: 其中x c为系统输出量,x r为系统输入量 在初始情况为零时,两端取拉氏变换: 移项后得: 上式中Xc(s)输出量的拉氏变换;Xr(s)输入量的拉氏变换;W(s) 为系统或环节的传递系数。 (2)传递函数的两种表达形式 a.传递函数的零极点表示形式 b.传递函数的时间常数表示形式

(3)关于传递函数的几点说明 a.传递函数的概念只适应于线性定常系统。 b.传递函数只与系统本身的特性参数有关,而与输入量变化无关。 c.传递函数不能反映非零初始条件下系统的运动规律。 d.传递函数分子多项式阶次低于或至多等于分母多项式的阶次。 二、典型环节的传递函数及其暂态特性 无论什么样的系统,它的传递函数都是一些基本因子相乘积而得到的。这些基本因子就是典型环节对应的传递函数。把复杂的物理系统划分为若干个典型环节,利用传递函数和框图来进行研究,这是研究系统的一种重要方法。 (1)比例环节(放大环节/无惯性环节) 特点:输入量与输出量的关系为一种固定的比例关系(见下图)。 (2)惯性环节 特点:只包含一个储能元件,使其输出量不能立即跟随输入量的变化,存在时间上的延迟(见下图)。

(3)积分环节 特点:输出量随时间成正比地无限增加(见下图)。 (4)振荡环节 特点:振荡的程度与阻尼系数有关(见下图)。 (5)微分环节 特点:是积分环节的逆运算,其输出量反映了输入信号的变化趁势(见下图)。实践中,理想的微分环节难以实现。

常微分方程组的MATLAB求解方法

一、常微分方程组(ODEs) 简介 (1) 1. 简谐振动 (1) 2. 电路Vander Pol 方程 (1) 3. 生物种群的Volterra-Lotka 方程 (2) 4. 蝴蝶效应Lorenz 方程 (2) 二、MATLAB 数值求解ODEs的方法 (3) 1. 多变量常微分方程组的求解 (4) 2. 高阶常微分方程如何表示? (4) 3. 相图和极限环怎么绘制? (4) 个人在学习自动控制原理、现代控制理论、非线性动力学等课程时,经常遇到求解常微分方程组的问题。很多人知道MATLAB 是简便易行的一个工具,但是不会调用它自带的ode 求解器,往往还在自己编写单步欧拉法的程序,不仅求解精度差,而且程序不规范,还浪费了大量时间。以下我就工程中常见的一些非线性系统,利用MATLAB 自带的求解器,说明一下如何求解ODE 方程组、以及如何绘制相轨迹和极限环的问题。供相关专业工科大学生参考和借鉴。 一、常微分方程组(ODEs) 简介 以下列出了一些较为著名的非线性动力学系统的数学表达式,大都是由常微分方程组表达的。这种形式在工程中应用非常广泛,如力学中的非线性振动、航天领域的弹道计算、控制工程中的非线性系统等,由于自然界的大多数现象都表现出非线性,因此对于该种动力系统的研究以及微分方程的求解也具有重大的意义。以下列出一些工程应用中常见的一些由ODE 方程组所描述的动力系统。 1. 简谐振动 该式是一个2 阶非线性常微分方程。 2. 电路Vander Pol 方程

Fig 1. VanderPol 系统时域响应 3. 生物种群的 Volterra-Lotka 方程 Fig 2. Volterra-Lotka 方程时域响应(左) Fig 3 非线性动力学方程的极限环(右) 左图的捕食者 -猎物随时间变化的曲线表现出强烈的非线性,而状态变量 x 、y 的 变化却呈现出一个规则的鹅卵石状。 4. 蝴蝶效应 Lorenz 方程

实验七用matlab求解常微分方程

实验七 用matlab 求解常微分方程 一、实验目的: 1、熟悉常微分方程的求解方法,了解状态方程的概念; 2、能熟练使用dsolve 函数求常微分方程(组)的解析解; 3、能熟练应用ode45\ode15s 函数分别求常微分方程的非刚性、刚性的数值解; 4、掌握绘制相图的方法 二、预备知识: 1.微分方程的概念 未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。常微分方程的一般形式为 0),,",',,()(=n y y y y t F 如果未知函数是多元函数,成为偏微分方程。联系一些未知函数的一组微分方程组称为微分方程组。微分方程中出现的未知函数的导数的最高阶解数称为微分方程的阶。若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,一般表示为 )()(')()(1)1(1)(t b y t a y t a y t a y n n n n =++++-- 若上式中的系数 n i t a i ,,2,1),( =均与t 无关,称之为常系数。 2.常微分方程的解析解 有些微分方程可直接通过积分求解.例如,一解常系数常微分方程1+=y dt dy 可化为 dt y dy =+1,两边积分可得通解为 1-=t ce y .其中c 为任意常数.有些常微分方程可用一些技巧,如分离变量法,积分因子法,常数变异法,降阶法等可化为可积分的方程而求得解析解. 线性常微分方程的解满足叠加原理,从而他们的求解可归结为求一个特解和相应齐次微分方程的通解.一阶变系数线性微分方程总可用这一思路求得显式解。高阶线性常系数微分方程可用特征根法求得相应齐次微分方程的基本解,再用常数变异法求特解。 一阶常微分方程与高阶微分方程可以互化,已给一个n 阶方程 ),,",',()1()(-=n n y y y t f y 设) 1(21,,',-===n n y y y y y y ,可将上式化为一阶方程组 ?????????====-),,,,(''''2113221n n n n y y y t f y y y y y y y 反过来,在许多情况下,一阶微分方程组也可化为高阶方程。所以一阶微分方程组与高阶常微分方程的理论与方法在许多方面是相通的,一阶常系数线性微分方程组也可用特征根法求解。 3.微分方程的数值解法 除常系数线性微分方程可用特征根法求解,少数特殊方程可用初等积分法求解外,大部分微分方程无限世界,应用中主要依靠数值解法。考虑一阶常微分方程初值问题

最新Matlab求解微分方程(组)及偏微分方程(组)

最新Matlab 求解微分方程(组)及偏微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,, ,f t t t t 上的解,则令 tspan 012[,,,]f t t t t =(要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.

相关文档
最新文档