飞机机翼力学分析报告

飞机机翼力学分析报告
飞机机翼力学分析报告

飞机机翼力学分析报告

飞行器制造083614 孙诚骁一概述

机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。

1.受力形式

机翼主要受两种类型的外载荷:

一种是以空气动力载荷为主,包括机翼结构质量力的分布载荷;

另一种是由各连接点传来的集中载荷。这些外载荷在机身与机翼的连接处,由机身

提供的支反力取得平衡。

2.主要单元

纵向元件有翼梁、长桁、墙(腹板)

横向元件有翼肋(普通翼肋和加强翼肋)

以及包在纵、横元件组成的骨架外面的蒙皮

二建立实体模型

机翼型号:NACA 2414;矩形翼共5根肋,间距100mm,弦长550mm,梯形翼共12根肋(包括与矩形翼重复的翼肋),间距100mm,翼梢弦长318mm,前缘直径8mm,厚度1mm

通过向patran软件导入翼型初始模型,运用patran的3d建模功能,对初始模型添加后墙,前缘和主梁,最后得到3d机翼模型

三有限元划分

对已经建立好的机翼模型进行网格划分,后墙及翼肋后半部分采用粗粒度三角单元网格,value值采用15 。翼肋前半部分、前缘采用细粒度三角单元网格,value值采用10。主梁采用实体网格,采用自动生成的value。划分成功后删除重复节点就得到了分析模型。

四加载

网格划分完成之后对其进行加载:支撑条件为翼根固结,受力形式为翼肋和梁交线中点处受到Z轴方向升力。

机翼上气动载荷分布表(表中编号X的意义为翼根处翼肋的右边第X根翼肋)

五材料性能及属性

单元类型

材料属性表

运用配套的nastran软件对机翼进行计算,主要计算量有总体应力,主梁应变,翼肋的面应力

(机翼应变图)

(主梁应力)

(翼肋应力)

经计算后发现机翼主梁根部受力最大,打到51.3MPa,翼肋也是根部受力最大,打到

5.17MPa,总体变形的最大量在翼梢处,为2.66mm。由给出的建筑泡沫许用应力,本例主梁附加碳片后最大应力在许用应力范围及之内。翼肋的最大应力也在对应的许用应力范围之内。

基于ANSYS的机翼振动模态分析

机翼模型的振动模态分析 摘要:本文在ANSYS13.0平台上,采用有限元方法对机翼模态进行了建模和数值分析,为机翼翼型的设计和改进提供基础数据。 1.引言 高空长航时飞机近年来得到了世界的普遍重视。由于其对长航时性能的要求,这种飞机的机翼往往采用非常大的展弦比,且要求结构重量非常低。大展弦比和低重量的要求,往往使得这类结构受载时产生一系列气动弹性问题,这些问题构成飞行器设计和其它结构设计中的不利因素,解决气动弹性问题历来为飞机设计中的关键技术。颤振的发生与机翼结构的振动特性密切相关。通过对机翼模态的分析,可以获得机翼翼型在各阶频率下的模态,得出振动频率与应变之间的关系,从而可以改进设计,避免或减小机翼在使用过程中因为振动引起的变形。 同时,通过实践和实际应用,可以掌握有限元分析的方法和步骤,熟悉ANSYS有限元分析软件的建模和网格划分技巧和约束条件的确定,为以后进一步的学习和应用打下基础。 2.计算模型 一个简化的飞机机翼模型如图1所示,机翼的一端固定在机体上,另一端为悬空自由端,该机翼沿延翼方向为等厚度,有关的几何尺寸见图1。 图1.机翼模型简图 在分析过程采用直线段和样条曲线简化描述机翼的横截面形状,选取5个keypoint,A(0,0,0)为坐标原点,同时为翼型截面的尖点;B(0.05,0,0)为下表面轮廓截面直线上一点,同时是样条曲线BCDE的起点;D(0.0475,0.0125,0)为样曲线上一点。C(0.0575, 0.005,0)为样条曲线曲率最大点,样条曲线的顶点;点E(0.025,0.00625,0)与点A构成直线, 斜率为0.25。通过点A、B做直线和点B、C、D、E作样条曲线就构成了截面的形状,如图2。沿Z方向拉伸,就得到机翼的实体模型,如图1。

机翼分析

B-2隐形战略轰炸机 一、飞机简介: B-2隐形战略轰炸机是冷战时期的产物,由美国诺思罗普公司为美国空军研制。1979年,美国空军根据战略上的考虑,要求研制一种高空突防隐形战略轰炸机来对付苏联90年代可能部署的防空系统。1981年开始制造原型机,1989年原型机试飞。后来对计划作了修改,使B-2轰炸机兼有高低空突防能力,能执行核及常规轰炸的双重任务。 二、飞机整体结构: 飞机三视图和飞机内部结构剖析(图下)

三、飞机机翼结构分析: B-2轰炸机采用翼身融合、无尾翼的飞翼构形,其机体扁平,采用翼身融合的无尾(无垂直尾翼)的飞翼构型,机翼前缘为直线,交接于机头处,机翼后掠33度,飞机头部到翼尖成锐角,机翼后缘成双“W”形(锯齿形)有8个操纵面(6个升降副翼,2个阻流方向舵),巨大的锯齿状后缘由10条直的边缘组成,翼展尺寸为52.43米机翼前缘交接于机头处,机翼后缘呈锯齿形。机身机翼大量采用石墨/碳纤维复合材料、蜂窝状结构,表面有吸波涂层,发动机的喷口置于机翼上方。这种独特的外形设计和材料,能有效地躲避雷达的探 测,达到良好的隐形效果。 形尾翼原始设计 是专门为高空飞 行设计的,能够 满足高空阵风载 荷的需求,但不 适应于低空阵风 载荷的需求。飞 机主翼的设计进 行了重大改动, 因为空军不仅要 求飞机能从高空 突入,而且还要 能超低空突防, 从而带来了提高 飞机升力、增强

机械结构强度、进一步降低其雷达反射截面积等一系列问题,使飞机的设计历经数年才得以定型。B-2飞机的结构设计是基于满足阵风载荷(又称突风载荷)标准进行设计的,航空历史上仅有几种型号的飞机是按阵风载荷需求设计的,大部分军用飞机是根据机动载荷(又称惯性载荷)需求而设计。 机翼结构为单块式。从构造上看,单块式机翼的长桁较多且较强;蒙皮较厚;长桁、蒙皮组成可受轴向力的壁板。当有梁时,一般梁缘条的剖面面积与长桁的剖面面积接近或略大,有时就只布置纵墙。为了充分发挥单块式机翼的受力特点,左、右机翼一般连成整体贯穿机身。但有时为了使用、维护方便,在展向布置有设计分离面。分离面处采用沿翼箱周缘分散连接的形式将机翼连为一体。 单块式机翼的上、下壁板成为主要受力构件。这种机翼比梁式机翼的刚度特性好(这点对后掠机翼很重要)。同时由于结构分散受力,能更好地利用剖面结构高度,因而在某些情 况下(如飞机速度较大时)材料利用率较高,重量可能较轻。此外单块式机翼比梁式机翼生存力强。它的缺点是不便于开口 (Boeing)波音747 SP 一、飞机名称: 波音747 SP 波音747,又称为“珍宝客机”(Jumbo Jet),是一种双层客舱四发动机飞机,是世界上最易识别的客机之一,亦是全世界首款生产的宽体民航客机,由美国波音民用飞机集团制造。波音747原型大小是1960年代被广泛使用的波音707的两倍。1965年8月开始研制,自1970年投入服务后,一直是全球最大的民航机,垄断着民用大型运输机的市场,到A380投入服务之前,波音747保持全世界载客量最高飞机的纪录长达37年。 二、飞机整体结构:

ANSYS实例分析-飞机机翼

ANSYS实例分析 ——模型飞机机翼模态分析 一,问题讲述。 如图所示为一模型飞机机翼,其长度方向横截面形状一致,机翼的一端固定在机体上,另一端为悬空自由端,试对机翼进行模态分析并显示机翼的模态自由度。是根据一下的参数求解。 机翼材料参数:弹性模量EX=7GPa;泊松比PRXY=0.26;密度DENS=1500kg/m3。 机翼几何参数:A(0,0);B(2,0);C(2.5,0.2);D(1.8,0.45);E (1.1,0.3)。 问题分析 该问题属于动力学中的模态分析问题。在分析过程分别用直线段和样条曲线描述机翼的横截面形状,选择PLANE42和SOLID45单元进行求解。 求解步骤:

第1 步:指定分析标题并设置分析范畴 1.选取菜单途径Utility Menu>File>Change Title 2.输入文字“Modal analysis of a model airplane wing”,然后单击OK。 3.选取菜单途径Main Menu>Preferences. 4.单击Structure选项使之为ON,单击OK。主要为其命名的作用。 第2 步:定义单元类型 1.选取菜单途径:Main Menu>Preprocessor>Elemen t Type>Add/Edit/Delete。 2.Element Types对话框 将出现。 3.单击Add。Library of

Element Types对话框将出现。 4.在左边的滚动框中单击“Structural Solid”。 5.在右边的滚动框中单击“Quad 4node 42”。 6.单击Apply。 7.在右边的滚动框中单击“Brick 8node 45”。 8.单击OK。 9.单击Element Types对话框中的Close按钮。 第3 步:指定材料性能

飞机结构完整性研究现状及发展方向

第23卷 第3期 2005年9月 飞 行 力 学FL IG HT DYN AM ICS V ol.23 N o.3Sep.2005  收稿日期:2005-02-01;修订日期:2005-07-05 作者简介:屈玉池(1961-),男,陕西长安人,研究员,主要从事航空发动机结构强度与科技情报信息管理研究。 飞机结构完整性研究现状及发展方向 屈玉池1,2,晁祥林2,陈 琪2 (1.西北工业大学航空学院,陕西西安710072;2.中国飞行试验研究院情报档案中心,陕西西安710089) 摘 要:飞机结构完整性是确保飞机安全寿命的重要条件之一。简要介绍了结构完整性在飞机设计中的发展进程及其作用;以F -4C /D 和F -16飞机为例,叙述了结构完整性在飞机结构设计和验证中的应用情况;最后指出 当前我国结构完整性技术的研究现状,以及下一步的研究重点。 关 键 词:飞机结构完整性;军用规范;载荷谱;损伤容限 中图分类号: V 215 文献标识码: A 文章编号:1002-0853(2005)03-0009-04 引言 飞机结构完整性大纲是从1957年B -47飞机出 现疲劳问题后提出的,由此对飞机结构完整性的研究逐步形成并得到发展,在飞机结构分析中的应用于1970年前后发生飞跃。1969年,一架F-111飞机由于机翼关键接头存在漏检裂纹,仅100飞行小时就发生事故;在此期间,C-5A 疲劳试验样机也过早地产生开裂现象。所以,1975年12月发布的《M IL-STD -1530A 美国空军结构完整性大纲(ASIP )》增加了结构损伤容限和耐久性分析以及地面试验要求,提高了对飞机结构完整性要求[1]。在以后的十几年中,结构完整性技术有了进一步的发展,并形成了《M IL -A -87221(U SAF )飞机结构通用规范》和《M IL-A-8860B(AS)飞机强度和刚度系列规范》。这些规范在近十几年来广泛用于飞机结构设计和验证。随着断裂力学、概率断裂力学的发展,在结构完整性要求的损伤容限、耐久性等分析中又融入了概率统计方法,使解决随机因素下结构发生破坏问题成为可能,进一步完善了结构完整性理论和方法。 1 飞机结构完整性研究进展 在1970年以前的结构完整性大纲中,结构分析的重点是静强度和“安全寿命”疲劳设计方法。该方法利用了一种假设,即用疲劳样机代表所有的生产型飞机,假定部队所用飞机的“安全寿命”为疲劳样 机寿命的四分之一。然而,正是在关键结构部位存在没有检测出的较大的初始裂纹引发了F -111飞机事故。该事故说明,所采用的安全寿命疲劳设计分析方法存在缺陷,所做的全部疲劳试验并不能预测出这类飞机结构破坏,因此,所应用的M IL-A-8860系列飞机强度和刚度规范不能满足飞机结构完整性要求,迫切需要一种新的满足结构完整性要求的评估飞机安全寿命的分析方法,由此推动了飞机强度和刚度规范的改进和飞机结构完整性技术的发展。 在1970~1980年执行的飞机结构完整性大纲中,结构安全寿命要求通过损伤容限和耐久性分析体现,并以规范的形式得以贯彻,使飞机结构能承受在制造、维修或服役期间所形成的裂纹而正常服役。美国军用规范M IL -A -83444规定了飞机结构的损伤容限要求;M IL -A -008666B 规定了耐久性要求;M IL -A -8867A 规定了地面试验要求。这三部规范反映了当时有关耐久性、损伤容限和地面试验的技术现状,并与其它结构规范共同构成了M IL-STD-1530飞机结构完整性大纲框架。 M IL-STD-1530A 把损伤容限和耐久性要求分开,损伤容限用破损-安全概念或缓慢裂纹扩展概念设计实现。为了满足耐久性要求,规定试验中所验证飞机的经济寿命必须大于设计服役寿命。在飞机结构评价中,损伤容限和耐久性要求还用来决定部队对飞机结构的维修计划,并提供检查、修理的方法和预期的时间。 近十几年来,结构完整性技术有了更进一步的

铝合金机翼模态分析

铝合金机翼模态分析 模态是机械结构的固有震动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析。振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。本文通过有限元方法,对铝合金机翼进行模态分析,了解其振动特性。 1结构模型 铝合金是应用最为广泛的航空材料,铝合金结构具有强度高,质量小的优点,被广泛的应用于机身和机翼的设计。本次使用的铝合金型号为6061,其密度为2.8g/cm3,弹性模量为E=68.9Gpa,泊松比为0.330,机翼的结构模型如下图1所示 图1.1机翼结构模型 假定该机翼为小型无人机机翼,整个机翼由蒙皮、主梁、辅助梁、翼肋组成。该机翼是弦长为100mm,展弦比为8的矩形直机翼。蒙皮厚度为1mm,主梁厚度为2mm,位于翼型最大厚度处,辅助梁的厚度为1mm,位于后缘1/4弦长处,端肋厚度为1mm,加强肋厚度为2mm。上图给出的是半个机翼的有限元分析模型,其右端固支在机身上。 1.数学模型

机翼的无阻尼固有振动方程为: 0)(2=Φ-M K ω (2.1) 式中: 结构的固有频率;结构的特征向量矩阵; 矩阵; 结构的刚度矩阵和质量--Φ-ωM K , 结构离散化后,运动状态下,可以得到结构的动力平衡方程如下: (2.2) 上式中{P (t )}为流体力矢量,结构在空气中自由振动时,此项为零。本次分析不考虑空气动力的影响,因此结构系统在空气中的无阻尼振动方程为 0}]{[]][[][][1=++δδδ K C M (2.3) 2.机翼有限元模态分析 在对机翼模型进行模态分析之前首先要定义其材料属性为密度为2.8g/cm3,弹性模量为E=68.9Gpa ,泊松比为0.330,接着对其进行有限元网格划分,本次网格划分采用的是六面体结构化网格,网格大小为1mm ,网格数为,如图3.1-3.3所示 3.1 翼端处网格 )}({][}]{[][][1t P K C M =++δδ

飞机的气动布局与机翼的几何参数资料讲解

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼的几何参数 人类向往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 而真正促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 飞机是二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: 朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 如果李白乘飞机,不知如何写佳作。是否同意写成如下: 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L=G L V ¥(升力与重力平衡) F=D D//V ¥(推力与阻力平衡) M=0 (俯仰力矩保持守恒) 飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。 (2)必须存在一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小和飞行姿态。

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

飞机机翼浅析

飞机机翼结构浅析 摘要 飞机发明人美国人莱特兄弟说“每只鸟都是一名特级飞行员,谁要飞行,谁就得模仿鸟”的论述,对鸟的飞行动作,作了更仔细的观察研究,于1903年成功地发明了世界上有动力、可操纵的飞机,成为世界公认的飞机发明人。飞机机翼结构和升力产生的机理与鸟翼的结构及产生升力的原理基本上是一致的。飞机在发动机驱动下向前飞行时,流过上下翼面气流的流速不一致,上翼面流速快于下翼面,造成上翼面空气压力低于下翼面,从而使机翼产生升力,当升力大于飞机的重力时飞机就能升空飞行了。由此可见机翼的作用非同寻常,下面我们来看一下究竟。本文主要介绍机翼的功用、机翼的设计标准以及对机翼典型零件的分析来对机翼的构造和翼型原理有一个更清楚的认识。 关键词:机翼功用、机翼设计、副翼、机翼元件 Abstract: The Wright brothers invented the airplane who said Americans "Each bird is a super pilot, who will fly, who have to imitate the birds," the exposition of the birds flying, made a more detailed observational study, in 1903 successfully invented the world have power, maneuverability of aircraft, aircraft, the world recognized inventor. Aircraft wing structure and mechanism of lift generated by the structure of bird wings and produce lift are basically the same principle. Engine-driven aircraft in forward flight, the flow velocity of the upper and lower wing surface flow is inconsistent, on the wing faster than under the wing surface flow, causing surface air pressure below the wing under the wing surface, so that the wings produce lift, when greater than the gravity lift aircraft flying off the aircraft will be able to. This shows an unusual wing, let's look at what had happened. This paper describes the function of the wing, the wing's design standards and analysis of typical parts of the wing to the wing structure and airfoil theory have a better understanding. Key words: Function of the wing, wing design, flaps, wing components.

基于anasys飞机机翼的模态分析报告

基于ANSYS飞机机翼的模态分析报告 设计完成日期2015年5 月4 日 目录 1项目背景 (2)

1.1 立项背景 (2) 1.2研究内容 (3) 1.3 分析方案 (3) 2有限元模型的建立及分析 (3) 2.1 建立模型 (3) 2.2 划分网格并施加约束 (4) 2.3定义分析类型 (5) 3 求解 (5) 3.1固有频率 (5) 3.2振动模态 (6) 4 有限元结果处理及分析 (7) 5结语 (7) 摘要:介绍了如何利用ANSYS软件建立飞机机翼的有限元模型。应用ANSYS软件对机翼进行特定约束条件下的振动模态分析,得到了机翼的各阶固有频率及相应的变形云图,为机翼在高空飞行时的设计和改进提供了依据。 关键词:ANSYS;机翼;有限元模型;模态分析

1项目背景 1.1 立项背景 随着航空事业的不断发展和进步,以及各国对民用飞机和军用运输机的要求不断提高,大型亚声速乃至超声速客机以及运输机已成为各军事、经济大国争先发展的项目。为了未来大型飞机的载重多、飞的更快更高程的突出特点,无疑要增大飞机的尺寸、重量和气动弹性。这将对飞机各部件的结构强度提出更高的要求,因此降低结构质量成为结构设计追求的一项重要指标,大型柔性成为很多航空结构的一个特点,这种大型柔性复杂结构极易受到外界及航空器本身扰动的影响而发生振动。 飞机机翼 大型运载火箭、导弹、大型运输机等通常对振动环境有严格的要求,强烈的振动会严重地影响各种有效载荷的正常工作,导致系统性能下降甚至失效,直接威胁航空结构的安全。这种由振动引起结构疲劳的问题也变得越来越突出。因此,研究大型柔性航空结构的振动特性,并对其进行振动控制非常重要,航空结构系统的振动抑制问题历来是航空器设计中的一个重要问题和难点。相对于固定翼飞机来说,大型飞机机翼的振动现象更为明显,而且过高的振动水平会引起机翼结构的疲劳破坏,影响机载设备的正常工作,飞行事故屡见不鲜。例如,美军驻伊拉克的空运部队在一次给C-17运输机加油过程中发生了左机翼整体断裂的恶性事故;法国的一架超军旗飞机在飞行中由于机翼折断,造成飞行员坠机身亡;美国的一架F-15战斗机在飞行中由于机动动作太大,造成右机翼断裂脱落。面对着血的教训,设计人员在不断寻找各种合理有效的计算和校核方法冈。以美国为例,从20世纪60年代初期开始进行飞机机翼振动主动控制技术的研究,至今已形成

波音777飞机的机翼结构分析

波音777飞机的机翼结构分析 机翼设计 波音777飞机的机翼是在改进757和767设计的基础上,将777增加了机翼的长度及厚度。这种先进的机翼提高了飞机的巡航速度,增加了飞机的爬升能力和飞行高度,并且能在许多高海拔和炎热地区满载乘客和货物起降。 加仑(117335升),777-200LR环球飞机的载油量为53440加仑(202287升)。 在航空公司的协助下,波音把777的翼展加大到了199英尺11英寸(60.9 米),优化了机翼的性能。

777-200LR和777-300ER的机翼加装了6.5英尺长的斜削式翼尖,提高了机翼的整体气动性能。斜削式翼尖有助于缩短起飞滑行距离、提高爬升性能并降低油耗。 材料 777的几款机型采用了重量轻、成本低的新型结构材料。例如,在机翼上部蒙皮和桁条采用经过改进的7055铝合金,这种材料比其它合金具有更大的抗压强度,能减轻重量,抗腐蚀性和疲劳强度也有所提高。 在 777飞机上,重量更轻的先进复合材料开发和生产取得了明显进展。在垂直和水平尾翼上采用了碳纤维增强型树脂材料。客舱的地板横梁也是由这些先进复合材料制成的。 复合材料还被用于整流罩等辅助结构上。复合材料(包括树脂和粘结剂)占777飞机结构重量的9%,而在其它波音喷气机上约为3%。 波音公司的方案是采用71.30米的加长型机翼,新机翼的翼展将比波音747-8飞机的宽3.05米。另一项新工艺是将原来的金属机翼改为碳纤维增强复合材料机翼。较大的翼展将提高波音777-8X/-9X的升力,复合材料机翼在增加强度的同时也降低了新机型的空重。波音公司初步估计,在航程小于14800千米/时,波音777-9X飞机的最大起飞重量至少能达到753000磅(约342吨)。这将有效地稳固该系列飞机的市场竞争力,并在上述航程区间内保持对现有机型的载运能力的领先优势。 波音777X项目将采用新型碳纤维复合材料制造的机翼,这也包含3中方案:翼展71.1米加后掠式小翼(raked wingtip)、65米翼展加融合式翼梢小翼(blended winglets)、68.6米翼展架融合式翼梢小翼。 碳纤维复合材料机翼可以使机翼面积较波音777-300ER及-200LR增加约10%,从而降低进近时的速度并减少噪音。 如果采用71.1米的翼展,那么波音777对应的机场飞行区等级将由E提高到F,也就是波音747-8及空中客车A380的使用等级。 777飞机的机翼是迄今为止亚音速民用飞机中气动效率最高的。在改进757

飞机结构疲劳与断裂分析发展综述

飞机结构疲劳与断裂分析发展综述 领空权对于任何一个国家都是非常重要的,飞机的先进,是领空权的保证.飞机更是国家的国防的重要力量,提高飞机的性能更是每个军事大国追求的目标.飞机的结构抗疲劳强度与断裂强度是飞机性能的重要体现.通过这学期的学习,和老师耐心的讲解,我对我国飞机结构疲劳强度与断裂发展现状与发展趋势有了更进一步的了解. 疲劳强度是指飞机结果在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。实际上,飞机结构并不可能作无限多次交变载荷试验。 断裂是指飞机结构被断错或发生裂开.讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。 飞机结构在实际使用中,要不断承受交变载荷的作用。但是,早期设计给及只是从静强度上考虑,只要通过计算和试验证明飞机结构能够承受得住设计载荷(实际使用中所出现的最大载荷乘以安全系数),就认为飞机结构具有足够的强度。由于飞机结构承受交变载荷的作用,某些构建常常出现疲劳性能也较好。因此,飞机结构的疲劳问题并不突出,疲劳强度问题没有引起足够的重视。直到50年代前期,世界各国的飞机强度规范中对疲劳强度都还没有具体要求,不要求进行全尺寸结构疲劳试验。但是,随着航空事业的不断发展,飞机

的性能不断提高,适用寿命延长,新结构、新材料不断出现,飞机结构在使用中疲劳破坏与安全可靠之间的矛盾逐渐显露出来了。 断裂是指飞机结构被断错或发生裂开.讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。 许多飞机结果,如轴、齿轮、轴承、叶片、弹簧等,在工作过 程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后会产生裂纹或突然发生完全断裂。 疲劳破坏是机械零件失效的主要原因之一。据统计,在飞机结构失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。 疲劳失效是金属材料常见的失效形式,特别是轴类,连杆,轴承类 等零件,长期在应力下工作的工件材料都要求较高的疲劳强度,这样 的可以提高零件的使用寿命。疲劳强度同时还与硬度、强度、韧性有较大关系,所以他是金属材料的重要力学性能指标。 疲劳强度是材料能够承受无数次应力循环时的最大应力。疲劳强度关系到零件的寿命以及零件工作时能够承受的最大应力,这对零件的安全设计有重大意义。

第10章 周期对称结构的模态分析

第十章周期对称结构的模态分析 ANSYS的周期对称分析支持静力(Static)分析和模态(Modal)分析。静力分析支持线性和大变形非线性;模态分析支持带有预应力的模态分析和不带有预应力的两种,关于带有预应力的模态分析本书第九章有专门讲述。本章只讲述不带有预应力的模态分析。在静力分析和模态分析这两种分析类型中,关于模型建立部分的要求是一致的,不同的是在进行模态分析时需要指定求解的节径数以及指定对于每个节径数的求解的模态阶数。对于每个节径,ANSYS均将其作为一个载荷步。ANSYS将周期对称边界条件施加于每一载荷步,并且每求解一个载荷步(即节径)后,都将构成周期对称边界条件的约束方程删除(保留任何用户自定义的约束方程)。在静力分析中ANSYS只求解零节径,而在模态分析中默认将求解全部节径。 本章中介绍的实例依然是第7章的轮盘,包括模型和边界条件。 10.1 问题描述 某型压气机盘,见7.1节的对其描述。要求查看其低阶频率结构和振动模态。 10.2 建立模型 在周期对称分析中,在建立模型后,划分网格之前,需要指定周期对称选项。 10.2.1 设定分析作业名和标题 在进行一个新的有限元分析时,通常需要修改数据库文件名(原因见第二章),并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。 (1)选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图10.1所示。

飞机机翼力学分析报告

飞机机翼力学分析报告 飞行器制造083614 孙诚骁一概述 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 1.受力形式 机翼主要受两种类型的外载荷: 一种是以空气动力载荷为主,包括机翼结构质量力的分布载荷; 另一种是由各连接点传来的集中载荷。这些外载荷在机身与机翼的连接处,由机身 提供的支反力取得平衡。 2.主要单元 纵向元件有翼梁、长桁、墙(腹板) 横向元件有翼肋(普通翼肋和加强翼肋) 以及包在纵、横元件组成的骨架外面的蒙皮 二建立实体模型 机翼型号:NACA 2414;矩形翼共5根肋,间距100mm,弦长550mm,梯形翼共12根肋(包括与矩形翼重复的翼肋),间距100mm,翼梢弦长318mm,前缘直径8mm,厚度1mm 通过向patran软件导入翼型初始模型,运用patran的3d建模功能,对初始模型添加后墙,前缘和主梁,最后得到3d机翼模型 三有限元划分 对已经建立好的机翼模型进行网格划分,后墙及翼肋后半部分采用粗粒度三角单元网格,value值采用15 。翼肋前半部分、前缘采用细粒度三角单元网格,value值采用10。主梁采用实体网格,采用自动生成的value。划分成功后删除重复节点就得到了分析模型。 四加载 网格划分完成之后对其进行加载:支撑条件为翼根固结,受力形式为翼肋和梁交线中点处受到Z轴方向升力。

机翼上气动载荷分布表(表中编号X的意义为翼根处翼肋的右边第X根翼肋) 五材料性能及属性 单元类型 材料属性表 运用配套的nastran软件对机翼进行计算,主要计算量有总体应力,主梁应变,翼肋的面应力

ANSYS机翼模型模态分析详细过程

机翼模型的模态分析 高空长航的飞机近年得到了世界的普遍重视。由于其对长航时性能的要求, 这种飞机的机翼采用非常大的展弦比,且要求结构重量非常低。大展弦比和低重 量的要求,往往使这类结构受载时产生一系列气动弹性问题,这些问题构成飞行 器设计和其它结构设计中的不利因素,解决气动弹性问题历来为飞机设计中的关 键技术。颤振的发生与机翼结构的振动特性密切相关。通过对机翼的模态分析, 可获得机翼翼型在各阶频率下的模态,得出振动频率与应变间的关系,从而可改 进设计,避免或减小机翼在使用过程中因振动引起变形。 下图是一个机翼的简单模态分析。该机翼模型沿着长度方向具有不规则形 状,而且其横截面是由直线和曲线构成(如图所示)。机翼一端固定于机身上, 另一端则自由悬挂。机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3, 密度r =886 kg/m。 图1机翼模型的结构尺寸图 1、建立有限元模型 1.1定义单元类型 自由网格对模型的要求不高,划分简单省时省力。选择面单元PLANE42 和体单元Solid45 进行划分网格求解。 1.2定义材料特性 根据上文所给的机翼材料常数定义材料特性,弹性模量E=0.26GPa,泊松比 m=0.3,密度r =886 kg/m。 1.3建立几何模型并分网 该机翼模型比较简单,可首先建立机翼模型的截面,再其进行网格划分,然后对截面拉伸0.25m的长度并划分10个长度单元,而得到整个模型的网格。

图2机翼模型截面图 图3 盘轴结构的有限元模型 1.4模型施加载荷和约束 因为机翼一端固定于机身上,另一端则自由悬挂,因此对机翼模型的一端所有节点施加位移约束和旋转约束。 1.5 分析求解 本次求解了机翼模型的前五阶模态,各阶固有频率值如下

飞机机翼结构分析

飞机机翼结构分析 前言 飞机机翼结构分析实根据发《飞机结构强度》一书中第三章的内容,本文主要论述了飞机机翼的功用及翼面结构。机翼由副翼前缘缝翼襟翼扰流板组成,从机翼的空气动力载荷到机翼的总体受力,能够更深入更全面的了解机翼了解航空领域所涉及学科的基础知识基础原理及发展概况,对开拓视野,扩大知识面以及今后的学习和工作都有帮助。 1.1机翼的功用 机翼是飞机的一个重要部件,其主要功用是产生升力。当它具有上反角时,可为飞机提供一定的横侧安定性。除后缘布置有横向操纵用的副翼、扰流片、等附翼外,目前在机翼的前、后缘越来越多地装有各种形式的襟翼、缝翼、等增升装置,以提高飞机的起降或机动性能。机翼上常安装有起落架、发动机等其它部件。现代歼击机和歼击轰炸机往往在机翼下布置多种外挂,如副油箱和导弹、炸弹等军械设备。机翼的内部空间常用来收藏起落架或其部分结构和储放燃油。特别是旅客机,为了保证旅客的安全,很多飞机不在机身内贮存燃油,而全部贮存在机翼内。为了最大限度地利用机翼容积,同时减轻重量,现代飞机的机翼油箱大多采用利用机翼结构构成的整体油箱。此外机翼内常安装有操纵系统和一些小型设备和附件。 1.2翼面结构设计要求 1.气动要求 翼面是产生升力主要部件,对飞行性能有很大的影响,因此,满足空气动力方面的要求是首要的。翼面除保证升力外,还要求阻力尽量小﹙少数特殊机动情况除外﹚。翼面的气动特性主要取决于其外行参数﹙如展弦比、相对厚度、后掠角和翼型等﹚,这些参数在总体设计时确定;结构设计则应强度、刚度及表面光滑度等方面来保证机翼气动外形要求的实现。 2.质量要求 在外形、装载和连接情况一定的条件下,质量要求时翼面结构设计的主要要求。具体地说,就是在保证结构完整性的前提下,设计出尽可能请的结构。结构完整性包含了强度、刚度、耐久性和损伤容限等多方面内容。 3.刚度要求 随着飞机速度的提高,翼面所受载荷增大,特别对于高机动性能歼击机和高速飞行的导弹;由于减小阻力等空气动力的要求,翼面的相对厚度越来越小,再加上后掠角的影响,导致翼面结构的扭转刚度、弯曲度将越来越难保证,这些均将引起翼面在飞行中的变形增加。高速飞行时,很小的变形就可能严重的恶化翼面的空气动力性能;刚度不足还会引起震颤和操纵面反效等严重问题。因此,对高速飞机和导弹,为满足翼面的气动要求,保证足够的刚度十分重要。 4.气动加热要求 一般亚音速飞行器,所选用的结构材料是常用金属及非金属材料,不必考虑温度对材料的影响。高速飞行时,翼面将受到气动加热的影响,尤其是翼面前缘的起动加热问题尤为严重。因此当以大马赫数的速度飞行时,还要考虑气动加热对结构强度和刚度的影响。 5.使用维修要求 翼面结构应便于检查、维护和修理。翼面内部通常铺设有相当数量的操纵系统零部件、燃油管路、电气线路和液压管路等,对这些系统和线路需要经常检查调整。当机翼结构作为整体油箱舱使用时,必须保证燃油系统工作的高度可靠性,包括油箱的密封可靠。对所有要

机翼模型的振动模态分析

机设1305 彭鹏程1310140521 一个简化的飞机机翼模型如图所示,该机翼沿延翼方向为等厚度。有关的几何尺寸见下图,机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r =886 kg/m。对该结构进行振动模态的分析。 (a) 飞机机翼模型 (b) 翼形的几何坐标点 振动模态分析计算模型示意图 解答这里体单元SOLID45 进行建模,并计算机翼模型的振动模态。 建模的要点: ⑴首先根据机翼横截面的关键点,采用连接直线以及样条函数< BSPLIN >进行连接以形成一个由封闭线围成的面; ⑵在生成的面上采用自由网格划分生成面单元(PLANE42); ⑶设置体单元SOLID45,采用< VEXT>进行Z 方向的多段扩展; ⑷设置模态分析< ANTYPE,2>,采用Lanczos 方法进行求解< MODOPT,LANB >; ⑸在后处理中,通过调出相关阶次的模态; ⑹显示变形后的结构图并进行动态演示。 给出的基于图形界面的交互式操作(step by step)过程如下。 (1) 进入ANSYS(设定工作目录和工作文件) 程序→ANSYS →→ANSYS Interactive →Working directory ( 设置工作目录) →Initial jobname(设置工作文件名):Modal→Run (2) 设置计算类型 ANSYS Main Menu:Preferences…→Structural →OK (3) 选择单元类型 ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete →Add…→Structural solid:Quad 4node 42 →Apply →solid →Brick 8node 45→OK →Close (4) 定义材料参数 ANSYS Main Menu:Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic:EX:0.26E9(弹性模量),PRXY:0.3(泊

有限元模态分析实例

ANSYS模态分析实例 5.2ANSYS建模 该课题研究的弹性联轴器造型如下图5.2: 在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.3

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。 5.4边界约束 建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。 在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。 5.5.1联轴器材料的设置 材料参数设置如下表5-1: 表5.1材料参数设置 表5.1材料参数设置 铁圈1中间件2铁圈3泊松比0.30.49970.3弹性模量Mpa2E5 1.274E32E5 密度kg/m790010007900 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率 SET TEME/FREQ LOAO STEP SUBSTEP CUMULATIVE 140.199111 173.632122 3132.42133 4197.34144

飞机机翼模态分析实例

飞机机翼模态分析实例 模态分析实例 §1.13.1飞机机翼模态分析实例 §1.13.1.1 问题描述 该实例对一个飞机模型的机翼进行模态分析,以确定机翼的模态频率和振型。机翼沿长度方向轮廓一致,横截面由直线和样条曲线定义(如图9所示)。机翼的一端固定在机体上,另一端为自由端。机翼由低密度聚乙烯制成,相关参数如下: 杨氏模量=38×103psi泊松比=0.3密度=1.033e-3slugs/in3 图9模型飞机机翼简图 §1.13.1.2GUI方式分析过程 第1 步:指定分析标题并设置分析范畴 1.选取菜单途径Utility Menu>File>Change Title 2.输入文字“Modal analysis of a model airplane wing”,然后单击OK。 3.选取菜单途径Main Menu>Preference 4.单击Structure选项使之为ON,单击OK。 第2 步:定义单元类型 1.选取菜单途径Main Menu>Preprocessor>Element Type>Add/Edit/Delete。 2.Element Types对话框将出现。 3.单击Add。Library of Element Types对话框将出现。 4.在左边的滚动框中单击“Structural Solid”。 5.在右边的滚动框中单击“Quad4node42”。 6.单击Apply。 7.在右边的滚动框中单击“Brick8node45”。 8.单击OK。 9.单击Element Types对话框中的Close按钮。 第3 步:指定材料性能 1.选取菜单途径Main Menu>Preprocessor>Material Props>-Constant-Isotropic。Isotro pic Material Properties对话框将出现。 2.在OK上单击以指定材料号为1。第二个对话框将出现。 3.输入EX为3800。 4.输入DENS为1.033e-3。 5.输入NUXY为0.3。 6.单击OK。 第4 步:在给定的位置生成关键点 1.选取菜单途径Main Menu>Preprocessor>-Modeling-Creat>Keypoints>In Active C S。Creat Keypoints in Active Coordinate System对话框将出现。 2.输入Keypoint number(关键点号)为1,X,Y,Z位置分别为0,0,0。可用TAB键在输入区之间移动。 3.单击Apply。 4.对下面的关键点及X,Y,Z位置重复这一过程: 关键点2:2,0,0

相关文档
最新文档