实验二北京科技大学自控实验(3)解析

实验二北京科技大学自控实验(3)解析
实验二北京科技大学自控实验(3)解析

【自我实践4-1】某单位负反馈系统的开环传递函数()(1)(2)

k

G s s s s =

++,求(1) 当k=4时,

计算系统的增益裕度,相位裕度,在Bode 图上标注低频段斜率,高频段斜率及低频段、高频段的渐近相位角。(2) 如果希望增益裕度为16dB ,求出响应的k 值,并验证。 (1)当K=4时>> num=[4]; den=[1,3,2,0]; G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G) bode(num,den) grid

title(′Bode Diagram of G(s)=4/[s(s+1)(s+2)] ′) G =

4

----------------- s^3 + 3 s^2 + 2 s

Continuous -time transfer function.

Gm =1.5000,Pm =11.4304,Wcg =1.4142,Wcp =1.1431 title(′Bode Diagram of G(s)=4/[s(s+1)(s+2)] ′)

低频段斜率为-20dB/dec ,高频段斜率为-60dB/dec ,低频段渐近相位角为-90度,高频段的渐近相位角为-270度。增益裕度GM=1.5000dB/dec ,相位裕度Pm=11.4304度 (2)当增益裕度为16dB 时,算得K=0.951,对应的伯德图为:>> num=[0.951]; den=[1,3,2,0]; G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G) bode(num,den) grid

title(′Bode Diagram of G(s)=4/[s(s+1)(s+2)] ′) G = 0.951 ----------------- s^3 + 3 s^2 + 2 s

Continuous -time transfer function.

Gm =6.3091,Pm =54.7839,Wcg =1.4142,Wcp =0.4276 title(′Bode Diagram ′)

【自我实践4-2】系统开环传递函数()(0.51)(0.11)

k

G s s s s =

++,试分析系统的稳定性。

计算可得当K=12时系统的增益裕度,相位裕度为0.对应的程序为: >> num=[12];

den=[0.05,0.6,1,0]; G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G) bode(num,den) grid G =

12

---------------------- 0.05 s^3 + 0.6 s^2 + s

Continuous -time transfer function.

Gm =1Pm =9.5374e -06Wcg =4.4721Wcp =4.4721

当K=10时即当k<12时的特例,对应的程序为:>> num=[10]; den=[0.05,0.6,1,0];

G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G)

bode(num,den)

grid

G =

10

----------------------

0.05 s^3 + 0.6 s^2 + s

Continuous-time transfer function.

Gm =1.2000Pm =3.9431Wcg =4.4721Wcp =4.0776

系统产生衰减震荡,增益裕度和相角裕度都大于0,系统稳定。

当K=20时即当k>12时的特例,对应的程序为:>> num=[20]; den=[0.05,0.6,1,0];

G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G)

bode(num,den)

grid

G =

20

----------------------

0.05 s^3 + 0.6 s^2 + s

Continuous-time transfer function.

Gm =0.6000,Pm =-10.5320,Wcg =4.4721,Wcp =5.7247

此时的增益裕度和相角裕度都小于0,系统不稳定。

【自我实践4-3】某单位负反馈系统的开环传递函数

31.6

()

(0.011)(0.11)

G s

s s s

=

++

,求(1)绘制

Bode图,在幅频特性曲线上标出低频段斜率、高频段斜率、开环截止频率和中频段穿越频率;在幅频特性曲线标出:低频段渐近相位角、高频段渐近相位角和-180?线的穿越频率。(2)计算系统的相位裕度γ和幅值裕度h,并确定系统的稳定性。

程序为:>> num=[31.6];

den=[0.001,0.11,1,0];

G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G)

bode(num,den)

grid

title(′Bode Diagram ′) G =

31.6

------------------------

0.001 s^3 + 0.11 s^2 + s

Continuous -time transfer function.

Gm =3.4810,Pm =22.2599,Wcg =31.6228,Wcp =16.3053

低频段斜率为-20dB/dec ,高频段斜率为-60dB/dec ,低频段渐近相位角为-90度,高频段的渐近相位角为-270度。增益裕度GM=3.4810dB/dec ,相位裕度Pm=22.2599度,-180度线穿越频率为Wcg =31.6228。由伯德图可知系统的相位裕度和幅值裕度都大于零,故系统稳定。

【自我实践4-4】某单位负反馈系统的开环传递函数2(1)

()(0.11)k s G s s s +=+,令k=1作bode 图,

应用频域稳定判据确定系统的稳定性,并确定使系统获得最大相位裕度的增益k 值。 当K=1时的伯德图程序为: >> num=[1,1]; den=[0.1,1,0,0]; G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G) bode(num,den) grid G =s + 1 ------------- 0.1 s^3 + s^2

Continuous -time transfer function.

Gm =0,Pm =44.4594,Wcg =0,Wcp =1.2647

由图可知系统的相位裕度和幅值裕度都大于零,故系统稳定。由计算得当k=3.16系统获得最大相位裕度.

【综合实践】试观察下列典型环节BODE图形状,分析参数变化时对BODE图的影响,填写下表。

(1)比例环节:K(K=10、K=30)

K=10 num=[10];

den=[0,1];

G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G)

bode(num,den)

grid

title(Bode Diagram)

K=30

num=[30]; den=[0,1]; G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G) bode(num,den) grid

title(Bode Diagram)

(2) 惯性环节:1

Ts K

(K=1、K=10、T=0.1、1) K=1,T=0.1 cp]=margin(G) bode(num,den) grid

title(′Bode Diagram ′) G =

1 --------- 0.1 s + 1

Continuous -time transfer function

K=1,T=1

>> num=[1];

den=[1,1];

G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G) bode(num,den)

grid

title(′Bode Diagram ′)

G =1

-----

s + 1

Continuous-time transfer function. Gm =InfPm = -180Wcg =NaN

K=10,T=0.1

>> num=[10];

den=[0.1,1];

G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G)

bode(num,den)

grid

title(′Bode Diagram ′)

G =10

---------

0.1 s + 1

Continuous-time transfer function.

Gm = InfPm =95.7406Wcg =NaNWcp =99.4731

K=10,T=1

>> num=[10];

den=[1,1];

G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G)

bode(num,den)

grid

title(′Bode Diagram ′)

G =10

-----

s + 1

Continuous-time transfer function.

Gm =InfPm =95.7406Wcg =NaNWcp =9.9473

(3) 积分环节:

s

K

(K=1、K=10) K=1

>> num=[1]; den=[1,0]; G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G) bode(num,den) grid

title(′Bode Diagram ′) G =1 - s

Continuous -time transfer function. Gm = InfPm =90Wcg = NaNWcp =1

K=10

>> num=[10];

den=[1,0];

G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G)

bode(num,den)

grid

title(′Bode Diagram ′)

G =10

--

s

Continuous-time transfer function. Gm =InfPm =90Wcg =NaNWcp =10.0000

(4)微分环节:Ks(K=1、K=10)K=1

>> num=[1,0];

den=[0,1];

G=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(G)

bode(num,den)

grid

title(′Bode Diagram ′)

G =s

Continuous-time transfer function.

Gm =InfPm =-90Wcg =NaNWcp =1

相关主题
相关文档
最新文档