高二数学余弦定理

正余弦定理练习题(答案)

1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 C .2 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) 或 3 或3 2 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) B .2 C. 3 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 15.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°, 航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.

高一数学知识点梳理最新五篇

高一数学知识点梳理最新五篇 高一数学知识点总结1 如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系? 平行或异面。 若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何? 无数条;平行。 如果直线a与平面α平行,经过直线a的平面β与平面α相 交于直线b,那么直线a、b的位置关系如何?为什么? 平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。 综上分析,在直线a与平面α平行的条件下我们可以得到什么 结论? 如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 高一数学知识点总结2 集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的 元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当 于集合的名字,没有任何实际的意义。 将拉丁字母赋给集合的方法是用一个等式来表示的,例如: A={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。 常用的有列举法和描述法。

1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……} 2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法 叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的 元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0 3.图示法(venn图)﹕为了形象表示集合,我们常常画一条封闭 的曲线(或者说圆圈),用它的内部表示一个集合。集合 自然语言常用数集的符号: (1)全体非负整数的集合通常简称非负整数集(或自然数集),记 作N;不包括0的自然数集合,记作N_ (2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数 集内也排除0的集,称负整数集,记作Z- (3)全体整数的集合通常称作整数集,记作Z (4)全体有理数的集合通常简称有理数集,记作Q。Q={p/q|p∈Z,q∈N,且p,q互质}(正负有理数集合分别记作Q+Q-) (5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-) (6)复数集合计作C集合的运算:集合交换律 A∩B=B∩AA∪B=B∪A集合结合律 (A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律 A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根 律集合 Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研 究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A 的元素个数记为card(A)。

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

高中数学必备知识点 正弦与余弦定理和公式

三角函数正弦与余弦的学习,在数学中只要记住相关的公式即可。日常考试 正弦和余弦的相关题目一般不会很难,是很多数学基础不是很牢的同学拿分的好题目。但对于有些同学来说还是很难拿分,那是为什么呢? 首先,我们要了解下正弦定理的应用领域 在解三角形中,有以下的应用领域: (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有 a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径) 其次,余弦的应用领域 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题 (3)相关结论: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径) (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA (5)a=bsinA/sinB sinB=bsinA/a 正弦、余弦典型例题 1.在△ABC中,∠C=90°,a=1,c=4,则sinA 的值为 2.已知α为锐角,且,则α的度数是() A.30° B.45° C.60° D.90° 3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是() A.75° B.90° C.105° D.120° 4.若∠A为锐角,且,则A=() A.15° B.30° C.45° D.60° 5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点, EF⊥BC,垂足为F,求sin∠EBF的值。

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

人教版高中数学高二-高考中的正、余弦定理

高考中的正、余弦定理 山西省盂县旧党校 马志君 045100 近几年高考题中常有正、余弦定理与平面向量、三角交汇解决问题,请看下面例示。 一、 求角、边 例1 (2007浙江理)已知△ABC 的周长为2+1,且sinA+sinB=2sinC , (1) 求边AB 的长(2)若△ABC 的面积为 61sinC ,求角C 的度数 分析:(1)由正弦定理求(2)由余弦定理求 解:(1)由题意及正弦定理,得 AB+BC+AC=2+1,BC+AC=2AB 两式相减,得AB=1 (2) 由△ABC 的面积 21BC ·AC ·sinC=61sinC 得BC ·AC=3 1 由余弦定理,得 cosC=BC AC AB BC AC ?-+2222=BC AC AB BC AC BC AC ?-?-+22)(22=2 1 所以C=60° 二、 求三角形周长的最值 例2 (2007全国II 理)在△ABC 中,已知内角A= 3π,边BC=23,设内角B=x ,周长为y (1) 求函数y=f (x )的解析式和定义域 (2) 求y 的最大值 分析:(1)要求y=f (x )的解析式,需由正弦定理求出AC 、AB (2)可由正弦、余弦的有界性求y 的最大值 解:(1)△ABC 的内角和A+B+C=π 由A=3 π,B >0,C >0,得0<B <32π,应用正弦定理,知 AC=A BC sin sinB=3 sin 32πsinx=4sinx AB=A BC sin sinC=4sin (3 2π-x ) 因为y=AB+BC+AC 所以y=4sinx+4sin (3 2π-x )+23 (2)因为y=4(sinx+23cosx+2 1sinx )+23 (0<x <32π)

《正弦定理和余弦定理》典型例题

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A =,30C =,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C =, ∴sin 10sin 45102sin sin 30c A a C ?= == ∴ 180()105B A C =-+=, 又sin sin b c B C =, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ?= ===?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60 o o a =,∴56a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ?= ==中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

不等式及均值定理单元测试题(一)

不等式及均值定理单元测试题(一) 一、选择题 1.若1a <1b <0,则下列不等式中不正确的是( ) A .a +b 2 C .ab 0,且P = a + b 2,Q =a +b ,则P ,Q 的大小关系是( ) A .P >Q B .P 1,-1x ≤1, 则不等式xf (x )-x ≤2的解集为( ) A.[]-2,2 B.[]-1,2 C.(]1,2 D.[]-2,-1∪(]1,2 8.某金店用一杆不准确的天平(两臂不等长)称黄金,某顾客要买10 g 黄金,售货员先将 5 g 的砝码放入左盘,将黄金放于右盘使之平衡后给顾客;然后又将5 g 的砝码放入右盘,将另一黄金放入左盘使之平衡后又给顾客,则顾客实际所得黄金( ) A .大于10 g B .小于10 g

高二数学正弦余弦定理测试题

余弦定理训练题 1.在△ABC中,已知a=4,b=6,C=120°,则边c的值是() A.8B.217 C.62 D.219 解析:选D.根据余弦定理,c2=a2+b2-2abcos C=16+36-2×4×6cos 120°=76,c=219. 2.在△ABC中,已知a=2,b=3,C=120°,则sin A的值为() A.5719 B.217 C.338 D.-5719 解析:选A.c2=a2+b2-2abcos C =22+32-2×2×3×cos 120°=19. ∴c=19. 由asin A=csin C得sin A=5719. 3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________. 解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a22?2a?2a=78. 答案:78 4.在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状. 解:法一:根据余弦定理得 b2=a2+c2-2accos B. ∵B=60°,2b=a+c, ∴(a+c2)2=a2+c2-2accos 60°, 整理得(a-c)2=0,∴a=c. ∴△ABC是正三角形. 法二:根据正弦定理, 2b=a+c可转化为2sin B=sin A+sin C. 又∵B=60°,∴A+C=120°, ∴C=120°-A, ∴2sin 60°=sin A+sin(120°-A), 整理得sin(A+30°)=1, ∴A=60°,C=60°. ∴△ABC是正三角形. 课时训练 一、选择题 1.在△ABC中,符合余弦定理的是() A.c2=a2+b2-2abcos C B.c2=a2-b2-2bccos A C.b2=a2-c2-2bccos A D.cos C=a2+b2+c22ab 解析:选A.注意余弦定理形式,特别是正负号问题. 2.(2011年合肥检测)在△ABC中,若a=10,b=24,c=26,则最大角的余弦值是() A.1213 B.513 C.0 D.23

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

正余弦定理及面积

第15课时 解三角形-2 1.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足4)(22 =-+c b a ,且C=60°,则ab 的值为( ) A . 34 B .348- C . 1 D . 3 2 2.△ABC 的三个内角A ,B ,C 所对的边分别为c b a ,,,a A b B A a 2cos sin sin 2=+,则 =a b (A ) (B ) ( C (D 3.已知2 10 cos 2sin ,= +∈αααR ,则=α2tan A. 34 B. 43 C.43- D.3 4- 4.在△ABC 中, ,3,4 AB BC ABC π ∠==则sin BAC ∠ = 5.在锐角中ABC ?,角,A B 所对的边长分别为,a b .若2sin ,a B A 则角等于 A. 12 π B.6π C. 4 π D.3π 6.△ABC 的内角A 、B 、C 的对边分别为c b a ,,.己知A —C=90°,b c a 2=+,求 C . 7.在ABC ?中,内角A ,B ,C 的对边分别为c b a ,,已知. b a c B C A -= -2cos cos 2cos (I )求 A C sin sin 的值; (II )若2,41cos ==b B ,求ABC ?的面积S 。 8.已知,,a b c 分别为ABC ?三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A (2)若2a =,ABC ?的面积为3;求,b c . 9.在?ABC 中,内角A ,B ,C 的对边分别为c b a ,,.已知cos A = 2 3 ,sin B C . (Ⅰ)求tan C 的值; (Ⅱ)若a ?ABC 的面积. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 。已知 (1)求证: (2)若ABC 的面积。 11.三角形ABC 的内角A 、B 、C 的对边分别为c b a ,,,已知c a B C A 2,1cos )cos(==+-,求C. 12.在△ABC 中,62,3==b a ,A B 2= (I)求A cos 的值; (II)求c 的值. ,sin()sin()444 A b C c B a π ππ =+-+=2B C π -= a =

三垂线定理

三垂线定理 教学目标: 1.掌握三垂线定理及其逆定理的证明 2.正确地运用三垂线定理或逆定理证明两直线垂直 3.通过三垂线定理及三垂线逆定理的学习,渗透相对论观点 教学重点:三垂线定理及其逆定理的证明 教学难点:用三垂线定理及其逆定理证明两条异面直线的垂直 教学方法:启发式教学法 教 具:模具 教学过程 一、复习引入: 1.直线与平面垂直的定义: 2.直线与平面垂直的判定定理: 3.平面的斜线,斜线在平面内的射影: 4.引入:若平面内一条直线与斜线的射影垂直,那么它和斜线垂直吗? 二、新授: 1.三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 已知:,PO PA 分别是平面α的垂线和斜线,OA 是PA 在平面α内的射影,a α?,且a OA ⊥ 求证:a PA ⊥; 证明:∵PO α⊥ ∴PO a ⊥,又∵,a OA PO OA O ⊥= ∴a ⊥平面POA , ∴a PA ⊥. 说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系; (2)符号表达:,,PO O PA A a PA a a OA αααα⊥∈??=?⊥???⊥? . (3)这两条直线可以是相交直线,也可以是异面直线. 2.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 说明:符号表达: ,,PO O PA A a AO a a AP αααα⊥∈??=?⊥???⊥? . 注意:(1)三垂线指涉及的四线中三个垂直关系PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 (2)要考虑a 的位置,并注意两定理交替使用 (3)注意三垂线定理及其逆定理中的“平面内”三个字的重要性.

正弦定理知识点与典型例题

正弦定理 【基础知识点】 1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==2 1ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/2 2.三角形中的边角不等关系: A>B ?a>b,a+b>c,a-bb 时有一解. 也可利用正弦定理a A b B sin sin =进行讨论. 如果sinB>1,则问题无解;如果sinB =1,则问题有一解; 如果求出sinB<1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”

均值定理专题归纳与训练.doc

均值不等式的应用 一.均值不等式 1. ( 1)若 a,b R ,则 a 2 b 2 2ab (2) 若 a, b R ,则 ab a 2 b 2 (当且仅当 a b 时取“ =”) 2 2. (1) 若 a, b R * ,则 a b ab (2) 若 a,b R * ,则 a b 2 ab (当且仅当 a b 时取“ =”) 2 * a b (3) 若 a,b R ,则 ab 2 2 ( 当且仅当 a b 时取“ =”) 3. 若 x ,则 x 1 2 ( 当且仅当 x 1时取“ =”) ; 若 x 0 ,则 x 1 2 ( 当且仅当 x 1 时取“ =”) ; x x 若 x 0 1 2即 x 1 1 b 时取“ =”) ,则 x 2或 x -2 ( 当且仅当 a x x x 4. 若 ab 0 ,则 a b 2 ( 当且仅当 a b 时取“ =”)若 ab 0 ,则 a b 2即 a b 2或 a b -2(当 b a b a b a b a 2 2 且仅当 a b 时取“ =”) 5. 若 a,b 2 a b (当且仅当 a b 时取“ =”) R ,则 ( a b ) 2 2 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所 谓“积定和最小,和定积最大” . ( 2)求最值的条件“一正,二定,三取等” (3) 均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例 1:求下列函数的值域 (1) 2 1 1 y =3x + x 2 (2)y =x +x 2 技巧一:凑项 例 2:已知 x 5 ,求函数 y 4x 2 1 的最大值 . 4 4 x 5 技巧二:凑系数 例 3. 当 时,求 y x(8 2x) 的最大值 . 变式:设 0 x 3 ,求函数 y 4x(3 2x) 的最大值 . 2 技巧三: 分离 例 4. 求 y x 2 7x 10 ( x 1) 的值域 . x 1 技巧四:换元 求 y x 2 7 x 10 ( x 1) 的值域 . x 1 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数 f ( x) x a 的单调性。 x 例 5:求函数 y x 2 5 的值域 . x 2 4 练习. 1. 求下列函数的最小值,并求取得最小值时, x 的值 . x 2 3x 1 0)() y 2x 1 , x 3 (3) y 2sin x 1 , x (0, ) (1) y ,( x x 2 x 3 sin x

高中数学必修5正余弦定理教案

高中数学必修5正余弦定理教案 ●教学目标 (一)知识目标 1.三角形的有关性质; 2.正、余弦定理综合运用. (二)能力目标 1.熟练掌握正、余弦定理应用; 2.进一步熟悉三角函数公式和三角形中的有关性质; 3.综合运用正、余弦定理、三角函数公式及三角形有关性质求解三角形问题. (三)德育目标 通过正、余弦定理在解三角形问题时沟通了三角函数与三角形有关性质的功能,反映了事物之间的内在联系及一定条件下的相互转化. ●教学重点 正、余弦定理的综合运用. ●教学难点 1.正、余弦定理与三角形性质的结合; 2.三角函数公式变形与正、余弦定理的联系. ●教学方法 启发式 1.启发学生在求解三角形问题时,注意三角形性质、三角公式变形与正弦、余弦定理产生联系,从而综合运用正弦、余弦定理达到求解目的; 2.在题设条件不是三角形基本元素时,启发学生利用正、余弦建立方程,通过解方程组达到解三角形目的. ●教具准备 投影仪、幻灯片

第二张:例题1、2(记作§5.9.4 B) Ⅰ.复习回顾 师:上一节课,我们一起研究了正、余弦定理的边角转换功能在证明三角恒等式及判断三角形形状时的应用,这一节,我们将综合正、余弦定理、三角函数公式及三角形有关性质来求解三角形问题.首先,我们一起回顾正、余弦定理的内容(给出投影片§5.9.4 A). Ⅱ.讲授新课 师:下面,我们通过屏幕看例题.(给出投影片§5.9.4 B) [例1]分析:由于题设条件中给出了三角形的两角之间的关系,故需利用正弦定理建立边角关系.其中sin2α利用正弦二倍角展开后出现了cos α,可继续利用余弦定理建立关于边长的方程,从而达到求边长的目的. 解:设三角形的三边长分别为x,x+1,x+2,其中x∈N*,又设最小角为α,则 α αααcos sin 222sin 2sin ?+=+=x x x x x 22cos +=∴α① 又由余弦定理可得x2=(x+1)2+(x+2)2-2(x+1)(x+2)cos α② 将①代入②整理得: x2-3x-4=0 解之得x1=4,x2=-1(舍) 所以此三角形三边长为4,5,6. 评述: (1)此题所求为边长,故需利用正、余弦定理向边转化,从而建立关于边长的方程; (2)在求解过程中,用到了正弦二倍角公式,由此,要向学生强调三角公式的工具性作用,以引起学生对三角公式的重视. [例2]分析:由于题设条件中已知两边长,故而联想面积公式S△ABC = 2 1AB ·AC ·sin A ,需求出sin A ,而△ABC 面积可以转化为S△ADC +S△ADB ,而S△ADC =21AC ·AD sin 2 A ,S△AD B =21AB ·AD ·sin 2A ,因此通过S△AB C =S△ADC +S△ADB 建立关于含有sin A ,sin 2A 的方程,而

正弦定理余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b =

相关文档
最新文档