大工14秋《新能源发电》大作业题目及要求

大工14秋《新能源发电》大作业题目及要求
大工14秋《新能源发电》大作业题目及要求

大工14秋《新能源发电》大作业题目及要求

网络教育学院《新能源发电》课程设计

题目:海洋能的利用

学习中心:开化电大

层次:专科起点本科

专业:电气工程及其自动化

年级: 2013年春季

学号: 131542309083

学生:江晓波

辅导教师:康永红

完成日期: 2015年 03 月04日

海洋能的利用

一、海洋能的利用历史和现状

在大海中,真正最有力量的,并不是那些看起来气势汹汹的波涛,而是默默无声地蕴藏在海水中的热能。同样面积的海洋要比陆地多吸收10%~20%的热量,海水的热容量比土层大两倍,比花岗岩大五倍,比空气大3100多倍,因此海洋成了地球上吸收太阳能的最大热库。

早在19世纪就有人提出过海水温差发电的设想,经过科学家们的多年研究,1926年11月15日,在实验室里首次研究成功海洋的温差发电。但世界上第一座试验性海水温差发电厂直到1979年8月才在美国夏威夷问世。这座电厂的发电能力为50千瓦,它设在一艘驳船上。同年8~12月作了试发电。这次发电成功表明,海水温差发电将很快具备商业价值。

海洋是全世界最大的太阳能收集器,6000万平方公里的热带海洋一天吸收的太阳辐射能,相当于2500亿桶石油的热能。如果将这些储热的1%转化成电力,也将相当于有140亿千瓦装机容量,为美国现今发电能力的20倍以上。

海洋能利用最早是从利用潮汐能开始的。11世纪就出现了潮汐磨坊。1966年法国建成朗斯潮汐电站,装机容量24万千瓦,是目前世界上规模最大的潮汐能发电站(见彩图)。1981年中国江厦潮汐试验电站第一台 500千瓦机组正式投产。世界第一个波能转换装置的专利是法国于1779年取得的。1965年,日本研制用于航标灯的波力发电装置获得成功。现在日本、英国、挪威和中国等国家正在进行多种波力发电试验研究,其中较大型的是日本等 5国在日本海试验的“海明号”波力发电船,第一期试验年发电量19万度,并初步成功地把电力输送到了岸上。日本还建立了岸式波力发电试验站。中国研制出采用对称翼型空气涡轮机的新型波力发电装置,装在南海海域航标灯浮上试用。1881年法国人首先提出海水温差能利用的原理。20世纪70年代以来,美国用在研究海洋热能转换的经费在世界上占居首位。1979年,美国在夏威夷岛海域驳船上进行了50千瓦装机容量海水温差发电试验。其后,日本在瑙鲁岛建立岸式试验性海水温差电站,装机容量100千瓦。

二、海洋能资源的分布及特点。

1、海洋温差发电

是以非共沸介质(氟里昂-22与氟里昂-12的混合体)为媒质,输出功率是以前的1.1~1.2倍。一座75千瓦试验工厂的试运行证明,由于热交换器采用平板装置,所需抽水量很小,传动功率的消耗很少,其他配件费用也低,再加上用计算机控制,净电输出功率可达额定功率的70%。一座3000千瓦级的电站,每千瓦小时的发电成本只有50日元以下,比柴油发电价格还低。人们预计,利用海洋温差发电,如果能在一个世纪内实现,可成为新能源开发的新的出发点。

2、潮汐发电

汹涌澎湃的大海,在太阳和月亮的引潮力作用下,时而潮高百丈,时而悄然退去,留下一片沙滩。海洋这样起伏运动,日以继夜,年复一年,是那样有规律,那样有节奏,好像人在呼吸。海水的这种有规律的涨落现象就是潮汐。

潮汐发电就是利用潮汐能的一种重要方式。据初步估计,全世界潮汐能约有10亿多千瓦,每年可发电2~3万亿千瓦时。我国的海岸线长度达18000千米,据1958年普查结果估计,至少有2800万千瓦潮汐电力资源,年发电量最低不下700亿千瓦时。

世界著名的大潮区是英吉利海峡,那里最高潮差为14.6米,大西洋沿岸的潮差也达4~7.4米。我国的杭州湾的"钱塘潮"的潮差达9米。

据估计,我国仅长江口北支就能建80万千瓦潮汐电站,年发电量为23亿千瓦时,接近新安江和富春江水电站的发电总量;钱塘江口可建500万千瓦潮汐电站,年发电量约180多亿千瓦时,约相当于10个新安江水电站的发电能力。

早在12世纪,人类就开始利用潮汐能。法国沿海布列塔尼省就建起了"潮磨",利用潮汐能代替人力推磨。随着科学技术的进步,人们开始筑坝拦水,建起潮汐电站。

法国在布列塔尼省建成了世界上第一座大型潮汐发电站,电站规模宏大,大坝全长750米,坝顶是公路。平均潮差8.5米,最大潮差13.5米。每年发电量为5.44亿千瓦时。

我国解放后在沿海建过一些小型潮汐电站。例如,广东省顺德县大良潮汐电站(144千瓦)、福建厦门的华美太古潮汐电站(220千瓦)、浙江温岭的沙山潮汐电站(40千瓦)及象山高塘潮汐电站(450千瓦)

我国可开发潮汐能资源主要在福建和浙江两省,占全国的88.6%,

在潮汐能利用上,我国与世界各国一样,尚处在试验阶段。虽然我国从1958年开始利用潮汐建设一些小发电站,但因当时技术条件所限,质量较差,大部

分已报废拆除。我国已建成的最大的潮汐电站是浙江乐清县的江厦潮汐电站,装机容量3100千瓦,年发电量1070万千瓦时,已全部投产发电;其次为山东乳山县白沙口潮汐电站,设计装机容量960千瓦,年发电量191万千瓦时,已有2台机组共160千瓦并网发电。

我国潮汐能资源理论蕴藏量占世界各国的3.7%,而可开发潮汐能资源按年发电量计算占世界各国的34%~44%。可见我国潮汐能资源的可开发程度很高,开发条件比较好。

展望未来,潮汐发电具有诱人的前景。相信不久的将来咆哮的海潮将会被人类充分利用,从而得到电力和别的好处。

3、波力发电

"无风三尺浪"是奔腾不息的大海的真实写照。海浪有惊人的力量,5米高的海浪,每平方米压力就有10吨。大浪能把13吨重的岩石抛至20米高处,能翻转1700吨重的岩石,甚至能把上万吨的巨轮推上岸去。

三、对海洋能的利用发展趋势的展望。

海浪蕴藏的总能量是大得惊人的。据估计地球上海浪中蕴藏着的能量相当于90万亿千瓦时的电能。

海洋能的利用目前还很昂贵,以法国的朗斯潮汐电站为例,其单位千瓦装机投资合1500美元(1980年价格),高出常规火电站。但在海洋能利用的过程中,还能获得其他综合效益。如潮汐电站的水库能兼顾水产养殖、交通运输;海洋热能转换装置获得的富含营养盐深层海水,可用于发展渔业;开路循环系统能淡化海水和提取含有用元素的卤水;大型波力发电装置可同时起到消波防浪,保护海港、海岸、海上建筑物和水产养殖场等的效果。目前在严重缺乏能源的沿海地区(包括岛屿),把海洋能作为一种补充能源加以利用还是可取的。

随着世界能源需求的日益增长和海洋能利用技术的提高,从长远看,海洋能的利用将成为世界新能源的重要方面。

四、总结

中国利用海洋能是从潮汐能开始的,在沿海已建成一些潮汐发电站,其中建在浙江乐清湾内的江厦港电站是中国最大的潮汐发电站,也是世界上第三大潮汐发电站,80年代以来获得较快发展,航标灯浮用微型潮汐发电装置已趋商

品化,与日本合作研制的后弯管型浮标发电装置,已向国外出口,该技术属国际领先水平。在珠江口大万山岛上研建的岸边固定式波力电站,第一台装机容量3KW的装置,1990年已试发电成功。

中国潮流发电研究始于20世纪70年代末,首先在舟山海域进行了8KW潮流发电机组原理性试验。温差发电研究始于20世纪80年代初,国家海洋局第一海洋研究所在“十一五”期间重点开展了闭式海洋温差能利用的研究,完成了海洋温差能闭式循环的理论研究工作,并完成了250W小型温差能发电利用装置的方案设计。进入21世纪尤其是十八大以来,随着传统能源的不断枯竭以及环保的压力,海洋能的利用将成为我国新能源发展的重要项目。

大工《新能源发电》大作业参考题目及要求【内容仅供参考】727

网络教育学院《新能源发电》课程设计 题目:分布式发电技术

分布式发电技术特点 目前,对于DG还没有统一的定义。有文献指出,DG是指靠近负荷侧安装某些中小型发电站,它既可以独立于公共电网直接为少量用户提供电能,也可以将其接入配电网络,与公共电网一起为用户提供电能[2-7]。也有文献指出,DG是指功率从几十kW到几百kW,模块式的、分布在负荷附近的清洁环保发电设施,能够经济、高效、可靠地发电。与远离负荷中心依靠远距离输配的传统电源相比,DG具有如下特点: 1)节能环保, 污染小。由于DG大量采用可再生能源和清洁能源(如风力发电、太阳能发电和生物能源发电等),因而相对火力发电更加环保。2)提高电网的可靠性。由于DG装置与大电网的接入和断开具有相对自主性,当大电网发生故障时,可通过启动断开装置使DG与电网断开,由DG独立为用户供电。 3)投资少, 安装和运营具有更高的灵活性。由于容量及体积均较小,因此易于找到合适的安装地点,可以方便地为边远地区供电。同时,分布式电源多采用性能先进的中小型、微型机组,操作简单,负荷调节灵活[10]。。 1. 布式发电技术及分类 分布式发电系统将各种不同形式的能源转换为电能加以利用。不同的研究领域有不同的分类方法,如按照DG的发电技术可分为:光伏发电、风力发电、微型燃气轮机发电、生物质能发电、燃料电池发电等;根据DG与电力系统并网连接方式可分为直接与系统相联的机电式和通过逆变器与系统相联2大类[11]。下面就几种常用的DG技术进行介绍。 1. 太阳能发电技术 太阳能光伏发电技术利用半导体材料的光伏效应,将太阳光辐射能直接转换为电能[12-13]。太阳能光伏发电根据是否并网可以分为独立运行系统和并网运行光伏系统。独立运行的光伏发电系统需要蓄电池作为储能装置,主要用于无电网的边远地区和人口分散地区,如牧场的牧民以及高原地区的移动基站等。在有

大工秋工程水文学离线作业

大工秋工程水文学离线 作业 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

网络教育学院 《工程水文学离线作业》 题目:同频率放大法计算设计洪水过程线 学习中心:云南曲靖兴源职业学校奥鹏学习中 心专业:水利水 电工程 年级: 16年秋季 学号: 学生:杨鹏帆 指导教师:

1 基本知识 典型洪水过程线的选取与推求 仅有设计洪峰流量和设计洪水量还难以确定水库的防洪库容和泄水建筑物的尺寸,这是因为洪峰流量出现的迟早和洪量集中的程度不同,即洪水过程线形状的不同,会得到不同的设计防洪库容和最大泄量。 因此,设计洪水过程线亦是设计洪水的一个不可缺的重要内容。设计洪水过程线指符合某一设计标准的洪水过程线,生产实践中一般采用放大典型洪水过程线的方法。 思路:先从实测资料中选取一场典型洪水过程,然后按设计洪峰流量、设计洪量进行放大,即得设计洪水过程线。 选择资料完整精度较高且洪峰流量和洪量接近设计值的实测大洪水过程线; 具代表性,洪水发生季节、洪水的历时、峰量关系、主峰位置、峰型等均能代表该流域较大洪水特性的实测洪水过程; 选择对工程防洪不利的典型洪水过程线,尽量选择峰高量大的洪水,而且峰型集中,主峰靠后的过程。 放大方法 同倍比放大法 用同一放大系数放大典型洪水过程线,以求得设计洪水过程线的方法。该法的关键是确定以谁为主的放大倍比值,有以下两种方法: 以洪峰流量控制的同倍比放大法(以峰控制) 适合于无库容调节的工程设计,如桥梁、涵洞及排水沟及调节性能低的水库等。 以洪量控制的同倍比放大法(以量控制) 适合于蓄洪为主的工程设计,如调节性能高的水库,分洪、滞洪区等。 放大倍比按上述方法求到后,以放大倍比乘实测的典型洪水过程线的各纵坐标,即得设计洪水过程线。该法简单易行,能较好地保持典型洪水过程的形态。 但该法使得设计洪水过程线的洪峰或洪量的设计频率不一致,这是由于两种放大倍比不同(KQm ?KW )造成的。如按KQm放大后的洪水过程线所对应的时段洪

大工15秋《钢筋混凝土结构课程设计》离线作业满分答案

网络教育学院 《钢筋混凝土结构课程设计》 题目:整体式单向板肋梁厂房单向板设计 学习中心:奥鹏远程教育沈阳学习中心(直属)[32]VIP 专业:土木工程 年级: 15年秋季 学号: 141513403925 学生:吴占宝 指导教师:

1 基本情况 本章需简单介绍课程设计的内容,包括厂房的尺寸,板的布置情况等等内容。 1、工程概况 某某高新园区科技园某小区住宅,设计使用年限为50年,住宅小区采用砖混结构,楼盖要求采用整体式单向板肋梁楼盖。墙厚370mm,柱为钢筋混凝土柱,截面尺寸为400400 ?。 mm mm 2、设计资料 (1)楼板平面尺寸为19.833 ?,如下图所示: m m 图2.1 楼板平面图 (2)楼盖做法详图及荷载 图2.2 楼盖做法详图

楼面均布活荷载标准值为:7kN/m2 楼面面层用20mm厚水泥砂浆抹面,γ=20kN/m3, 板底及梁用20mm厚混合砂浆天棚抹底,γ=17kN/m3 楼盖自重即为钢筋混凝土容重,γ=25KN/m3 ④恒载分项系数1.2;活荷载分项系数为1.3(因工业厂房楼盖楼面活荷载标 准值大于4kN/m2) ⑤材料选用 混凝土:C25 钢筋:梁中受力纵筋采用HRB335级钢筋;板内及梁内的其它钢筋可以采用HPB235级。

2 单向板结构设计 2.1 板的设计 2.1.1 荷载 板的永久荷载标准值 80mm 现浇钢筋混凝土板 0.08×25=2 kN/m 2 20mm 厚水泥砂浆抹面 0.02×20=0.4 kN/m 2 20mm 厚混合砂浆天棚抹底 0.02×17=0.34 kN/m 2 小计 2.74 kN/m 2 楼面均布活荷载标准值 7 kN/m 2 永久荷载分项系数取1.2,因工业厂房楼盖楼面活荷载标准值大于4kN/m 2 ,所以活荷载分项系数取1.3。于是板的荷载总计算值: ①q=G γk g +?Q γk q =1.2×2.74+0.7×1.3×7=9.658kN/m 2 ②q=G γk g +Q γk q =1.2×2.74+1.3×7=12.388kN/m 2 由于②>①,所以取②q=12.388kN/m 2 ,近似取q=12kN/m 2 2.1.2 计算简图 次梁截面为200mm ×500mm ,现浇板在墙上的支承长度不小于100mm ,取板在墙上的支承长度为120mm 。按塑性内力重分布设计,板的计算跨度: 边跨0l =n l +h/2=2200-100-120+80/2=2020mm<1.025n l =2030mm ,取0l =2020mm 中间跨0l =n l =2200-200=2000mm 因跨度相差小于10%,可按等跨连续板计算。取1m 宽板带作为计算单元,计算简图如图所示: 图2.5 板计算简图

大连理工大学网络教育学院《管理学》课程大作业满分

网络教育学院《管理学》课程大作业 学习中心: 层次: 专业: 年级: 学号: 姓名: 完成日期:

大工20春《管理学》大作业及要求 第一部分: 注意:请从以下题目中任选其一作答! 题目一:谈谈如何正确理解管理既是一门科学又是一门艺术。在实践工作中如何运用这一基本原理? 题目二:谈谈现代管理理论中具有代表性的管理理论学派的主要思想。 题目三:不同层次的管理者在应具备的技能上有何侧重?请举例说明。题目四:试述影响集权与分权的因素。 题目五:结合实际论述领导者应具备的用人艺术。 题目三:不同层次的管理者在应具备的技能上有何侧重?请举例说明。 答:管理者分为高层管理者、中层管理者、基础管理者。不同层次的管理者都应该具备技术技能、人际技能和概念技能。只是有不同的侧重点。技术技能:对于基层管理者最重要,对于中层管理者较重要,对于高层管理者不重要。人际技能:对于任何层次的管理者都重要。概念技能:对于高层管理者最重要,对于

中层管理者较重要,对于基层管理者不重要。 比如一个房地产企业,高层管理者为总裁、副总裁、股东等等。他们制定和实施公司总体战略,完成董事会下达的年度经营目标,按照发展战略开展具体的经营工作,负责建设高效的组织团队等;中层管理者为项目经理,区域经理等,他们按照高层管理者战略要求,负责或协助基础管理者工作,发挥着承上启下作用。房产开发项目经理,房产销售经理等都要保证各个项目顺利进行,努力完成高层的要求。基层管理者为房地产开发包工头,销售主管主要负责管理他们的团队,让作业人员能顺利开展工作。本身要求自己要熟悉这块业务,才能给底下员工更多的指导与帮助。包工头对于建设商品房的每个环节都要很熟悉,能控制成本,及时完工。销售主管管理好销售团队,做好每天日常考勤、仪表、销售报表等。 第二部分: 学习心得 通过管理学这个课程,我深刻地意识到一个企业的成功离不开每个管理者,而每个管理者必须具备相应的管理技能。认识了管理在企业中的重要性。 一个好的管理者能让企业迅速发展,管理层制定的管理决策影响整个企业的未来。比如华为集团,他们凭什么在手机行业瑶瑶领先?不管是高层的决策,中层的实施,基层的管理都很到位。领先专业技术管理、狠抓业务,带好团队。一个不称职的管理者会让企业走向末路,比如10年前的“三鹿奶粉事件”,他们为了利益,不顾产品质量管理。作为管理者必须要加大对企业内管质量人员的教育力度,使他们认识到质量就是企业的生命,质量问题是企业最大的灭亡隐患。杜绝不合格的奶制品在商业腐败中流向市场。 管理学同样与我们息息相关,管理是一切组织的根本,管理工作适用于各种大小规模的组织;盈利与非盈利的企事业单位、制造业以及服务性行业;因此,学好管理学对于我们现在的工作岗位都有其非常重要的意义。目前我们公司绩效管理和有效的激励机制很符合管理者的要求,我一定要学好管理学这个课程。

大工14春《新能源发电》15

新能源发电辅导资料十五 主题:第九章互补发电与综合利用(第1-2节) 学习时间:2014年7月7日—7月13日 内容: 我们这周主要学习互补发电与综合利用(第1-2节) 一、学习要求 了解互补发电的概念和特点; 了解常见的互补发电技术; 了解能源综合利用的概念和方式; 理解互补发电与综合利用的意义和发展前景。 二、主要内容 第一节互补发电的概念和特点 (一)互补发电的概念 新能源发电技术有多样性,而且其变化规律不同,多种电源联合运行,各种发电方式在一个系统内互为补充,通过其协调配合来提供稳定可靠的、质量合格的电力,这就是互补发电,既提高可再生能源的可靠性,也可提高能源的综合利用率。 (二)互补发电的特点 1、可再生能源既可充分发挥优势,又能克服本身不足。取自天然、分布广泛、清洁环保等优点仍能体现,季节性、气候性变动造成的能量波动,可以改善。

2、对多种能源协调利用,可提高能源的综合利用率。 3、电源供电质量的提高,对补偿设备的要求降低。单一发电,波动和间歇明显,需大量储能或补偿装置;互补运行,会因相互抵消,降低储能或补偿要求。 4、合理的布局和配置,可充分利用土地和空间。可在有限的面积和空间内最大限度地获取能源。获取相同能量,需占用的土地和空间可大大减少。 5、共用送变电设备和人员,可降低成本,提高运行效率。 多个分散电源统一输配和集中管理,可共用设备和人员,减少建设和运行成本。总的发电能力增加,可降低平均运行维护成本。 第二节风能-太阳能互补发电 (一)风-光互补的基础 我国属季风气候区,很多地区风能和太阳能有天然的季节互补性(分析具体情况),适合采用风-光互补发电系统。 在一些边远农村地区,风能资源丰富,且太阳能资源充足,联合发电运行是解决供电问题的有效途径。 应根据用电情况和资源条件进行容量的合理配置,可共用储能装置和供电线路等。 (二)风-光互补发电系统的结构和配置 风-光互补发电系统,一般由风电机组、光伏电池组、储能装置、电力变换装置、直流母线及控制器等部分构成,向各种直流或交流用电负载供电。风-光互补发电系统的结构示意图如下:

大工《土木工程实验》离线作业

姓名: 报名编号: 学习中心: 层次:(高起专或专升本) 专业: 实验名称:混凝土实验 一、实验目的: 1.熟悉混凝土的技术性质和成型养护方法;2.掌握混凝土拌合物工作性的测定和评定方法;3.通过检验混凝土的立方体抗压强度,掌握有关强度的评定方法。二、配合比信息: 1.基本设计指标 (1)设计强度等级C30 (2)设计砼坍落度 30—50mm 2.原材料 (1)水泥:种类 P.C 强度等级 32.5MPa (2)砂子:种类河沙细度模数 2.6 (3)石子:种类碎石粒级 5-31.5mm连续级配 (4)水:洁净的淡水或蒸馏水 3.配合比:(kg/m3) 三、实验内容: 第1部分:混凝土拌合物工作性的测定和评价 1、实验仪器、设备:电子称、量筒、坍落度筒、拌铲、小铲、捣棒、拌合板、金属底板等用具。 2、实验数据及结果

第2部分:混凝土力学性能检验 1、实验仪器、设备:标准试模振动台压力试验机标准养护室 2、实验数据及结果 四、实验结果分析与判定: (1)混凝土拌合物工作性是否满足设计要求,是如何判定的? 坍落度为40mm,,在30-50mm标准范围内,混凝土拌合物的粘聚性、保水性良好,满足设计要求。 (2)混凝土立方体抗压强度是否满足设计要求。是如何判定的? 抗压强度代表值为38.4 MPa,该组试件的抗压强度大于38.2 MPa,故所测混泥土强度满足设计要求。 实验名称:钢筋混凝土简支梁实验 一、实验目的: 1.通过对钢筋混凝土梁的承载力、应变、挠度及裂缝等参数的测定,熟悉钢筋混凝土受弯构件正截面破坏的一般过程及其特征,加深对书本理论知识的理解。2. 进一步学习常规的结构实验仪器的选择和使用操作方法,培养实验基本技能。3. 掌握实验数据的整理、分析和表达方法,提高学生分析与解决问题的能力。 二、实验基本信息: 1.基本设计指标 (1)简支梁的截面尺寸150mm X200mm (2)简支梁的截面配筋(正截面) 150mm X200mm X1200mm 2.材料 (1)混凝土强度等级 C30 (2)钢筋强度等级 HRB335 三、实验内容: 第1部分:实验中每级荷载下记录的数据

(完整版)大工14春《新能源发电》13

新能源发电辅导资料十三 主题:第八章氢能与燃料电池(第1-3节) 学习时间:2014年6月23日—6月29日 内容: 我们这周主要学习氢能与燃料电池(第1-3节) 一、学习要求 了解氢和氢能的特点及其利用情况, 掌握主要的氢的制取和储存方式, 了解燃料电池的工作原理和主要类型, 理解燃料电池的特点和应用价值。 二、主要内容 第一节氢能与燃料电池 (一)氢和氢能 氢在元素周期表中排在首位,是已知最轻的元素。标准状态下,氢气为无色无味的气体,密度是空气的1/14.5。 氢是宇宙中最丰富的元素,在地球上的含量排第三。除了空气中的少量氢气,绝大部分氢元素都以化合物形态存在,主要存在水中。 若把全球水中的氢都提炼出来,约有15亿亿吨,所产生的热量是地球上化石燃料的9000倍。 (二)氢能及其利用方式 氢能主要是指氢元素燃烧、发生化学反应或核聚变时释放的能量。

利用氢能的方式很多,包括: -直接作为燃料提供热能或在热力发动机中做功; -制造燃料电池,在催化剂作用下进行化学反应生产电能; -利用氢的热核反应释放出核能;等等。 (1)氢燃料 氢的含热量很高,燃烧时释放热量>140MJ/kg。 氢气燃烧性能好,点燃快,燃点高,混入4%~74%的空气时仍能稳定燃烧。 氢是最清洁的燃料,燃烧后只生成水和微量的氮化氢。氮化氢经适当处理后也不污染环境。 将来,氢有可能取代石油,成为使用最广泛的燃料之一。 (2)氢的核聚变 氢的核能利用,理论基础是爱因斯坦的相对论。发生质量亏损时释放出的能量为E = mc2。 氢的核聚变能量比铀原子核裂变释放的能量大若干倍。且核聚变过程中没有放射性,对环境无污染。 一旦受控的氢核聚变获得成功,人类的能源与环境问题将得到根本的解决。 (3)氢燃料电池 氢能可以输送、储存、大规模生产并且能再生利用,基本无污染,具有无可比拟的潜在开发价值。 (三)氢能的应用历史 16世纪就有人在金属与酸的反应中得到过氢气。 1766年有论文详细介绍了氢气的制备方法和性质。

大连理工离线作业《可编程控制器》

网络教育学院《可编程控制器》大作业 题目:十字路口交通灯控制设计 学习中心:] 层次:高起专 专业:电力系统自动化技术 年级: 1 6年秋季 学号: 学生姓名:

题目五:十字路口交通灯控制设计 起动后,南北红灯亮并维持30s。在南北红灯亮的同时,东西绿灯也亮,东西绿灯亮25s 后闪亮,3s后熄灭,东西黄灯亮,黄灯亮2s后,东西红灯亮,与此同时,南北红灯灭,南北绿灯亮。南北绿灯亮25s后闪亮,3s后熄灭,南北黄灯亮,黄灯亮2s后,南北红灯亮,东西红灯灭,东西绿灯亮。依次循环。 十字路口交通灯控制示意图及时序图如下图所示。 设计要求:(1)首先对可编程序控制器(PLC)的产生与发展、主要性能指标、分 类、特点、功能与应用领域等进行简要介绍; (2)设计选用西门子S7-200 系列PLC,对其I/O口进行分配,列出 PLC控制程序(梯形图进行截图,语句表可直接拷贝)并对程序作 出解释; (3)总结:需要说明的问题以及设计的心得体会。 十字路口交通灯控制设计

摘要 随着汽车进入家庭步伐的加快和城市汽车数量的增多,城市道路交通问题显得越来越重要。解决好十字路口交通信号灯控制问题是保障交通有序、安全、快速运行的重要环节。但现有的十字路口交通信号灯控制系统大都采用继电器或单片机实现,且都是单一的固有时序控制,不能够根据实际路面车流量情况进行调节控制,存在着功能少、可靠性差、维护量大等缺点。为了弥补原交通信号灯系统存在的种种缺点,本文设计了基于PLC控制的交通信号灯控制系统。该系统选用的可编程逻辑控制器是德国西门子公司的S7-200,具有一定的智能性,即可以根据路面车流量大小对十字路口的交通信号灯按高峰期、正常期和晚间几个时段进行分时控制。 1 设计背景 1.1 背景概述 随着汽车进入家庭步伐的加快和城市汽车数量的增多,城市道路交通问题显得越来越重要。马路上经常会看到这种现象:一旦整个路口的交通信号灯出现故障,若没有交警的及时疏导,该路口就会塞得一塌糊涂,甚至造成严重的交通事故。原交通信号控制大都采用继电器或单片机实现,存在着功能少、可靠性差、维护量大等缺点,越来越不能适应城市道路交通高速发展的要求。另外,根据人车流量的多少,可能随时增加路口的交通信号,比如增加转弯或人行道交通信号,原有系统的制约性就更加明显了。为了弥补原交通信号灯系统存在的以上缺点,我们引入了基于PLC控制的交通信号灯控制系统。 本文对十字路口交通信号灯控制系统,运用可编程逻辑器件PLC做了软件与硬件的设计,能基本达到控制要求。系统仅实现了小型PLC系统的一个雏形,在完善各项功能方面都还需要进一步的分析、研究和调试工作。如果进一步结合工业控制的要求,形成一个较为成型的产品,则需要作更多、更深入的研究。 1.2 可编程逻辑控制器简介 可编程逻辑控制器(Programmable Logic Controller,简称 PLC) 根据国际电工委员会(IEC)在1987年的可编程控制器国际标准第三稿中,对其作了如下定义:“可编程控制器是一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用可编程序的存储器,用来在其内部存储执行逻辑运算,顺序控制,定时,计数与算术运算等操作的指令,并通过数字式、模拟式的输入和输出,控

大连理工大学《桥涵水文》大作业及要求

网络教学学院 《桥涵水文》离线作业 学习中间: 层次: 专业: 年级:年春/秋季 学号: 学生: 教导老师:杨颖 完结日期:年月日 大工20春《桥涵水文》大作业及要求 留意:从以下五个题目中任选两个进行回答(留意:从题目一、二中挑选一道计算题,并从题目三、四、五中挑选一道问答题,别离进行回答,不可以一起挑选两道计算题或两道问答题);回答前,需将所选的题目进行仿制(使教师清晰你所选的题目)。 题目一:计算题 某水文站有22年的年最大流量观测材料,并已知其统计参数,,计算、、和的抽样差错,以及榜首项的经历频率的抽样差错。(,B=2.9) 题目二:计算题 已知某海湾22年的年最高潮水位的观测材料如表1所示,要求计算重现期为100年和50年的最高潮位。(计算过程中如有需求可直接在表1中增加计算内容) 表1 某海湾22年的年最高潮水位观测数据 m 年最高潮位(cm) m 年最高潮位(cm) 1 330 108900 13 275 75625 2 315 99225 14 274 75076 3 310 96100 15 270 72900

4 303 91809 16 268 71824 5 297 88209 17 264 69696 6 286 81706 18 263 69169 7 285 81225 19 261 68121 8 284 80656 20 256 65536 9 284 80656 21 254 64516 10 282 79524 22 254 64515 11 280 78400 6173 1740763 12 278 77284 题目三:桥梁工程师有必要知道桥位河段的水文和河槽演化特性,试述桥位河段如何分类。不一样河段应如何布设桥孔及墩台?(可罗列工程实例或简略算例,主张必要处附图像阐明。) 答复内容应与题目要求相共同,字数不少于1000,字体宋体小四字,1.5倍行距离。 题目四:查阅有关材料,论述桥下河槽的冲刷表象和过程如何?它们构成的缘由是啥?桥梁冲刷计算时选用了哪些处理方法?(主张必要处附图像阐明。) 答复内容应与题目要求相共同,字数不少于1000,字体宋体小四字,1.5倍行距离。 题目五:请谈谈当前公路和桥梁工程面对哪些新方式?呈现哪些新理念?(可罗列工程实例,主张必要处附图像阐明。) 答复内容应与题目要求相共同,字数不少于1000,字体宋体小四字,1.5倍行距离。 作业详细要求: 1.以附件方式上交离线作业(附件的巨细约束在10M以内),挑选已完结的作业(留意命名),点提交即可。如下图所示。 2.封面格局 封面称号:大连理工大学桥涵水文大作业,字体为宋体加黑,字号为小一; 名字、奥鹏卡号、学习中间等字体为宋体,字号为小三号。 3.正文格局 作业正文内容一致选用宋体,字号为小四。 留意: 作业大概独立完结,禁绝抄袭其他网站或许请人代做,如有相同作业,分数以零分计。

大连理工大学大作业

大连理工大学《工程抗震》大作业

题目1:底部剪力法。 钢筋混凝土5层框架经质量集中后计算简图如下图所示,各层高均为3m , 集中于各楼层的重力荷载代表值分别为: 1500kN G =,2550kN G =,3580kN G =,4600kN G =,5450kN G =。结构阻尼比0.05ξ=,自振周期为10.55s T =,Ⅰ1类 场地类别,设计地震分组为第一组,抗震设防烈度为8度(设计基本地震加速度为0.30g )。按底部剪力法计算结构在多遇地震时的水平地震作用及地震剪力。 3580kN =2550kN =1500kN =(a )计算简图 4600kN =5450kN = 解:查《建筑设计抗震规范》表5.1.4知,8度多遇地震,αmax= 设计地震分组为第一组, Ι类场地,取Tg= Tg=<T1=<5Tg= α1=(Tg/T1)r η2αmax =()××=≈ 查《建筑设计抗震规范》表5.2.1知,T 1=>=×= 取δn= T1+=×+= 总水平地震作用标准值: F EK =α1Geq=×(500+550+580+600+450)×85%=

各楼层水平地震作用标准值: Fi=G i H i F EK (1-δn)/∑G j H j (i=1,2,3…n) ∑G j H j =500×3 +550×6+580×9+600×12+450 ×15=23970KN ·m F 1=[500×3××]/23970= F 2=[550×6××]/23970= F 3=[580×9××]/23970= F 4=[600×12××]/23970= F 5=[450×15××]/23970= 计算各楼层的层间地震剪力 V 1= F 1+ F 2+ F 3+ F 4+ F 5=++++= V 2= F 2+ F 3+ F 4+ F 5=+++=152KN V 3= F 3+ F 4+ F 5=++= V 4= F 4+ F 5=+= V 5=F 5= 题目3:怎样判断土的液化如何确定土的液化严重程度,并简述抗液化措施。 答:饱和松散的砂土或粉土(不含黄土),地震时易发生液化现象,使地基承载力丧失或减弱,甚至喷水冒砂,这种现象一般称为砂土液化或地基土液化。其产生的机理为:地下水位以下的饱和砂土和粉土颗粒在地震作用下,土颗粒之间有变密的趋势。因空隙水不能及时排出,土颗粒就处于悬浮状态,形成如同液体一样的现象,即所谓的土的液化现象。地基土液化判别过程可以分为初步判断和标准贯入试验判别两大步骤。下面分别予以介绍。 1、初步判断 饱和的砂土或粉土(不含黄土)当符合下列条件之一时,可初步判别为不液化或不考虑液化影响: (1)地质年代为第四纪晚更新世(Q3)及其以前时且处于烈度7度或者8度地区时可判为不液化土。 (2)粉土的粘粒(粒径<0.005mm )含量百分率当烈度为7度时大于10%、当烈度为8度时大于13%、当烈度为9度时大于16%,可判为不液化土。 (3)浅埋天然地基,当地下水位深度和覆盖非液化土层厚度满足下式之一时,可不考虑液化影响。 03w b d d d >+- 02 u b d d d >+-

(完整版)大连理工大学《高层建筑结构》大作业.doc

大连理工大学《高层建筑结构》大作业 学习中心: 姓名: 学号: 题目二:底部剪力法计算题 钢筋混凝土 4 层框架经质量集中后计算简图如下图所示,各层高均为4m,集中于各楼层的重力荷载代表值分别为: G1 435kN ,G2 440kN ,G3 430kN ,G4380kN 。结构阻尼比0.05 ,自振周期为 T10.383s ,Ⅰ1类场地类别,设计地震分组为第一组,抗震设防烈度为8 度(设计基本地震加速度为0.30g)。按底部剪力法计算结构在多遇地震时的水平地震作用及地震剪力。 G4380kN G3430kN G2440kN G1435kN ( a)计算简图 解: (1)计算结构等效总重力荷载代表值 G eq0.85 G 0.85 G1G2G3G4 0.85 380 430 440435

1432.25kN (2)计算结构总水平地震作用 F EK1 G eq0.139 5997.6833.7kN (3)计算顶部附加水平地震作用 1.4T g 1.4 0.40 5.6s T10.467s 故,不需考虑顶部附加水平地震作 用,即n0 。 (4)计算各楼层水平地震作用(如下图所示) G i H i 1 n F EK 分别计算各楼层水平地震作用,如 根据公式 F in G j H j j 1 下: F1 270 9.8 3.5 833.7 166.7kN 270 9.8 3.5 270 9.8 7 180 9.8 10.5 F2 270 9.8 7.0 833.7 333.5kN 270 9.8 3.5 270 9.8 7 180 9.8 10.5 F3 270 9.8 10.5 833.7 333.5kN 270 9.8 3.5 270 9.8 7 180 9.8 10.5 (5)计算各楼层的层间地震剪力(如下图所示) V1 F1 F2 F3 833.7kN V2F2F3667.0kN V3F3333.5kN

《新能源发电》大作业

网络教育学院 《新能源发电》课程设计 题目:风力发电技术 学习中心:浙江建设职业技术学院奥鹏学习中心 层次:专升本 专业:电气工程及其自动化 年级: 11年秋季 学号: 111213409817 学生: 辅导教师:康永红 完成日期:2013 年08月14 日

风力发电技术 总则:风力发电是一种技术最成熟的可再生能源利用方式,发电机是风力发电机组中将风能转化为电能的重要装置,控制技术是风力机 安全高效运行的关键。 撰写要求:(1)介绍风力发电发展的现状。 (2)比较各种风力发电机的优缺点。 (3)介绍相关风力发电控制技术。 (4)对风力发电技术发展趋势的展望。 (5)正文字数4000字符左右。

1.介绍风力发电发展的现状 我国风力发电从20世纪80年代开始起步,到1985年以后逐步走向产业化发展阶段。 自2005年起,我国风电规模连续三年实现翻倍增长。风电新增容量每年都增加超过100%,仅次于美国、西班牙,成为世界风电快速增长的市场之一。根据国家能源局2009年公布的统计数据,截止2008年底,我国风电装机容量已达1271万千瓦,居世界第4位,但是风电在我国整个电力能源结构中所占的比重仍然比较低。 我国将在内蒙古、甘肃、河北、吉林、新疆、江苏沿海等省区建设十多个百万千瓦级和几个千瓦级风电基地。根据目前国内增长趋势,预计到2020年,中国风电总装机容量将达到1.3亿~1.5亿千瓦。 2 风力发电机 2.1恒速恒频的笼式感应发电机 恒速恒频式风力发电系统,特点是在有效风速范围内,发电机组的运行转速变化范围很小,近似恒定;发电机输出的交流电能频率恒定。通常该类风力发电系统中的发电机组为鼠笼式感应发电机组。 恒速恒频式发电机组都是定桨距失速调节型。通过定桨距失速控制的风力机使发电机转速保持在恒定的数值,继而使风电机并网后定子磁场旋转频率等于电网频率,因而转子、风轮的速度变化范围较小,不能保持在最佳叶尖速比,捕获风能的效率低。 2.2变速恒频的双馈感应式发电机 变速恒频式风力发电系统,特点是在有效风速范围内,允许发电机组的运行转速变化,而发电机定子发出的交流电能的频率恒定。通常该类风力发电系统中的发电机组为双馈感应式异步发电机组。 双馈感应式发电机结合了同步发电机和异步发电机的特点。这种发电机的定子和转子都可以和电网交换功率,双馈因此而得名。 双馈感应式发电机,一般都采用升级齿轮箱将风轮的转速增加若干倍,传递给发电机转子转速明显提高,因而可以采用高速发电机,体积小,质量轻。双馈交流器的容量仅与发电机的转差容量相关,效率高、价格低廉。这种方案的缺点是升速轮箱价格贵,噪声大、易疲劳损坏。 2.3变速变频的直驱式永磁同步发电机 变速变频式风力发电系统,特点是在有效风速范围内,发电机组的转速和发电机组定子侧产生的交流电能的频率都是变化的。因此,此类风力需要在定子侧串联电力变流装置才能实现联网运行。通常该类风力发电系统中的发电机组为永磁同步发电机组。 直驱式风力发电机组,风轮与发电机的转子直接耦合,而不经过齿轮箱,“直驱式”因此而得名。由于风轮的转速一般较低,因此只能采用低速的永磁式发电机。因而无齿轮箱,可靠性高;但采用低速永磁发电机,体积大,造价高;而且发电机的全部功率都需要交流器送入电网,变流器的容量大,成本高。 如果将电力变流装置也算作是发电机组的一部分,只观察最终送入电网的电能特

大工秋《工程水文学》离线作业

网络教育学院 《工程水文学离线作业》 题目:同频率放大法计算设计洪水过程线 学习中心:云南曲靖兴源职业学校奥鹏学习中心 专业:水利水电工程 年级: 16年秋季 学号: 学生:杨鹏帆 指导教师:

1 基本知识 典型洪水过程线的选取与推求 仅有设计洪峰流量和设计洪水量还难以确定水库的防洪库容和泄水建筑物的尺寸,这是因为洪峰流量出现的迟早和洪量集中的程度不同,即洪水过程线形状的不同,会得到不同的设计防洪库容和最大泄量。 因此,设计洪水过程线亦是设计洪水的一个不可缺的重要内容。设计洪水过程线指符合某一设计标准的洪水过程线,生产实践中一般采用放大典型洪水过程线的方法。 思路:先从实测资料中选取一场典型洪水过程,然后按设计洪峰流量、设计洪量进行放大,即得设计洪水过程线。 选择资料完整精度较高且洪峰流量和洪量接近设计值的实测大洪水过程线; 具代表性,洪水发生季节、洪水的历时、峰量关系、主峰位置、峰型等均能代表该流域较大洪水特性的实测洪水过程; 选择对工程防洪不利的典型洪水过程线,尽量选择峰高量大的洪水,而且峰型集中,主峰靠后的过程。 放大方法 同倍比放大法 用同一放大系数放大典型洪水过程线,以求得设计洪水过程线的方法。该法的关键是确定以谁为主的放大倍比值,有以下两种方法: 以洪峰流量控制的同倍比放大法(以峰控制) 适合于无库容调节的工程设计,如桥梁、涵洞及排水沟及调节性能低的水库等。 以洪量控制的同倍比放大法(以量控制) 适合于蓄洪为主的工程设计,如调节性能高的水库,分洪、滞洪区等。 放大倍比按上述方法求到后,以放大倍比乘实测的典型洪水过程线的各纵坐标,即得设计洪水过程线。该法简单易行,能较好地保持典型洪水过程的形态。 但该法使得设计洪水过程线的洪峰或洪量的设计频率不一致,这是由于两种放大倍比不同(KQm KW )造成的。如按KQm放大后的洪水过程线所对应的时段洪量不一定等于设计洪量值。反之如按KW 放大洪水过程线,其洪峰值不一定为

大工18秋《新能源发电》大作业题目及要求(标准答案)

大连理工大学网络教育学院《新能源发电》课程设计 题目:太阳能的利用综述 学习中心: 层次: 专业: 年级: 学号: 学生: 辅导教师:康永红 完成日期:

太阳能利用现状 能源问题关系我国经济发展、社会稳定和国家安全,以能源的可持续发展支持经济社会的可持续发展,是我国现代化建设中一项长期的重大战略任务。党的十七届五中全会,在对我国“第十二个五年规划”建议中,提出了三个重大转型,其中第二个转型,就是从高碳向低碳转型。经过几十年的努力,特别是经过“十一五”,开发利用再生能源、清洁能源,已在我国形成相当的产业规模,其中太阳能的利用,可谓方兴未艾。从世界范围来看,太阳能的利用技术已是当今世界各国索取新能源和利用新能源,进行节能、环保的重要研究项目之一。 太阳能是清洁、廉价的可再生能源,取之不尽用之不竭。每年到达地球表面的太阳能辐射能约为目前全世界所消耗的各种能量的1万多倍。我国有较丰富的太阳能资源,约有2/3的国土年辐射时间超过2200小时,年辐射总量超过5000MJ/m2 。全年照射到我国广大面积的太阳能相当于目前全年的煤、石油、天然气和各种柴草等全部常规能源所提供能量的2000多倍。全国各地太阳年辐射总量为3340~8 400MJ/m2,中值为5 852MJ/m2。从我国太阳年辐射总量的分布来看,西藏、青海、新疆、宁夏南部、甘肃、内蒙古南部、山西北部、陕西北部、辽宁、河北东南部、山东东南部、河南东南部、吉林西部、云南中部和西南部、广东东南部、福建东南部、海南岛东部和西部以及台湾省的西南部等广大地区的太阳辐射总量很大,尤其是青藏高原地区最大。全国以四川和贵州两省及重庆市的太阳年辐射总量最小,尤其是四川盆地最低。 太阳能利用的基本原理,就是将太阳辐射能通过一定的手段(措施)将其转换成热能或电能,加以利用。我国太阳能利用从整体来看,起步比较晚,上个世纪七、八十年代开始研发,但工业化发展速度很快。 太阳能利用技术的形式 1、太阳能光热技术

大工2015秋《船舶设计原理课程设计》离线作业答案

网络教育学院 《船舶设计原理课程设计》 题目: 14000 DWT成品油船的主尺度确定 学习中心:浙江台州奥鹏学习中心[1] 层次:专升本 专业:船舶与海洋工程 年级:年春/秋季 学号: 8888888888 学生:平安 指导教师:宋晓杰 完成日期: 2015年 7 月 9 日

1 现代油船发展及相关母型资料 1.1 现代油船发展 伴随着石油的开采利用油船运输在世界经济发展中的作用越来越明显。目前,油船已经是世界航运业的三大主力船型之一,占当今世界船舶总拥有量的35%左右,成为世界海上运输中一股举足轻重的运输力量,且随着世界经济的发展,仍将保持较高的增长势头。 伴随着石油的开采利用,油船运输在世界经济发展中的作用越来越明显,吨位越来越大,其发展大体经历了6个阶段: 二战前,对石油开发生产和应用处于初级阶段,油运船舶最大吨位由1886 年3000t、1914年10000t增加到1942年的20000t; 二战后,50年代后期由于世界经济处于工业化恢复时期,石油消费积聚增长,加上苏伊士运河封锁,运距增长,船舶最大载重量大幅上升,由1955年的55000t 增加到100000t; 1961-1966年,世界经济高速发展增长并进入重化工业发展时期,加上石油消费持续增长,造船技术因计算机技术的应用有了长足的进步,出现了200000t 级的油船; 1967-1975年,石油运量增长迅速,苏伊士运河再度关闭加快了油船大型化进程,1968年出现了326000t油船。1973年第二次石油危机后出现了477000t油船,以及后来超过500000t的改装油船; 1952-2002年(“9.11”前后),世界再次经历两次石油危机的油价上涨,世界各主要石油消费国采取节能措施,寻找石油代用品,使海上原油运量连年下降,平均海运距离由长向短转化,油船大型化格局开始重构。同时国际海事组织通过一系列的法规措施,提高油船运输的安全性,加强对海洋环境的保护,单壳油船逐渐退出油运市场,船舶的安全性大大提高。防污染、高节能、轻结构、自动化、短肥高是这一阶段油船的主要特点; 伊拉克战争后,油价屡创新高,给世界经济带来重大影响,出现新型能源危机,减小对石油特别是中东国家的过渡依赖并把多渠道中长期稳定供应安全作为主导战略,由此使以海运为主,辅以陆海管道运输的总体油运格局开始形成。同时油船海损事故对海洋生态环境造成的破坏使人触目惊心。随着海事组织会议通过了加速单壳油船淘汰的新规则,到2010年期间将有大量的单壳油船退出油船运

大工15秋《钢结构》离线作业答案

大工15秋《钢结构》大作业及答案 题目一:(必答的题目)对接焊缝连接。 某承受轴心拉力的钢材,采用Q235钢,宽度mm b 200=,如图所示。钢板所受轴心拉力设计值为kN N 492=。钢板上有一垂直于钢板轴线的对接焊缝,焊条为43E 型,手工焊。取V 形坡口焊缝。采用无垫板的单面施焊的对接焊缝,焊缝质量为三级,不用引弧板和引出板施焊。 要求:该钢板所需的厚度t 。 200 N N 解:轴力作用下,钢板最小厚度应满足: t w w t l f N ≥,三级E43焊条w t f 为母材的85%,假设板厚mm 16t ≤,则 w t f =0.85X215=185N/mm 2 不用引弧板和引出板施焊,计算长度w l =b=200mm 则t ≥ mm 3.13200 185104923 =??,即板厚≤mm 3.13mm 16t ≤ 显然t >16mm 亦满足,即t ≥13.3mm

题目三:轴心受压柱整体稳定和局部稳定验算 验算下图所示的轴心受压柱的整体稳定性和局部稳定性能否满足要求。已知轴向荷载设计值为1500N kN =,Q235B 级钢 2215/f N mm =,截面绕x 轴为b 类截面,绕y 轴为c 类截面,轴心压杆稳定系数?可查下表。 λ 35 40 45 50 55 ? b 类 0.918 0.899 0.878 0.856 0.833 c 类 0.871 0.839 0.807 0.775 0.742 6000 3000 3000 y x N N A A y x x y 25014 -?2508 -?25014 -?A-A 解:已知N=1500KN,对强轴m l m l oy ox 3,6==对弱轴,2215/f N mm = 截面特性:cm i cm I cm i cm I cm A y y x x 38.590 2604 ,260425212 1 41.10909754,97542.13252258.0121908.0254.1252434232 ===??= ===??+??= =?+??= 柱的长细比: 8 .5538 .5300 6.5741.10600x ====== y y y x x i l i l λλ 整体稳定验算:查表得741.0820 .0y x ==ψψ,

大连理工大学优化方法上机大作业

2016年大连理工大学优化 方法上机大作业 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

2016年大连理工大学优化方法上机大作业学院: 专业: 班级: 学号: 姓名: 上机大作业1: 1.最速下降法:

function f = fun(x) f = (1-x(1))^2 + 100*(x(2)-x(1)^2)^2; end function g = grad(x) g = zeros(2,1); g(1)=2*(x(1)-1)+400*x(1)*(x(1)^2-x(2)); g(2) = 200*(x(2)-x(1)^2); end function x_star = steepest(x0,eps) gk = grad(x0); res = norm(gk); k = 0; while res > eps && k<=1000 dk = -gk;

ak =1; f0 = fun(x0); f1 = fun(x0+ak*dk); slope = dot(gk,dk); while f1 > f0 + 0.1*ak*slope ak = ak/4; xk = x0 + ak*dk; f1 = fun(xk); end k = k+1; x0 = xk; gk = grad(xk); res = norm(gk); fprintf('--The %d-th iter, the residual is %f\n',k,res); end x_star = xk; end >> clear >> x0=[0,0]'; >> eps=1e-4; >> x=steepest(x0,eps)

大工16春《新能源发电》大作业风力发电技术

网络教育学院《新能源发电》课程设计 题目:风力发电技术 学习中心:奥鹏学习中心 层次:专升本 专业:电气工程及其自动化 年级: 2016年春季 学号: 学生: 辅导教师: 完成日期: 2016年03月22日

总则 风力发电就是一种技术最成熟的可再生能源利用方式,发电机就是风力发电机组中将风能转化为电能的重要装置,控制技术就是风力机安全高效运行的关键。 第一章风力发电发展的现状 我国就是世界上风力资源占有率最高的国家,也就是世界上最早利用风能的国家之一,据资料统计,我国10m高度层风能资源总量为3226 GW,其中陆上可开采风能总量为253 GW,加上海上风力资源,我国可利用风力资源近1000 GW。如果风力资源开发率达到60%,仅风能发电一项就可支撑我国目前的全部电力需求。 我国利用风力发电起步较晚,与世界上风能发电发达国家如德国、美国、西班牙等国相比还有很大差距,风力发电就是20世纪80年代才迅速发展起来的,发展初期研制的风机主要为1 kW、10 kW、55 kW、220 kW等多种小型风电机组,后期开始研制开发可充电型风电机组,并在海岛与风场广泛推广应用,目前有的风机已远销海外。至今,我国已经在河北张家口、内蒙古、山东荣城、辽宁营口、黑龙江富锦、新疆达坂城、广东南澳与海南等地建成了多个大型风力发电场,并且计划在江苏南通、灌云及盐城等地兴建GW 级风电场。截止2007年底,我国风机装机容量已达到6、05 GW,年发电量占全国发电量的0、8%左右,比2000年风电发电量增加了近10倍,我国的风力发电量已跃居世界第5位。 第二章比较各种风力发电机的优缺点 一.当前风力发电机有两种形式: 1 水平轴风力发电机(大、中、小型) 2 垂直轴风力发电机(大、中、小型)。 水平轴风力发电机技术发展的比较快,在世界各地人们已经很早就认识了,大型的水平轴风力发电机已经可以做到3-5兆瓦,一般由国有大型企业研发生产,应用技术也趋于成熟。小型的水平轴风力发电机一般就是一些小型民营企业生产,对研发生产的技术要求比较低,其技术水平也就是参差不齐。 小型水平轴风力发电机的额定转速一般在500-800r/min,转速高,产生的噪音大,启动风速一般在3-5m/s,由于转速高,噪音大,故障频繁,容易发生危险,不适宜在有人居住或经过的地方安装。

相关文档
最新文档