电力拖动自动控制系统实验指导书(2015.4)

电力拖动自动控制系统实验指导书(2015.4)
电力拖动自动控制系统实验指导书(2015.4)

实验一 晶闸管直流调速系统参数和环节特性的测定实验

一、实验目的

(1)熟悉晶闸管直流调速系统的组成及其基本结构。

(2)掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验所需挂件及附件

三、实验线路及原理

晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。

在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压Ug 作为触发器的移相控制电压Uct ,改变Ug 的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理图如图5-1所示。

四、实验内容

序号 型 号 备 注 该控制屏包含“三相电源输出”等几个模块。

1 2 3 DJK01 电源控制屏 DJK02 晶闸管主电路

DJK02-1三相晶闸管触发电路 该挂件包含“触发电路”,“正反桥功放” 等几个模块。 该挂件包含“给定”,“电流调节器”,“速度变换”,“电 DJK04 电机调速控制实验 I

4 流反馈与过流保护”等几个模块。

5 6 DJK10 变压器实验 DD03-3电机导轨﹑光码盘测速

系统及数显转速表 DJ13-1 直流发电机 DJ15 直流并励电动机 D42 三相可调电阻

该挂件包含“三相不控整流”和“心式变压器”等模块。

7 8 9

10 数字存储示波器 自备

自备

11 万用表

(1)测定晶闸管直流调速系统主电路电感值L。

(2)测定直流电动机电势常数Ce和转矩常数CM。

(3)测定晶闸管触发及整流装置特性Ud=f(Uct)。

(4)测定测速发电机特性UTG=f(n)。

五、预习要求

学习教材中有关晶闸管直流调速系统各参数的测定方法。

图5-1 实验系统原理图

电感的数值可用交流伏安法测定。实验时应给电动机加额定励磁,并使电机堵转,实验线路

如图5-2所示。

六、实验方法

具体方法如下:

(1)电枢回路电感L的测定

电枢回路总电感包括电机的电枢电感La、平波电抗器电感Ld和整流变压器漏感LB,由于LB数值很小,可以忽略,故电枢回路的等效总电感为

L=La+Ld

电感的数值可用交流伏安法测定。实验时应给电动机加额定励磁,并使电机堵转,实验线路如图5-2所示。

图5-2 测量电枢回路电感的实验线路图

实验时交流电压由DJK01电源输出,接DJK10的高压端,从低压端输出接电机的电枢,用交流

电压表和电流表分别测出电枢两端和电抗器上的电压值U a 和UL 及电流I,从而可得到交流阻抗Za 和ZL ,计算出电感值La 和Ld ,计算公式如下:

Za = Ua/I, Za = Ua/I

La=

)2/(22f R Z a a π- )2/(2

2f R Z Ld L L

π-=

(2)电动机电势常数Ce 和转矩常数CM 的测定(按图5-1接线)

将电动机加额定励磁,使其空载运行,改变电枢电压Ud ,测得相应的n 即可由 下式算出Ce:

Ce = Ke Φ = (Ud 2 ?Ud1) /(n2 ? n1)

式中,Ce 的单位为V/(rpm)。

转矩常数(额定磁通)CM 的单位为N·m/A。CM 可由Ce 求出: CM = 9.55 C

(3)晶闸管触发及整流装置特性Ud=f(Ug)和测速发电机特性UTG=f(n)的测定

实验线路如图5-3所示,可不接示波器。电动机加额定励磁,逐渐增加触发电路的控制电压Ug,分别读取对应的Ug、UTG、Ud、n的数值若干组,并将数据填入下表中。即可描绘出特性曲线Ud=f(Ug)和UTG=f(n)。

由Ud=f(Ug)曲线可求得晶闸管整流装置的放大倍数曲线Ks=f(Ug):

Ks =ΔUd/ΔUg

七、实验报告

(1)作出实验所得的各种曲线,计算有关参数。

(2)由Ks=f(Ug)特性,分析晶闸管装置的非线性现象。

八、注意事项

(1)由于实验时装置于开环状态,电流和电压可能有波动,可取平均读数。

(2)由于DJK04上的过流保护整定值的限制,在完成机电时间常数测定的实验中,

其电枢电压不能加得太高。

(3)当电机堵转时,会出现大电流,因此测量的时间要短,以防电机过热。

(4)在测试Ud=f(Ug)时,DJK02上的偏移电压要先调到α=120°,具体方法见

单闭环直流调速。

实验二晶闸管直流调速系统主要单元的调试

一、实验目的

(1)熟悉直流调整系统主要单元部件的工作原理及调速系统对其提出的要求。

(2)掌握直流调速系统主要单元部件的调试步骤和方法。

二、实验所需挂件及附件

三、实验内容及方法

将DJK04挂件上的十芯电源线、DJK04-1和DJK06挂件上的蓝色三芯电源线与控制屏相应电源插座连接,打开挂件上的电源开关,就可以开始实验。

调节器I(一般作为速度调节器使用)的调试

1.调节器调零

将DJK04中“调节器I”所有输入端接地,再将DJK08中的可调电阻120K接到“调节器I”的“4”、“5”两端,用导线将“5”、“6”端短接,使“调节器I”成为P(比例)调节器。用万用表的毫伏档测量“调节器I”的“7”端的

输出,调节面板上的调零电位器RP3,使之输出电压尽可能接近于零。

2.调整输出正、负限幅值

将“5”、“6”短接线去掉,将DJK08中的可调电容0.47uF接入“5”、“6”两端,使调节器成为PI (比例积分)调节器,将“调节器I”的所有输入端上的接地线去掉,将DJK04的给定输出端接到“调节器I”的“3”端,当加+5V的正给定电压时,调整负限幅电位器RP2,观察调节器负电压输出的变化规律;当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,观察调节器正电压输出的变化规律。并将数据记入下表中。

3.测定输入输出特性

再将反馈网络中的电容短接(将“5”、“6”端短接),使“调节器I”为P

(比例)调节器,同时将正、负限幅电位器RP1和RP2均顺时针旋到底,在调节器的输入端分别逐渐加入正负电压,测出相应的输出电压变化,直至输出限幅值,并画出对应的曲线。并将数据记入下表中。

4.观察PI特性

拆除“5”、“6”短接线,给调节器输入端突加给定电压,用慢扫描示波器观察输出电压的变化规律。改变调节器的外接电阻和电容值(改变放大倍数和积分时间),观察输出电压的变化。

四、实验报告

1.画各控制单元的调试连线图。

2.简述各控制单元的调试要点。

实验三单闭环不可逆直流调速系统实验

一、实验目的

(1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。

(2)掌握晶闸管直流调速系统的一般调试过程。

(3)认识闭环反馈控制系统的基本特性。

二、实验所需挂件及附件

三、实验线路及原理

在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经

“转速变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压Uct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将

调节器换成PI(比例积分)调节。这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。

图5-3 转速单闭环系统原理图

在本实验中DJK04上的“调节器I”做为“速度调节器”和“电压调节器”使用。

四、实验内容

(1)DJK04上的基本单元的调试。

(2)Uct不变时直流电动机开环特性的测定。

(3)Ud不变时直流电动机开环特性的测定。

(4)转速单闭环直流调速系统。

五、预习要求

1.复习自动控制系统(直流调速系统)教材中有关晶闸管直流调速系统、

闭环反馈控制系统的内容。

2.掌握调节器的基本工作原理。

3.实验原理图,能画出实验系统的详细接线图,并理解各控制单元在

调速系统中的作用。

4.实验时,如何能使电动机的负载从空载(接近空载)连续地调至额定负载?

六、实验方法

1.DJK02和DJK02-1上的“触发电路”调试

1)打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

2)将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

3)用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1

“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲

指示”钮子开关,使“窄”的发光管亮。

4)观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器

(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

5)将DJK04上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,

用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形。

6)适当增加给定Ug的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。

7)用8芯的扁平电缆,将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”

相连,使得触发脉冲加到正反桥功放的输入端。

8)将DJK02-1面板上的Ulf端接地,用20芯的扁平电缆,将DJK02-1的“正

桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02

“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。

2.Uct不变时的直流电机开环外特性的测定

1)按图5-1的接线图接线,DJK02-1上的移相控制电压U ct由DJK04上的“给定”输出Ug直接接入,直流发电机接负载电阻R,Ld用DJK02上200mH,将给定的输出调到零。

2)先闭合励磁电源开关,按下DJK01“电源控制屏”启动按钮,使主电路

输出三相交流电源,然后从零开始逐渐增加“给定”电压Ug,使电动机慢慢

启动并使转速 n 达到1200rpm。

3)改变负载电阻R的阻值,使电动机的电枢电流从空载直至Ied。即可测出

在Uct不变时的直流电动机开环外特性n = f(Id),测量并记录数据于下表:

3.Ud不变时直流电机开环外特性的测定

1)控制电压Uct由DJK04的“给定”U g直接接入,直流发电机接负载电阻R,

Ld用DJK02上200mH,将给定的输出调到零。

2)按下DJK01“电源控制屏”启动按钮,然后从零开始逐渐增加给定电压U g,

使电动机启动并达到1200rpm。

3)改变负载电阻R,使电动机的电枢电流从空载直至Ied。用电压表监视三相

全控整流输出的直流电压Ud,在实验中始终保持Ud不变(通过不断的调节

DJK04上“给定”电压Ug来实现),测出在Ud不变时直流电动机的开环外特性n =f(Id),并记录于下表中:

4. 基本单元部件调试

1) 移相控制电压Uct调节范围的确定

直接将DJK04“给定”电压Ug接入DJK02-1移相控制电压Uct的输入端,“三相

全控整流”输出接电阻负载R,用示波器观察Ud的波形。当给定电压Ug由零调

大时,Ud将随给定电压的增大而增大,当Ug超过某一数值时,此时Ud接近为

输出最高电压值Ud',一般可确定“三相全控整流”输出允许范围的最大值为Udmax=0.9Ud',调节Ug使得“三相全控整流”输出等于Udmax,此时将对应的Ug'的电压值记录下来,Uctmax= Ug',即Ug的允许调节范围为0~Uctmax。

如果我们把输出限幅定为Uctmax的话,则“三相全控整流”输出范围就被限定,不会工作到极限值状态,保证六个晶闸管可靠工作。记录Ug'于下表中:

将给定退到零,再按“停止”按钮,结束步骤。

2) 调节器的调整

A、调节器的调零

将DJK04中“调节器I”所有输入端接地,再将DJK08中的可调电阻40K接

到“调节器I”的“4”、“5”两端,用导线将“5”、“6”短接,

使“调节器I”成为P(比例)调节器。用万用表的毫伏档测量“调节器I”

的“7”端的输出,调节面板上的调零电位器RP3,使之输出电压尽可能

接近于零。

B、正负限幅值的调整

把“调节器I”的“5”、“6”短接线去掉,将DJK08中的可调电容0.47uF接入“5”、“6”两端,使调节器I成为PI(比例积分)调节器,将“调节器I”的所有输入端的接地线去掉,将DJK04的给定输出端接到调节器I的“3”端。当加+5V 的正给定电压时,调整负限幅电位器RP2,使之输出电压尽可能接近于零;当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,使调节器I的输出正限幅为Uctmax。

c、转速反馈系数的整定

直接将“给定”电压Ug接DJK02-1上的移相控制电压Uct的输入端,“三相

全控整流”电路接直流电动机负载,Ld用DJK02上的200mH,输出给定调到零。

按下启动按钮,接通励磁电源,从零逐渐增加给定,使电机提速到n=150Orpm时,调节“转速变换”上转速反馈电位器RP1,使得该转速时反馈电压U fn=-6V,这时的转速反馈系数α=U fn/n=0.004V/(rpm)。

5. 转速单闭环直流调速系统

1) 按图5-7接线,在本实验中,DJK04的“给定”电压Ug为负给定,转速反馈

为正电压,将“调节器I”接成P(比例)调节器或PI(比例积分)调节器。

直流发电机接负载电阻R,L d用DJK02上200mH,给定输出调到零。

2) 直流发电机先轻载,从零开始逐渐调大“给定”电压Ug,使电动机的转速

接近n=l200rpm。

3) 由小到大调节直流发电机负载R,测出电动机的电枢电流Id,和电机的转速n,直至Id=Ied,即可测出系统静态特性曲线n =f(Id)。

七、实验报告

1.根据实验数据,画出Uct不变时直流电动机开环机械特性。

2.根据实验数据,画出Ud不变时直流电动机开环机械特性。

3.根据实验数据,画出转速单闭环直流调速系统的机械特性。

八、思考题

1. P调节器和PI调节器在直流调速系统中的作用有什么不同?

2. 实验中,如何确定转速反馈的极性并把转速反馈正确地接入系统中?

调节什么元件能改变转速反馈的强度?

九、注意事项

1.双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两

个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

2.电机启动前,应先加上电动机的励磁,才能使电机启动。在启动前必须将移

相控制电压调到零,使整流输出电压为零,这时才可以逐渐加大给定电压,

不能在开环或速度闭环时突加给定,否则会引起过大的启动电流,使过流保

护动作,告警,跳闸。

3.通电实验时,可先用电阻作为整流桥的负载,待确定电路能正常工作后,

再换成电动机作为负载。

4.在连接反馈信号时,给定信号的极性必须与反馈信号的极性相反,确保为

负反馈,否则会造成失控。

5.在完成电压单闭环直流调速系统实验时,由于晶闸管整流输出的波形不仅有

直流成分,同时还包含有大量的交流信号,所以在电压隔离器输出端必须要接

电容进行滤波,否则系统必定会发生震荡。

6. 直流电动机的电枢电流不要超过额定值使用,转速也不要超过 1.2倍的额定值。

以免影响电机的使用寿命,或发生意外。

7.DJK04与DJK02-1不共地,所以实验时须短接 DJK04与DJK02-1的地。

电力电子技术实验指导书

实验一单结晶体管触发电路及示波器使用 班级学号姓名 同组人员 实验任务 一.实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用。 2.掌握单结晶体管触发电路的调试步骤和方法。 3.详细学习万用表及示波器的使用方法。 二.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMCL—05E组件 4.MEL—03A组件 5.双踪示波器(自备) 6.万用表(自备) 7. 电脑、投影仪 三.实验线路及原理 将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,触发电路选择单结晶体管触发电路,如图1所示。 图1单结晶体管触发电路图 四.注意事项 双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外

壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。 五.实验内容 1.实验预习 (1)画出晶闸管的电气符号图并标明各个端子的名称。 (2)简述晶闸管导通的条件。 (3)示波器在使用两个探针进行测量时需要注意的问题。 2. 晶闸管特性测试 请用万用表测试晶闸管各管脚之间的阻值,填写至下表。 + A K G - A K G 3.单结晶体管触发电路调试及各点波形的观察 按照实验接线图正确接线,但由单结晶体管触发电路连至晶闸管VT1的脉冲U GK不接(将NMCL—05E面板中G、K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察脉冲的移相范围。 合上主电源,即按下主控制屏绿色“闭合”开关按钮。这时候NMCL—05E内部的同步变压器原边接有220V,副边输出分别为60V(单结晶触发电路)、30V(正弦波触发电路)、7V(锯齿波触发电路),通过直键开关选择。 合上NMCL—05E面板的右下角船形开关,用示波器观察触发电路单相半波整流输出(“1”),梯形电压(“3”),梯形电压(“4”),电容充放电电压(“5”)及单结晶体管输出电压(“6”)和脉冲输出(“G”、“K”)等波形,并绘制在下图相应位置。

电力电子实验指导书(2013) 2

实验一三相桥式全控整流实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。 3.了解集成触发器的调整方法及各点波形。 二.实验内容 1.三相桥式全控整流电路 2.观察整流下或模拟电路故障现象时的波形。 三.实验线路及原理 实验线路下图所示。主电路由三相全控变流电路桥给直流电机供电。可实现直流电动机的调压调速。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3. 电机导轨及测速发电机(或光电编码器) 4.二踪示波器 5.万用表 五.实验方法 1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (4)用示波器观察同步变压器电压和触发脉冲波形,观察移相控制过程并记录波形。其中一个探头接脉冲信号另一个接同步电压信号,两探头共15V地线。 U 注:将I组桥式触发脉冲的六个开关均拨到“接通”。GT和AP1已内部连线无需接线。将 blf 接地。 (5)将给定器输出Ug接至MCL-33面板的Uct端,调节偏移电压Ub,在Uct=0时,使 =150o。 2.三相桥式全控整流电路供电直流电动机调压调速实验 (1)按上图接线,UVW电源线按实验板指定颜色接入保存相序正确,经指导教师检查后方可送电。送电前注意将给定电位器逆时针转到底,保证给定为0V或负给定。 (2)送电顺序合上电源总开关后先送控制电源,再按启动按扭送主回路电源。停机时前将给定电压降至零,按先停主电源后停控制电源顺序停电。 (3)调节Uct,移相控制整流电压,缓慢升速,用示波器观察记录转速为400、800、1200转/分时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2数值,计算相应的移相控制角数值。

电力拖动Matlab仿真实验指导书剖析

实验一 转速反馈控制(单闭环)直流调速系统仿真 一.实验目的 1.研究直流电动机调速系统在转速反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR 的工作及其对系统响应特性的影响。 3. 观察转速反馈直流调速系统在给定阶跃输入下的转速响应。 二、实验设备 1.计算机; 2.模拟实验装置系统; 3.A/D & D/A 接口卡、扁平电缆(如下图所示)。 三、实验原理 ● 直流电动机:额定电压 , 额定电流 , 额定转速 ,电动机电势系数 ● 晶闸管整流装置输出电流可逆,装置的放大系数 K s =44,滞后时间常数 T s =0.00167s 。 ● 电枢回路总电阻 R=1.0Ω ,电枢回路电磁时间常数T 1=0.00167s ,电力拖动系统机电时 间常数T m =0.075s 。 ● 转速反馈系数α=0.01 V ·min/r 。 ● 对应额定转速时的给定电压 图1 比例积分控制的直流调速系统的仿真框图 四、实验内容 1. 仿真模型的建立 ? 进入MATLAB ,单击MATLAB 命令窗口工具栏中的SIMULINK 图标, 220N U V =55dN I A =1000min N n r /=0.192min/ e C V r =?* 10n U V =

图2 SIMULINK模块浏览器窗口 (1)打开模型编辑窗口:通过单击SIMULINK工具栏中新模型的图标或选择File→New→Model菜单项实现。 (2)复制相关模块:双击所需子模块库图标,则可打开它,以鼠标左键选中所需的子模块,拖入模型编辑窗口。 在本例中拖入模型编辑窗口的为:Source组中的Step模块;Math Operations组中的Sum 模块和Gain模块;Continuous组中的Transfer Fcn模块和Integrator模块;Sinks组中的Scope 模块; 图3 模型编辑窗口 (3)修改模块参数: 双击模块图案,则出现关于该图案的对话框,通过修改对话框内容来设定模块的参数。

电力电子技术实验指导书最新版

电力电子技术实验指导书 第一章概述 一、电力电子技术实验内容与基本实验方法 电力电子技术是20世纪后半叶诞生和发展的一门新技术,广泛应用于工业领域、交通运输、电力系统、通讯系统、计算机系统、能源系统及家电、科研领域。 电力电子技术课程既是一门技术基础课程,也是一门实用性很强的应用型课程,因此实验在教学中占有十分重要的位置。 电力电子技术实验课的主要内容为:电力电子器件的特性研究,重点是开关特性的研究;电力电子变换电路的研究,包括:三相桥式全控整流电路(AC/DC 变换)、SPWM逆变电路(DC/AC变换)、直流斩波电路(DC/DC变换)、单相交流调压电路(AC/AC变换)四大类基本变流电路。 电力电子技术实验借助于现代化的测试仪器与仪表,使学生在实验的同时熟悉各种仪器的使用,以进一步提高实验技能。 波形测试方法是电力电子技术实验中基本的、常用的实验方法,电力电子器件的开关特性依据波形测试而确定器件的工作状态及相应的参数;电力电子变换电路依据波形测试来分析电路中各种物理量的关系,确定电路的工作状态,判断各个器件的正常与否。因此,掌握不同器件、不同电路的波形测试方法,可以使学生进一步掌握电力电子电路的工作原理以及工程实践的方法。

本讲义参考理论课的内容顺序编排而成,按照学生掌握知识的规律循序渐进,旨在加强学生实验基本技能的训练、实现方法的掌握;培养和提高学生的工程设计与应用能力。 由于编者水平有限,难免有疏漏之处,恳请各位读者提出批评与改进意见。 二、实验挂箱介绍与使用方法 (一)MCL—07挂箱电力电子器件的特性及驱动电路 MCL—07挂箱由GTR驱动电路、MOSFET驱动电路、IGBT驱动电路、PWM 发生器、主电路等部分组成。 1、GTR驱动电路:内含光电耦合器、比较器、贝克箝位电路、GTR功率器件、串并联缓冲电路、保护电路等。可对光耦特性(延迟时间、上升时间、下降时间),贝克电路对GTR导通关断特性的影响,不同的串、并联电路对GTR开关特性的影响以及保护电路的工作原理进行分析和研究。 2、MOSFET驱动电路:内含高速光耦、比较器、推挽电路、MOSFET功率器件等。可以对高速光耦、推挽驱动电路、MOSFET的开启电压、导通电阻R ON、跨导g m、反相输出特性、转移特性、开关特性进行研究。 3、IGBT电路驱动:采用富士IGBT专用驱动芯片EXB841,线路典型,外扩保护电路。可对EXB841的驱动电路各点波形以及IGBT的开关特性进行研究。 本挂箱的特点: (1)线路典型,有助于对基本概念的理解,力求通过实验,使学生对自关断器件的特性有比较深刻的理解。

《电力电子技术》实验指导书

实验三单相半波可控整流电路实验 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。 (3)了解续流二极管的作用。 二、实验所需挂件及附件 三、实验线路及原理

单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。将DJK03挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用DK04滑线变阻器接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。 图3-3单相半波可控整流电路 四、实验容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察并记录。 (3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。 (4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。 五、预习要求 (1)阅读电力电子技术教材中有关单结晶体管的容,弄清单结晶体管触发电路的工作原理。

(2)复习单相半波可控整流电路的有关容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。 (3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。 六、思考题 (1)单结晶体管触发电路的振荡频率与电路中电容C1的数值有什么关系? (2)单相半波可控整流电路接电感性负载时会出现什么现象?如何解决? 七、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相围能否在30°~170°围移动? (2)单相半波可控整流电路接电阻性负载 触发电路调试正常后,按图3-3电路图接线。将滑线变阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压U d、晶闸管VT两端电压U VT的波形,调节电位器RP1,观察α=30°、60°、90°、120°、150°时U d、U VT的波形,并测量直流输出电压U和电源电压U2,记录于下表中。

电机与电力拖动实验指导书(2014教学版)

电机及电力拖动技术实验指导书 自动化实验室编 工程大学教务处 (二〇一四年)

目录 实验安全操作规程 0 预备实验直流电机认识实验 (1) 实验一直流电动机 (4) 实验二直流电动机各种运转状态的机械特性测试 (7) 实验三单相变压器实验 (11) 实验四三相异步电动机的起动与调速 (16) 实验安全操作规程 为顺利完成实验任务,确保人身安全与设备安全,实验者要遵守如下规定:1、接线、拆线或多处改接线路时要切断电源。实验中确需带电更改少量线路 时,可用一只手操作,一次拔插一根线,不可双手同时接触线路。任何时候人体都不得接触导线裸漏部分等可能带电的部件。 2、完成接线或改接线路后要经指导教师检查,并使周围同学注意后方可接通 电源。 3、实验中如发生事故,应立即切断电源,并妥善处理。 4、实验室总电源开关的闭合由实验指导人员操作,其他人员允许分闸但不得 合闸。 5、实验中电动机高速旋转,要谨防衣服、围巾和头发等卷入其中造成人身伤 害。

预备实验直流电机认识实验 一、实验目的 (1).进行电机实验的安全教育和明确实验的基本要求。 (2).认识在直流电机实验中所用的电机、仪表、变阻器等组件。 (3).学习他励电机(并励电机接他励方式)的接线、起动、改变电机转向以及调速的方 法。 二、预习要点 (1).直流电动机起动的基本要求。 (2).直流电动机起动时,为什么在电枢回路中需要串接起动变阻器? (3).直流电动机起动时,励磁回路串接的磁场变阻器应调至什么位置?为什么? 三、实验项目 (1).了解实验装置中电机实验台的直流电机电枢电源、励磁电源、校正过的直流电机、 可调电阻器、智能直流电压电流表RTZN02、电动机RTDJ32的使用方法。 (2).直流他励电动机电枢串电阻起动。 (3).改变串入电枢回路电阻或改变串入励磁回路电阻时,观察电动机转速变化情况。 四、实验设备 (1).RTZN02或JPT01智能直流电压表、安培表,用2只 (2).JPZN12-1智能转矩、转速、功率表 (3).RTDJ09三相可调电阻器(90Ω) (4).RTDJ10三相可调电阻器(900Ω) (5).RTDJ32直流并励电动机 (6).JPDJ45校正过直流电机 (7).JPDJ47-1电机导轨、旋转编码器 (8).RTDJ12波形测试及开关板(可以不用开关,直接插拔实验线) 五、实验说明及操作步骤 1、由实验指导老师讲解电机实验的基本要求,安全操作和注意事项。介绍实验装置的使用方法。 2、仪表和三相可调电阻器的选择 仪表的量程是根据电机的额定值和实验中可能达到的最大值来选择。 (1).电压量程的选择 如测量电动机两端为220伏的直流电压,选用RTZN02或JPZN01的直流电压表,该电压表量程均为300V量程。 (2).电流量程的选择 因为额定电流为1.25A,测量电枢电流的电流表可选用RTZN02或JPZN01的直流安培表。额定励磁电流小于0.16A,电流表选用直流毫安表。

电力电子技术仿真实验指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图所示。点击File/New/Model新建一个仿真平台。点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图 实验一的具体过程: 第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

提取出来的器件模型如图所示: 图 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时你会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 和Rotate

电力电子实验指导书完全版范本

电力电子实验指导 书完全版

电力电子技术实验指导书 目录 实验一单相半波可控整流电路实验........................... 错误!未定义书签。实验二三相桥式全控整流电路实验........................... 错误!未定义书签。实验三单相交流调压电路实验 .................................. 错误!未定义书签。实验四三相交流调压电路实验 .................................. 错误!未定义书签。实验装置及控制组件介绍 ............................................ 错误!未定义书签。

实验一单相半波可控整流电路实验 一、实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用; 2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全 面分析; 3.了解续流二极管的作用; 二、实验线路及原理 熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极, 即构成如图1-1所示的实验线路。 图1-1 单结晶体管触发的单相半波可控整流电路 三、实验内容 1.单结晶体管触发电路的调试; 2.单结晶体管触发电路各点电压波形的观察; 3.单相半波整流电路带电阻性负载时Ud/U2=f(α)特性的测定; 4.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;

四、实验设备 1.电力电子实验台 2.RTDL09实验箱 3.RTDL08实验箱 4.RTDL11实验箱 5.RTDJ37实验箱 6.示波器; 7.万用表; 五、预习要求 1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱; 2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻 感性负载时,电路各部分的电压和电流波形; 3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。 六、思考题 1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何 解决? 七、实验方法 1.单相半波可控整流电路接纯阻性负载 调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT波形,并测定直流输出电压Ud 和电源电压U2,记录于下表1-1中。

电机与电力拖动基础实验指导书(最新)

电机与电力拖动基础实验指导书 北京工商大学信息工程学院 2008年8月

目录 电机与电力拖动基础实验的基本要求和安全操作守则 (2) DD01电源控制屏交流及直流电源操作说明 (4) 电机与电力拖动基础实验 实验一、直流电动机认识实验 (6) 实验二、直流发电机实验 (10) 实验三、直流他励直流电动机机械特性测定 (15) 实验四、单相变压器实验 (21) 实验五、三相变压器联结组测定 (28) 实验六、三相异步电动机起动、反转与调速 (33) 实验七、三相异步电动机机械特性测定 (38) 实验八、单相电机和步进电机实验 (44) 附录 1、D55-1智能转矩、转速、输出功率表使用说明 (50) 2、D34-3单三相智能功率、功率因数表使用说明 (52) 3、D54步进电机智能控制箱使用说明 (54) 4、BSZ-1型步进电机实验装置使用说明 (57) 5、实验用变压器、电机铭牌数据一览表及使用说明 (58) 6、D31直流数字电压表、毫安表、安培表使用说明 (60) 7、D32交流电流表、D33交流电压表使用说明 (61) 8、DD03-1指针式转速表使用说明 (62)

电机与电力拖动基础实验的基本要求和安全操作守则 一、实验的基本要求 1.实验预习 实验前应认真研读实验指导书,复习电机与电力拖动基础课程教材中的有关章节,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题,对电机实验所测数据的大体范围及趋势作到心中有数,并按实验内容准备好记录实验数据的表格。 2.实验操作 1)实验以小组为单位进行,每组由2~3人组成,实验进行中的接线、调节负载、测量、记录数据等工作应有明确的分工,以保证实验操作协调,记录数据准确可靠。 2)实验前,先熟悉该次实验所用的组件,并记录电机的铭牌数据。 3)根据实验线路图及所用组件,按图接线,实验线路力求简单明了,布局合理,操作方便。按接线原则,应先接串联主回路,再接并联支路。 4)根据电机及所使用的设备铭牌数据,合理选择仪表量程,熟悉仪表刻度,注意量程并记下倍率。 5)按一定规范起动电机,观察所有仪表是否正常(如指针正、反向是否超满量程等)。如果出现异常,应立即切断电源,并排除故障;如果一切正常,即可正式开始实验。 6)按照实验教材的操作方法和步骤,完成实验的操作过程和数据的测量、记录,并根据预测实验数据的大体范围及趋势,判断实验数据是否合理。 7)实验完毕,须将实验测量数据交给指导教师审阅,经指导教师认可后方可拆线。 3.实验报告 实验报告是根据实验数据和在实验中观察发现的问题,经过分析、研究、讨论后得出的书面结论或心得体会,是实验全部过程的总结。 实验报告要简明扼要、字迹清楚、图表整洁、结论明确,应包括以下内容: 1)实验名称、专业班级、学号、姓名、实验日期等。 2)扼要写明实验目的,列出实验内容和实验项目。 3)列出实验中所用仪表和设备的名称、规格型号、数量以及电机的铭牌数据等。 4)绘出实验时所用的线路图,并注明仪表量程和电阻器阻值,

电力拖动自动控制系统论文

A C 1 异步电机的矢量控制理论 本章首先阐述异步电动机的三相坐标系下的数学模型,然后根据坐标变换理论,得到了它在两相静止坐标系下和两相同步坐标系下的数学方程,在此基础之上介绍了异步电机的矢量控制原理【14】。 1.1 异步电机的数学模型 由于异步电机矢量控制调速系统的控制方式比较复杂,要确定最佳的方式,必须对系统动静态特性进行充分的研究。异步电机本质上是一个高阶、非线性、强耦合的多变量系统,为了便于研究,一般进行如下假设: (1)三相定子绕组和转子绕组在空间均分布,即在空间互差所产生的磁动势沿气隙圆周按正弦分布,并忽略空间谐波; (2)各相绕组的自感和互感都是线性的,即忽略磁路饱和的影响; (3)不考虑频率和温度变化对电阻的影响; (4)忽略铁耗的影响。 无论三相异步电动机转子绕组为绕线型还是笼型,均将它等效为绕线转子,并将转子参数换算到定子侧,换算后的每相绕组匝数都相等。这样异步电机数模型等效电路如图1.1所示。 120o

A A A s A s A B B B s B s B C C C s C s C d u i R i R p dt d u i R i R p dt d u i R i R p dt ψψψψψψ?=+=+???=+=+?? ? =+=+?? a a a r a r a b b b r b r b c c c r c r c d u i R i R p dt d u i R i R p dt d u i R i R p dt ψψψψψψ? =+=+?? ? =+=+?? ? =+=+?? /du dt 图1.1 异步电机的物理模型 图1.1中,定子三相对称绕组轴线A 、B, C 在空间上固定并且互差 , 转子对称绕组的轴线a 、b 、 c 随转子一起旋转。我们把定子A 相绕组的轴线作 为空间参考坐标轴,转子a 轴和定子A 轴间的角度作为空间角位移变量。规定各绕组相电压、电流及磁链的正方向符合电动机惯例和右手螺旋定则。这样,我们可以得到异步电机在三相静止坐标系下的电压方程、磁链方程、转矩方程和运动方程。 1.1.1 异步电机在三相静止坐标系下的数学模型 1、三相定子绕组的电压平衡方程为 (1-1) 式中以微分算子P 代替微分符号 相应地,三相转子绕组折算到定子侧的电压方程 (1-2) 式中:为定子和转子相电压的瞬时值; 为定子和转子相电流的瞬时值; 为定子和转子相磁链的瞬时值; 为定子和转子电阻。 将定子和转子电压方程写成矩阵形式: 120o θ,,,,,A B C a b c u u u u u u ,,,,,A B C a b c i i i i i i ,,,,,A B C a b c ψψψψψψ,s r R R

电力电子技术及电机控制实验装置实验指导书(doc 61页)

电力电子技术及电机控制实验装置实验指导书(doc 61页)

电力电子技术实验指导书武夷学院机电工程学院

目录 第一章DJDK-1型电力电子技术及电机控制实验装置简介 (1) 1-1 控制屏介绍及操作说明 (1) 1-2 DJK01电源控制屏 (1) 1-3 各挂件功能介绍 (4) 第二章电力电子及电机控制实验的基本要求和安全操作说明 (80) 1-1 实验的特点和要求 (81) 1-2 实验前的准备 (82) 1-3 实验实施 (83) 1-4 实验总结 (85) 1-5 实验安全操作规程 (87) 第三章电力电子技术实验 (89) 实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 (89) 实验二锯齿波同步移相触发电路实验 (95) 实验三单相桥式半控整流电路实验 (100) 实验四直流斩波电路原理实验 (108) 实验五单相交流调压电路实验 (116) 实验六三相半波可控整流电路实验 (124) 1

第一章DJDK-1 型电力电子技术及电机控制实验装置简介 1-1 控制屏介绍及操作说明 一、特点 (1)实验装置采用挂件结构,可根据不同实验内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能在一套装置上完成《电力电子技术》、《自动控制系统》、《直流调速系统》、《交流调速系统》、《电机控制》及《控制理论》等课程所开设的主要实验项目。 (2)实验装置占地面积小,节约实验室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资;实验装置只需三相四线的电源即可投入使用,实验室建设周期短、见效快。 (3)实验机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW 左右的通用实验机组。 (4)装置布局合理,外形美观,面板示意图明确、清晰、直观;实验连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备, 1

电机传动与控制实验指导书

实验一步进电机基本原理实验 一、实验目的 1、了解步进电动机的基本结构和工作原理。 2、掌握步进电机驱动程序的设计方法。 二、实验原理 步进电动机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动、反转和 制动的执行元件。其功能是将电脉冲转换为相应的角位移或直线位移。步进电动机的运 转是由电脉冲信号控制的,步进电动机的角位移量或线位移量与脉冲数成正比,每给一 个脉冲,步进电机就转动一个角度(步距角)或前进/倒退一步。步进电机旋转的角度由 输入的电脉冲数确定,所以,也有人称步进电动机为一个数字/角度转换器。 当某一相绕阻通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如果定子 和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径的特点, 转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转 的原因。 四相步进电动机以四相单四拍、四相双四拍、四相八拍方式工作时的脉冲分配表如 表1,表2和表3 表1 四相单四拍脉冲分配表表2 四相双四拍脉冲分配表 表3 四相八拍脉冲分配表 如步进电动机每一相均停止通电,则电机处于自由状态;若某一相一直通直流电时,

则电机可以保持在固定的位置上,即停在最后一个脉冲控制的角位移的终点位置上,这样,步进电动机可以实现停车时转子定位。这就是步进电动机的自锁功能。当步进电机处于自锁时,若用手旋转它,感觉很难转动。 三、实验步骤: 1.将DRYDC-A型运动控制台的电源线和串行通信接口线连接好。 2.打开DRMU-ME-B综合实验台的电源总开关,开关电源的开关,采集仪开关。 启动硬件设备。 3.打开计算机,从桌面或程序组运行DRLink主程序,然后点击DRLink快捷 工具条上的“联机注册”图标,选择“DRLink采集主卡检测”进行注册。 没有使用信号采集主卡的用户可选择:“局域网服务器”进行注册,此时,必需在对话框中填入DRLink服务器的主机IP地址。 4.点击DRLink快捷工具条上“文件夹”图标,出现文件选择对话框,在实验 目录中选择“步进电机基本原理”实验,并启动该实验。 5.点击该实验脚本中的“开关”按钮,向运动控制卡下载实验程序。 6.本实验中先做步进电机的驱动实验:选择运行方式为“连续驱动”,依次选 择步进电机的工作方式为:四相单四拍、四相双四拍、四相八拍;方向可以是任意的;脉冲间隔参数可用5~10ms。点“电机驱动”按钮,驱动电机工作。观察电机的工作情况。(对于四相八拍的工作方式,脉冲间隔最小可以到2ms)终止电机运行请在运行方式中选择“停止保持”或“停止不保持”。 7.步进电机的自锁实验:运行方式选择“停止保持”,其它参数不变,点“电 机驱动”按钮。可以使步进电机某相通电,处于“自锁”状态。此时,用手转动电机的皮带轮,可以感到转动比较困难。 8.步进电机的步距角演示:运行方式选择“单步驱动”,点“电机驱动”按钮。 每点击一次“电机驱动”按钮,步进电机旋转一个角度,这个角度就是步距角。对于本实验台步距角为1.8o。 除了可以使用DRLink平台下的实验脚本进行本实验外,还可以使用C-51的C语言程序进行本实验。本运动控制平台在内部使用了DRMC-A型运动控制卡,其CPU是ADUC842,关于ADUC842的硬件的详细信息,请参考我们提供的pdf 文档。在DRMC-A型运动控制台,步进电机的端口地址:0x8000,用低4位表示电机的4相,1表示发送脉冲,0表示空。根据步进电机的工作方式的脉冲分配表(表1~3),逐步向端口的低4位写入0和1就可以了。具体的程序请参考StepMotor1.c~StepMotor5.c。在生成执行代码后,按运动控制台的“PRG”+“RST”按钮后,使用Windows Serial Downloader将执行程序下载到单片机内。

电力拖动自动控制系统论文

东华大学研究生课程论文封面 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人 亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名:洪豪 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

步 电 机 的 矢 量 控 制 理 论 本章首先阐述异步电动机的三相坐标系下的数学模型,然后根据坐标变换理论,得 到了它在两相静止坐标系下和两相同步坐标系下的数学方程,在此基础之上介绍了异步 电机的矢量控制原理【14 】。 1.1异步电机的数学模型 由于异步电机矢量控制调速系统的控制方式比较复杂,要确定最佳的方式,必须对 系统动静态特性进行充分的研究。异步电机本质上是一个高阶、非线性、强耦合的多变 量系统,为了便于研究,一般进行如下假设: (1) 三相定子绕组和转子绕组在空间均分布, 即在空间互差1200 所产生的磁动势沿 气隙圆周按正弦分布,并忽略空间谐波; (2) 各相绕组的自感和互感都是线性的,即忽略磁路饱和的影响 ; (3) 不考虑频率和温度变化对电阻的影响; (4) 忽略铁耗的影响。 无论三相异步电动机转子绕组为绕线型还是笼型,均将它等效为绕线转子,并将转 子参数换算到定子侧,换算后的每相绕组匝数都相等。这样异步电机数模型等效电路如 图1.1所示。 图1.1异步电机的物理模型 图1.1中,定子三相对称绕组轴线 A 、B, C 在空间上固定并且互差1200 ,转子对 称绕组的轴线 a 、 b 、 c 随转子一起旋转。我们把定子 A 相绕组的轴线作为空间参考坐标 轴,转子a 轴和定子A 轴间的角度,作为空间角位移变量。规定各绕组相电压、电流及 磁链的正方向符合电动机惯例和右手螺旋定则。这样,我们可以得到异步电机在三相静 止坐标系下的电压方程、磁链方程、转矩方程和运动方程。 1.1.1异步电机在三相静止坐标系下的数学模型 1、三相定子绕组的电压平衡方程为 (1-1) 式中以微分算子P 代替微分符号 相应地,三相转子绕组折算到定子侧的电压方程 (1-2) 式中:U A ,U B ,U C ,U a ,U b ,U c 为定子和转子相电压的瞬时值; iA ,iB ,i C ,ia ,ib ,ic 为定子和转子相电流的瞬时值; 屮 屮 屮 屮 屮 屮 A, B, C, a, b, c 为定子和转子相磁链的瞬时值; Rs,Rr 为定子和转子电阻。 将定子和转子电压方程写成矩阵形式:

电力电子技术实验指导书

景德镇陶瓷学院 机械电子工程学院 电子电子技术 实验指导书 专业:自动化 实验室:A1栋408 二零一五年六月制 实验一单结晶体管触发电路及单相半波可控整流电 路实验 一.实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用。 2.掌握单结晶体管触发电路的调试步骤和方法。 3.对单相半波可控整流电路在电阻负载及电阻电感负载时工作情况作全面分析。 4.了解续流二极管的作用。

二.实验内容 1.单结晶体管触发电路的调试。 2.单结晶体管触发电路各点波形的观察。 3.单相半波整流电路带电阻性负载时特性的测定。 4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。 三.实验线路及原理 将单结晶体管触发电路的输出端“G”“K”端接至晶闸管VT1的门阴极,即可构成如图4-1所示的实验线路。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ) 3.MCL—33(A)组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件 5.MEL—03三相可调电阻器或自配滑线变阻器 6.二踪示波器 7.万用表 五.注意事项 1.双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。 2.为保护整流元件不受损坏,需注意实验步骤:

电力电子技术实验(课程教案)

课程教案 课程名称:电力电子技术实验 任课教师:张振飞 所属院部:电气与信息工程学院 教学班级:电气1501-1504班、自动化1501-1504自动化卓越1501 教学时间:2017-2018学年第一学期 湖南工学院

课程基本信息

1 P 实验一、SCR、GTO、MOSFET、GTR、IGBT特性实验 一、本次课主要内容 1、晶闸管(SCR)特性实验。 2、可关断晶闸管(GTO)特性实验(选做)。 3、功率场效应管(MOSFET)特性实验。 4、大功率晶体管(GTR)特性实验(选做)。 5、绝缘双极性晶体管(IGBT)特性实验。 二、教学目的与要求 1、掌握各种电力电子器件的工作特性测试方法。 2、掌握各器件对触发信号的要求。 三、教学重点难点 1、重点是掌握各种电力电子器件的工作特性测试方法。 2、难点是各器件对触发信号的要求。 四、教学方法和手段 课堂讲授、提问、讨论、演示、实际操作等。 五、作业与习题布置 撰写实验报告

2 P 一、实验目的 1、掌握各种电力电子器件的工作特性。 2、掌握各器件对触发信号的要求。 二、实验所需挂件及附件 三、实验线路及原理 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载 电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触 发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得 在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负 载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电 压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07 挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后 调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压 器调节的直流电压源。 实验线路的具体接线如下图所示:

《电力拖动自动控制系统》实验指导书(自编)

《电力拖动自动控制系统》 实验指导书 张寿明 昆明理工大学信自学院自动化系 2012年9月

目录 实验须知 实验一双闭环不可逆直流调速系统调试 实验二双闭环不可逆直流调速系统的静特性研究 实验三双闭环不可逆直流调速系统的动特性研究 实验四逻辑无环流可逆直流调速系统实验 实验五矢量坐标变换仿真 实验六转差频率控制的交流异步电动机矢量控制系统仿真实验七无速度传感器的矢量控制系统仿真 附录1双闭环不可逆直流调速系统原理图及所需挂件 附录2逻辑无环流直流可逆调速系统原理图及所需挂件

实验须知 实验课是教学中的重要环节之一,通过实验,是理论联系实际,加深理解和巩固所学的有关理论知识,培养、锻炼和提高对实际系统的调试和分析、解决问题的能力,同时通过实验也培养严谨的科学态度和良好的作风,以达到工程技术人员应有的本领,因此要求每个学生必须认真对待实验课,要求做到: 一、实验前预习,要求: 1、了解所有实验系统的工作原理 2、明确实验目的,各项实验内容、步骤和做法 3、拟定实验操作步骤,画出实验记录表格等。 二、实验中认真、要求: 1、熟知所有设备,认真按实验要求,有步骤地进行各项内容的实验。 2、测试前,必须熟悉仪器、仪表的使用,注意量程。 3、认真记录测试数据和波形。 4、不许带电操作,每次更换线路时,必须断点进行操作,通电前,必 须经指导老师检查,方可合闸。 5、同组同学,必须相互配合,共同完成实验任务。 三、实验后认真写实验报告 1、整理各项实验数据,列成表格,按要求绘制有关曲线,进行分析比 较。 2、记录和分析实验中的各种现象。 四、实验装置 自动控制系统实验全部在DJDK-Ⅱ型装置上进行。详见“DJDK-Ⅱ实验装置简介”。

电力拖动自动控制知识点总结

第1章 绪论 1、电机的分类? ①发电机(其她能→电能)直流发电机与交流发电机 ②电动机(电能→其她能) 直流电动机:有换向器直流电动机(串励、并励、复励、她励)与 无换向器直流电动机(又属于一种特殊的同步电动机) 交流电动机:同步电动机 异步电动机:鼠笼式、绕线式、伺服电机 控制电机:旋转变压器 自整角机 力矩电机 测速电机 步进电机(反应式、永磁式、混合式) 2、根据直流电机转速方程 n — 转速(r/min); U — 电枢电压(V) I — 电枢电流(A); R — 电枢回路总电阻( Ω ); Φ — 励磁磁通(Wb);Ke — 由电机结构决定的电动势常数。 三种方法调节电动机的转速:(1)调节电枢供电电压 U ; (2)减弱励磁磁通 Φ;(3)改变电枢回路电阻 R 。 调压调速:调节电压供电电压进行调速,适应于:U ≤Unom,基频以下,在一定范围内无级平滑调速。 弱磁调速:无级,适用于Φ≤Φnom,一般只能配合调压调速方案,在基频以上(即电动机额定转速以上)作小范围的升速。 变电阻调速:有级调速。 问题3:请比较直流调速系统、交流调速系统的优缺点,并说明今后电力传动系统的发展的趋势。 * 直流电机调速系统 优点:调速范围广,易于实现平滑调速,起动、制动性能好,过载转矩大,可靠性高,动态性能良好。 缺点:有机械整流器与电刷,噪声大,维护困难;换向产生火花,使用环境受限;结构复杂,容量、转速、电压受限。 * 交流电机调速系统(正好与直流电机调速系统相反) 优点:异步电动机结构简单、坚固耐用、维护方便、造价低廉,使用环境广,运行可靠,便于制造大容量、高转速、高电压电机。大量被用来拖动转速基本不变的生产机械。 缺点:调速性能比直流电机差。 * 发展趋势:用直流调速方式控制交流调速系统,达到与直流调速系统相媲美的调速性能;或采用同步电机调速系统、 第2章 闭环控制的直流调速系统 1、常用的可控直流电源有以下三种 ? 旋转变流机组——用交流电动机与直流发电机组成机组,以获得可调的直流电压。 ? 相控整流器——把交流电源直接转换成可控的直流电源。 ? 直流斩波器或脉宽调制变换器——先用不可控整流交流电变换成直流电,然后用PWM 脉宽调制方式调节输出的直流电压。 2、由原动机(柴油机、交流异步或同步电动机)拖动直流发电机 G 实现变流,由 G 给需要调速的直流电动机 M 供电,调节G 的励磁电流 i f 即可改变其输出电压 U ,从而调节电动机的转速 n 。 这样的调速系统简称G-M 系统,国际上通称Ward-Leonard 系统。 3、晶闸管-电动机调速系统(简称V-M 系统,又称静止的Ward-Leonard 系统), 4、晶闸管触发与整流装置的放大系数与传递函数 在动态过程中,可把晶闸管触发与整流装置瞧成就是一个纯滞后环节,其滞后效应就是由晶闸管的 Φ-=e C IR U n

电力电子技术及电机控制实验指导书 第一章

第三章电力电子技术实验 本章节介绍电力电子技术基础的实验内容,其中包括单相、三相整流及有源逆变电路,直流斩波电路原理,单相、三相交流调压电路,单相并联逆变电路,晶闸管(SCR)、门极可关断晶闸管(GTO)、功率三极管(GTR)、功率场效应晶体管(MOSFET)、绝缘栅双极性晶体管(IGBT)等新器件的特性及驱动与保护电路实验。 实验一单结晶体管触发电路实验 一、实验目的 (1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。 (2)掌握单结晶体管触发电路的调试步骤和方法。 二、实验所需挂件及附件 单结晶体管触发电路的工作原理已在1-3节中作过介绍。 四、实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察。 五、预习要求 阅读本教材1-3节及电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。 六、思考题 (1)单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系? (2)单结晶体管触发电路的移相范围能否达到180°? 七、实验方法 (1)单结晶体管触发电路的观测 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“1”点的波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“G、K”触发电压波形,其能否在30°~170°范围内移相? (2)单结晶体管触发电路各点波形的记录

相关文档
最新文档