炼油厂常减压蒸馏装置危险有害因素分析

炼油厂常减压蒸馏装置危险有害因素分析
炼油厂常减压蒸馏装置危险有害因素分析

炼油厂常减压蒸馏装置危险有害因素分析

集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

常减压蒸馏装置

(1)装置中存在的主要危险有害因素

装置中存在的主要危险有害因素是火灾、爆炸和中毒;此外,装置中还存在噪声、烫伤等危险有害因素。主要危险化学品分布见下表

装置主要危险化学品及危险有害因素分布

(2)火灾爆炸危险有害分析

1)电脱盐罐

装置设有电脱盐罐,其目的主要是除去原油中的盐和水。常会出现的危险因素有:

脱盐脱水如达不到设计要求,含盐含水过高,会影响初馏塔的平稳操作,加重设备、管线的腐蚀。原油带水进入初馏塔,造成塔安全阀起跳,热油喷落在高温管线上发生火灾事故。

罐中油水界面太低,易造成脱水带油;界面过高,易造成电气负荷增大,跳闸,严重时会造成电极棒击穿和漏油火灾。

罐内操作压力过高,造成安全阀起跳发生大量跑油,甚至发生重大火灾事故。某炼油厂由于安全阀起跳,大量热油排入污水系统,油气挥发,遇明火引发一场严重的火灾事故,损失严重。

2)塔区

初馏塔、常压塔、减压塔和稳定塔顶回流罐油水界面过低,会造成脱水时带油;界面过高,会造成回流带水,造成冲塔事故,严重时会造成安全阀跳起。油液面过低会使回流中断,打乱操作,油液面过高或满罐,塔顶压力急剧上升,造成塔超压。

塔区介质温度有的在自燃点以上,一旦泄漏会自燃着火。轻质油和瓦斯泄漏扩散遇火源会闪爆起火。要防止蒸汽线串油,出现油中带水。某炼油厂常压三线汽提塔因水进塔突沸,造成塔内爆炸着火,停产17天。

3)加热炉

加热炉为多路进料,偏流是主要危险。某炼油厂因50%负荷操作,造成一路偏流结焦堵塞炉管事故。

常压炉出口转油线因高温油气冲刷,含硫物质腐蚀,导致减薄、穿孔,热油喷出会引起火灾事故。

加热炉点火时,操作不当有可能发生回火伤人事故,冬季瓦斯带液会引发炉膛火灾。

燃料气瓦斯罐系统阀门法兰泄漏气体易引起爆炸事故,瓦斯罐凝液排地漏也易发生火灾爆炸事故。

4)换热区

换热区的换热器在框架上分层布置,由于介质温度大都大于自燃点,在高温热应力作用或硫化物的腐蚀下,会发生泄漏,引发火灾爆炸事故。某炼油厂常压装置减压渣油与拔头原油换热器的渣油出口管,因严重减薄而破裂,管内370℃的渣油喷出自燃起火,大火持续燃烧40分钟,停产10多个小时。

5)泵和管带

机泵输送高温热油时,若端面密封呲开,或泵出入口阀门、放空泄漏,热油将会自燃起火。

在维修热油泵时,若事前处理不当或维修人员未检查处理就拆泵,会发生热油泄漏,发生火灾事故。某炼油厂在修蜡油泵时,因阀关不严,采用冷水喷淋、使管线内油凝固,不料在拆泵时热油喷出自燃起火,烧伤2人。

常压塔顶油气挥发线,空冷器的气、液相变等部位易发生腐蚀穿孔和减薄的的爆裂事故。

高温重质油低点排凝、放空或采样时,若开阀过快或开度过大,有可能发生烫伤或大量热油喷出着火事故。

(3)中毒危险有害因素分析

常减压装置的原料、产品、中间产品均为有毒物质,其蒸汽吸入对人体有麻醉神经作用。如空气中汽油浓度达2000~3000mg/m 3,人呼吸0.5h 会中毒,并有生命危险。

1)硫化氢

在生产过程中,三顶瓦斯、含硫污水中含有H 2S 气体。H 2S 中毒死亡事故在炼油厂曾屡有发生。中国石化总公司自成立以来,发生较为严重的H 2S 中毒事故17次,死亡27人,中毒38人。特别是近几年来,随着加工高含硫油的企业增多,H 2S 中毒伤亡事故有增无减,给企业带来严重威胁。

硫化氢是一种有臭鸡蛋味的气体。它不仅易燃、易爆,而且是强烈的神经毒物。硫化氢主要通过呼吸道进入人体,具有局部刺激作用和全身毒性作用。轻度中毒症状为头痛、头晕、呕吐、乏力、流泪等,重度中毒会发生中毒性肺水肿、昏迷、呼吸疲惫,甚至死亡。

人对H 2S 的嗅觉阈为0.012~0.03mg/m 3,当浓度超过10mg/m 3之后,人会由于嗅觉疲劳而不能察觉。空气中浓度达到30~40mg/m 3时,对人可造成轻度危害;达300mg/m 3时,可造成中度危害;超过1000mg/m 3时,人接触数秒,即可引起生命危险。

2)氨

常压塔顶注有少量的氨液,氨属有毒物质。低浓度对粘膜有剌激作用,高浓度可造成组织溶解性坏死,引起化学性肺炎及灼伤。氨可引起反射性呼吸停止。氨溅入眼内可致晶体浑浊,角膜穿孔,甚至失明。

(4)设备危险有害因素分析

本装置中的设备和管线由于设计、安装、制造中某些环节的质量失控,留下安全隐患或缺陷,在投产后,由于介质的腐蚀、冲刷、结垢以及流速产生的振动、温度、压力造成的应力等因素的影响,会使设备、管线的隐患或缺陷扩展或使密封壳体破裂,导致介质泄露造成火灾爆炸事故。

1)本装置的原油属含硫、含酸原油,对设备有一定的腐蚀和冲刷。虽然采取了“一脱三注”的工艺防腐措施,但对塔顶及部分管线仍有腐蚀作用,尤其是压力容器,压力管线上的仪表的压力、温度、液位的引流短管的腐蚀是产生泄漏的多发部位。

2)塔顶冷凝、冷却器的管束和管束与管板的连接部位的腐蚀,以及空冷器管束和管箱连接部位的腐蚀和应力腐蚀开裂是经常出现的安全隐患。

3)常减压加热炉的转油线中的环焊缝由于环烷酸的流速的影响,有很强的腐蚀性。

4)由于管线设计、安装质量失控,其热胀产生的推力或扭矩,对机泵的连接部位造成应力、使机泵的“对中”变化,产生振动。影响到“轴封”或“联轴节”的完好技术状况,导致事故。

5)常减压加热炉管虽然拟采用1Cr5Mo和Cr9Mo材质有很好的耐热性和抗氧化性。但其可焊性差,若焊接不艺不当,或执行不严格,会在焊缝及热影响区产生冷裂纹、热裂纹或再热裂纹等隐患。

(5)噪声危险有害因素分析

常减压装置噪声来源主要是加热炉、空冷器和机泵。长期在这样噪声环境中作业,会对人的健康带来危害。因此工程设计中应选择振动和噪声低的设备,有防噪声的措施。已投用生产装置要配备防噪声的个人防护用品。尽力减少噪声对人体的危害。

(6)烫伤危险有害因素分析

常减压装置工艺介质和部分设备温度较高,作业人员一旦接触会可能被烫伤。使用的蒸汽一旦泄漏喷出也会烫伤在场的作业人员。加热炉回火有可能烧伤作业人员。因此裸露的高温设备管线要保温,加热炉操作要严守规程,防止回火伤人。

(7)窒息危险有害因素分析

人员进入塔、罐或炉内作业时,有可能因缺氧,发生人员缺氧窒息事故。当后,应特别重视进入塔、罐容器内的检查,防止因N2置换不彻装置投产使用N

2

底而发生N

气窒息死亡事故。

2

(8)触电危险有害因素分析

装置在工程建设时期和装置投产大检修或抢修时,会使用临时电源,会由于电缆绝缘不良,或电气设备漏电,或电脱盐罐上部电气部位都有可能发生触电事故。正常运行时也会由于电气设施使用不当发生电气伤害事故。

(9)高处坠落危险有害因素分析

装置的塔、罐、冷换设备及大部分管线均属于高架结构或离地面较高,作业人员在进行巡检、采样、检测及维修、检修等活动时,有可能发生高处坠落事故,造成人员伤亡。

(10)机械伤害危险有害因素分析

工程建设、设备安装以及装置建成后进行大检修时,在场人员立体交叉作业,起吊频繁,泵大修较多,都存在着机械伤害危险。

常减压蒸馏装置开工方案

常减压蒸馏装置开工方案 装置开工程序包括:物质、技术准备、蒸汽贯通试压,开工水联运、烘炉和引油开工等几部份,蒸汽贯通试压已完成,装置本次检修为小修,水联运、烘炉可以省略,本次开工以开工前的准备,设备检查,改流程,蒸汽暖线,装置引油等几项内容为主。 一、开工前的准备 1、所有操作工熟悉工作流程,经过工艺、设备、仪表以及安全操作等方面知识的培训. 2、所有操作工已经过DCS控制系统的培训,能够熟练操作DCS。 3、编制开工方案和工艺卡片,认真向操作工贯彻,确保开车按规定程序进行。 4、准备好开工过程所需物资。 二、设备检查 设备检查内容包括塔尖、加热炉、冷换设备、机泵、容器、仪表、控制系统、工艺管线的检查,内容如下: (一)塔尖 1、检查人孔螺栓是否把好,法兰、阀门是否把好,垫片是否符合安装要求。 2、检查安全阀、压力表、热电偶、液面计、浮球等仪表是否齐全好用。 3、检查各层框架和平台的检修杂物是否清除干净。 (二)机泵:

1、检查机泵附件、压力表、对轮防护罩是否齐全好用。 2、检查地脚螺栓,进出口阀门、法兰、螺栓是否把紧。 3、盘车是否灵活、电机旋转方向是否正确,电机接地是否良好。 4、机泵冷却水是否畅通无阻。 5、检查润滑油是否按规定加好(油标1/2处)。 6、机泵卫生是否清洁良好。 (三)冷换设备 1、出入口管线上的连接阀门、法兰是否把紧。 2、温度计、压力表、丝堵、低点放空,地脚螺栓是否齐全把紧。 3、冷却水箱是否加满水。 (四)容器(汽油回流罐、水封罐、真空缓冲罐、真空罐、真空放空罐) 1、检查人孔螺栓是否把紧,连接阀门、法兰是否把紧。 2、压力表、液面计、安全阀是否齐全好用。 (五)加热炉 1、检查火嘴、压力表、消防蒸汽、烟道挡板,一、二次风门、看火门、防爆门、热电偶是否齐全好用。 2、检查炉管、吊架、炉墙、火盆是否牢固、完好,炉膛、烟道是否有杂物。 3、用蒸汽贯通火嘴,是否畅通无阻,有无渗漏。 (六)工艺管线 1、工艺管线支架、保温、伴热等是否齐全。

炼油厂主要装置的特殊阀门的图示

炼油厂主要装置的特殊阀门的图示 装置名称:催化装置 涉及到的阀门: 滑阀:主要包括双动滑阀、单动滑阀(外取热上滑阀、外取热下滑阀、再生滑阀、待生滑阀等)。 工况特点:经过催化裂化的大量烟气,最后经过三旋分离器,一部分可经双动滑阀到废热锅炉。当催化装置的反应器与再生器采用高低并列式排列,催化剂循环采用滑阀控制。旋塞阀:因催化装置的差异,有的炼油厂反应器和再生器采用同轴式排列,催化剂输送使用旋塞阀。 备注:大多是电液联动执行机构;高温、催化剂冲刷。 主要生产厂家是兰炼机械厂和荆门石化机械厂。 烟机入口高温闸阀和高温蝶阀:经过催化裂化的大量烟气最后经过分离器,另一部分经过烟气轮机进行能量回收。烟机阀门主要用于烟气轮机的能量回收系统中,安装在烟机进气口前端。 工况特点:高温;催化剂冲刷;紧急情况时快速切断防止烟机超速。 备注:催化产生的尾气是高温烟气,为有效的利用并节约资源,炼油行业都会将该尾气的能量用烟气轮机回收利用。 主要生产厂家是兰炼机械厂和荆门石化机械厂。 单向阻尼阀:保护装置的重要设备,以及工艺要求防止介质逆流时安装使用。 口径:1000mm左右。 烟道高温衬里蝶阀和气动调节蝶阀:安装在催化炉出口烟道上。口径2000mm左右。 高温衬里闸阀:涉及催化剂很多阀门都是高温不锈钢或铬钼钢材质的且带衬里。 此阀门有的带有吹扫管儿。 备注:因为涉及催化剂所以高温耐磨阀门居多。 其他气动、电动、液动闸阀和蝶阀:口径(DN≥600mm)的阀门,通常会按设备类管理。 装置名称:制氢、加氢、重整 涉及到的阀门: ORBIT(欧比特)轨道球阀:高压临氢阀门,压力多在900磅以上,填注液态软填料,开关轻松。属卡梅隆(CAMERON)旗下品牌。 OMEGA(欧米伽)轨道球阀:类似于ORBIT轨道球阀,两者工况相同,是日本品牌。PALL(帕颇)过滤器控制阀:温度180℃左右,用在过滤器上集中布置,一套共六台。MOGAS(蒙盖斯●美国)、GOSCO(高斯特●加拿大)、VTI(美国)、KOSO(日本)金属硬密封球阀:高频率操作工况,要求耐磨、耐高温。 EDW ARD(爱德华●美国福斯旗下品牌)、VELAN(威兰●加拿大)、LVF(德国)T型闸阀和Y型截止阀:高压、超高压临氢阀门。压力通常高于1500磅。 备注:氢气是非常小分子的气体,且伴随剧毒的硫化氢气体,有管道介质压力非常高。所以这类装置的临氢阀门大多都是高压阀门,炼油厂把关也非常严格。进门的比较口阀多,国产的高压临氢阀门做的质量还是不太好。 PSA液压程控蝶阀:属于临氢阀门,布置集中,由成都华西所集成成套供应,进入连锁程序控制。 备注:这类阀门液压程控系统和密封容易出现问题,且配件来源单一,属独家专利,价格较贵。

萃取过程及危险性分析

编号:SM-ZD-43628 萃取过程及危险性分析Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

萃取过程及危险性分析 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 工业上对液体混合物的分离,除了采用蒸馏的方法外,还广泛采用液—液萃取。例如,为防止工业废水中的苯酚污染环境,往往将苯加到废水中,使它们混合和接触,此时,由于苯酚在苯中的溶解度比在水中大,大部分苯酚从水相转移到苯相,再将苯相与水相分离,并进一步回收溶剂苯,从而达到回收苯酚的目的。再如,在石油炼制工业的重整装置和石油化学工业的乙烯装置都离不开抽提芳烃的过程,因为芳香族与链烷烃类化合物共存于石油馏分中,它们的沸点非常接近或成为共沸混合物,故用一般的蒸馏方法不能达到分离的目的,而要采用液—液萃取的方法提取出其中的芳烃,然后再将芳烃中各组分加以分离。 液—液萃取也称溶剂萃取,简称萃取。这种操作是指在欲分离的液体混合物中加入一种适宜的溶剂,使其形成两液相系统,利用液体混合物中各组分在两相中分配差异的性质,

蒸馏装置火灾爆炸危险性分析

蒸馏装置火灾爆炸危险性分析 摘要运用美国道化学公司(DOW)“火灾、爆炸危险指数法”(第七版),对中国石化北京燕山分公司炼油某厂蒸馏装置的火灾爆炸危险性进行分析评价,暴露出安全生产中存在的问题,得出评价结果,给出采取的对策和措施,厂内安排积极整改,降低了生产装置的危险性。 关键词蒸馏装置;火灾爆炸;分析评价 1前言 中国石化北京燕山分公司炼油某厂蒸馏装置(以下简称“蒸馏装置”)采用成熟的三级蒸馏(即初馏、常压蒸馏和减压蒸馏)方法,对原油进行加工处理,生产过程中所用物料多为易燃易爆物质,生产操作连续性强,近几年曾先后几次发生着火事故,具有较大的火灾爆炸危险性。本文采用美国道化学公司(DOW)“火灾、爆炸危险指数法”(第七版),对该装置进行详细分析,评价出生产装置的火灾爆炸危险度等级、导致事故发生的潜在隐患,并提出有效的对策措施。 2蒸馏装置简介 蒸馏装置由中国石化建设工程公司设计,燕山建筑安装公司承建,2005年7月开始建设,2006年12月建成竣工,2007年6月投产,加工能力800万吨/年。蒸馏装置利用成熟的蒸馏工艺技术原理,将原油分离成各种不同沸点的馏份,送至不同的下游装置,进一步加工生产出合格的产品。装置中存在的主要危险化学品有原油、石脑油、航煤、液化气、硫化氢、燃料气、氨等,另外还存在柴油、蜡油、渣油、缓蚀剂、破乳剂等一般化学品。生产过程危险有害因素主要包括火灾、爆炸、硫化氢中毒等。蒸馏装置流程方框图见下页图—1。 3DOW“火灾、爆炸危险指数法”简介 道化学公司“火灾、爆炸危险指数法”是由美国道化学公司首创的安全评价方法,自1964年提出第一版至1994年的近三十年中,共进行了六次修改,目前已经发展到第七版。它是以单元重要危险物质在标准状态下的火灾、爆炸或释放出危险性潜在能量大小为基础,同时考虑工艺过程的危险性,计算初期单元火灾爆炸指数(F&EI),确定危险等级;再针对采取的安全对策措施,进行火灾爆炸指数的补偿计算,得出单元补偿火灾爆炸指数(F&EI)’,确定危险等级,使危险降低到人们可以接受的程度。

有机溶剂使用、蒸馏过程中的安全建议及要求

编号:SM-ZD-63007 有机溶剂使用、蒸馏过程中的安全建议及要求Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

有机溶剂使用、蒸馏过程中的安全 建议及要求 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、有机溶剂使用过程中的安全对策: 在化学反应过程中,绝大部分的化学反应都是在溶剂中进行的。溶剂是一个重要的媒介,它可以使参加反应的各种物质分子得以均匀分布,增加分子间碰撞接触机会,加速反应的进程。溶剂可以传导热量,通过它可以向反应物质提供热量,促进反应的进行;通过它也可以将反应放出的热量传出,保证反应的安全。溶剂的选择还可以直接影响反应的速度、反应的方向、反应的完全程度以及反应产物的构型等等。因此,正确地选择和使用溶剂,满足生产工艺的要求,对实现有机合成的经济目标和安全目标具有十分重要的意义。 (一)有机溶剂主要危险: 1、大多为易燃物质,遇引火源容易发生火灾; 2、大多具有较低的闪点和极低的引燃能量,在常温或较

常减压蒸馏装置的操作

常减压蒸馏装置的操作 主讲人:王立芬 一、操作原则 ●根据原料性质,选择适宜操作条件,实现最优化操作。 ●严格遵守操作规程,认真执行工艺卡片,搞好平稳操作。 ●严格控制各塔、罐液面、界面30~70%。 ●严格控制塔顶及各部温度、压力,平稳操作 ●根据原油种类、进料量、进料温度调整各段回流比,在提高产品质量的同时提高轻质油 收率和热量回收率。 二、岗位分工 ●负责原油进料、电脱盐罐、初馏塔液面、常顶回流罐、初顶回流罐液面界面、常一线、 常二线、常三线汽提塔液面以及常一中、常二中蒸发器液面调节,和本岗位计量仪表的数据计量工作。 ●调节各回流量及各部温度、流量,保证产品合格。 ●负责空冷风机的开停操作。 ●负责低压瓦斯罐及低压瓦斯去减压炉操作。 ●负责本岗位塔、容器、换热器、冷却器及所属工艺管线、阀门、仪表等设备的正确操作、 维护保养、事故处理。 ●负责与中心化验室的联系工作,及时记录各种分析数据。 ●负责本岗位消防设施管理。 ●负责本岗安全生产工作,生产设备出现问题要及时向班长汇报,并迅速处理。 ●.负责本岗位所属工艺管线、阀门等防凝防冻工作。 ●如果班长不在,常压一操执行班长的生产指挥职能或由车间指派。 ●负责仪表封油、循环水、风、9公斤蒸汽等系统的调节。 1 正常操作法 初馏塔底液面调节 控制目标:50% 控制范围:±20% 控制方式:正常操作时,初馏塔底液面LIC-105与原油控制阀FIC-102进行 串级控制,当LIC-105低于设定时,FIC-102开大,当LIC-105 高于设定时,FIC-102关小,从而实现初馏塔底液面的控制。

2 初馏塔塔顶压力调节 控制目标:≤0.08MPa 控制方式:正常操作时,初馏塔塔压通过塔顶风机运转数量调节,压力升高, 增加风机的运转数量,压力下降,减少风机运转的数量,从而实现 初馏塔塔压的控制。 异常处理 3 初馏塔塔顶温度调节 控制目标:≤125℃ 控制范围:视加工原油情况和产品质量控制调节,上下波动不超过10% 控制方式:正常操作时,初馏塔塔顶温度TIC-107与塔顶回流控制阀FIC- 103进行串级控制,当TIC-107低于设定时,FIC-103开大,当 TIC-107高于设定时,FIC-103关小,从而实现初馏塔塔顶温度 的控制。

化工典型工艺过程危险性分析

化工典型工艺过程及危险性分析 Lhjlyby: 吸附过程及危险性分析 吸附是利用某些固体能够从流体混合物中选择性地凝聚一定组分在其表面上的能力,使混合物中的组分彼此分离的单元操作过程。 吸附现象早已被人们发现和利用,在人们生活中用木炭和骨灰使气体和液体脱湿和除臭已有悠久的历史。18世纪末在生产上已应用骨灰脱除糖水溶液中的色素,20世纪20年代首次出现从气体中分离酒精和苯蒸气以及从天然气中回收乙烷等碳氢化物的大型生产装置。 目前吸附分离广泛应用于化工、石油化工、医药、冶金和电子等工业部门,用于气体分离、干燥及空气净化、废水处理等环保领域。如常温空气分离氧氮,酸性气体脱除,从各种混合气体中分离回收H2、C02、CO、CH4、C2H4等气相分离;也可从废水中回收有用成分或除去有害成分,石化产品和化工产品的分离等液相分离。在吸附过程中选用的吸附剂活性炭等材料由于吸附热的积累或者由于空气进入吸附系统可能会引起活性炭的自燃,进而引起系统介质的燃烧。 吸附是一种界面现象,其作用发生在两个相的界面上。例如活性炭与废水相接触,废水中的污染物会从水中转移到活性炭的表面上。固体物质表面对气体或液体分子的吸着现象称为吸附,其中具有一定吸附能力的固体材料称为吸附剂,被吸附的物质称为吸附质。与吸附相反,组分脱离固体吸附剂表面的现象称为脱附(或解吸)。与吸收—解吸过程相类似,吸附—脱附的循环操作构成一个完整的工业吸附过程。吸附过程所放出的热量称为吸附热。 根据吸附剂对吸附质之间吸附力的不同,可以分为物理吸附与化学吸附。 物理吸附是指当气体或液体分子与固体表面分子间的作用力为分子间力时产生的吸附,它是一种可逆过程。吸附质分子和吸附剂表面分子之间的吸附机理,与气体液化和蒸汽冷凝时的机理类似。因此,吸附质在吸附剂表面形成单层或多层分子吸附时,其吸附热比较低,接近其液体的汽化热或其气体的冷凝热。 化学吸附是由吸附质与吸附剂表面原子间的化学键合作用造成,即在吸附质和吸附剂之间发生了电子转移、原子重排或化学键的破坏与生成等现象。因而,化学吸附的吸附热接近于化学反应的反应热,比物理吸附大得多,化学吸附往往是不可逆的。人们发现,同一种物质,在低温时,它在吸附剂上进行的是物理吸附;随着温度升高到一定程度,就开始产生化学变化,转为化学吸附。 在气体分离过程中绝大部分是物理吸附,只有少数情况如活性炭(或活性氧化铝)上载铜的吸附剂具有较强选择性吸附CO或C2H4的特性,具有物理吸附及化学吸附性质。 萃取过程及危险性分析 工业上对液体混合物的分离,除了采用蒸馏的方法外,还广泛采用液—液萃取。例如,为防止工业废水中的苯酚污染环境,往往将苯加到废水中,使它们混合和接触,此时,由于苯酚在苯中的溶解度比在水中大,大部分苯酚从水相转移到苯相,再将苯相与水相分离,并进一步回收溶剂苯,从而达到回收苯酚的目的。再如,在石油炼制工业的重整装置和石油化学工业的乙烯装置都离不开抽提芳烃的过程,因为芳香族与链烷烃类化合物共存于石油馏分中,它们的沸点非常接近或成为共沸混合物,故用一般的蒸馏方法不能达到分离的目的,而要采用液—液萃取的方法提取出其中的芳烃,然后再将芳烃中各组分加以分离。 液—液萃取也称溶剂萃取,简称萃取。这种操作是指在欲分离的液体混合物中加入一种适宜的溶剂,使其形成两液相系统,利用液体混合物中各组分在两相中分配差异的性质,易溶组分较多地进入溶剂相从而实现混合液的分离。在萃取过程中,所用的溶剂称为萃取

常减压蒸馏装置的三环节用能分析

2003年6月 石油学报(石油加工) ACTAPETROLEISINICA(PETROLEUMPROCESSINGSECTION)第19卷第3期 文章编号:1001—8719(2003)03—0053—05 常减压蒸馏装置的“三环节"用能分析ENERGYANALYSIS0FATMoSPHERICANDVACUUMDISTILLATION UNITBASEDONTHREE-LINKMETHoD 李志强,侯凯锋,严淳 LIZhi—qiang,HOUKai—feng,YANChun (中国石化工程建设公司,北京100011) (SINOPECEngzneeringIncorporation,BeOing100011,China) 摘要:科学地分析评价炼油过程用能状况是节能工作的基础。笔者以某炼油厂常减压蒸馏装置为例,运用过程系统三环节能量结构理论,依据热力学第一定律和热力学第二定律进行了装置的能量平衡和炯平衡计算及分析,并根据分析结果指出了装置的节能方向,提出了节能措施。 关键词:常减压蒸馏;节能;三环节能量结构;能量平衡和炯平衡分析 中图分类号:TE01文献标识码:A Abstract:Energy—savinginrefineriesneedstobecarriedoutbasedonthescientificallyenergyanalysisandevaluationoftheprocessingunits.Theatmosphericandvacuumdistillationunitinarefinerywastakenasanexample,its energy andexergybalanceswerethenworkedoutthroughcalculationaccordingtothethree—linkmethodforprocessintegrationfollowingtheFirstLawandtheSecondLawofthermodynamics.Theresultswereanalyzed,andthecorrespondingmeasuresforenergy—savingwereproposed. Keywords:atmosphericandvacuumdistillationunit;energy~saving;three—linkenergymethod;energyandexergybalanceanalysis 炼油生产过程中为分离出合格的石油产品,需要消耗大量的能量。因此,能源消耗在原油加工成本中占有很大的比例。炼油过程的节能不仅可以降低加工成本,而且关系到石油资源的合理利用和企业的经济效益¨J。与国外先进的炼油厂相比,我国炼油企业的吨油能耗相对较高。2001年,中国石化股份有限公司所属炼厂平均能耗为77.85kg标油/t原油,与目前世界上大型化复杂炼厂的能耗不大于75kg标油/t原油的先进指标相比,差距较大,节能空间也更大。因此,加强节能技术的应用,降低炼油过程的能耗,是我国炼油企业降本增效、提高市场竞争力、实现可持续发展的必由之路。 炼油企业的用能水平因生产规模、加工流程、工艺装置的设计、操作和管理水平以及加工原油的品种和自然条件等不同而差别较大。因此,炼油企业的节能工作必须因厂而异,因装置而异,节能措施要有针对性。科学地分析评价炼油过程用能状况则是节能工作的基础【2J。笔者以某炼油厂的常减压蒸馏装置为例,运用过程系统三环节能量结构理论,依据热力学第一定律和热力学第二定律进行了装置的能量平衡和炯平衡计算,并根据计算结果对装置的用能状况进行了分析与评价,指出了能量利用的薄弱环节和装置的节能方向,提出了相应的节能措施。 1三环节能量结构理论 炼油生产过程的用能有3个特点:(1)产品分离和合成需要外部供应能量,以热和功两种形式传给 收稿日期:2002—07—23 通讯联系人:侯凯锋

炼油厂工艺流程

炼油厂结构的分析模式 撰文/甄镭(本文来自《程序员》杂志2002年11期) 本文包括四个分析模式,这些模式描述了炼油厂的结构,包括:生产装置模式(Refinery Production Unit Pattern)描述了装置与装置组的结构以及它们之间的关系;油品储存模式(Oil Storage Pattern)描述了储罐与罐区以及它们之间的关系;油品运输模式(Oil Delivery Pattern)描述了与油品进出厂相关的码头、车站等储运单元;加工流程模式(Production Process Pattern)描述了加工流程的组成。 1. 引言 1.1 目的 笔者曾经参与开发了许多炼油厂的信息系统。这些系统几乎涉及到炼油厂的所有管理层次,既有供车间使用的装置单元操作系统,也有供领导使用的决策支持系统。在开发这些系统的过程中,技术人员常常会遇到一些与行业知识相关的障碍,例如,由于缺乏对炼油工艺基础知识的了解,使参与项目的软件工程师经常会混淆一些术语,虽然这些术语在字面是相同的,但其对于不同层次的用户而言含义往往不同。有人说,参与项目的工程师需要了解行业背景知识,但是为了开发一个信息系统,究竟了解多少才合适呢? 通常情况下,如果开发团队具备该领域的相关背景知识,会使应用软件的开发更加顺利。对于某些常见的应用系统,开发团队往往比较容易掌握有关背景知识,例如对于一般软件工程师来说,了解一个图书馆的管理过程就比较容易。但是由于炼油工程离普通人生活太远,在很多情况下,让软件工程师理解某些炼油工艺的术语是非常困难的,并且,让软件工程师掌握过多的炼油工艺知识,既无必要也会大大增加项目成本。因此,有必要开发一系列相关的分析模式,作为炼油厂信息系统的开发指南。本文的读者主要是系统分析员、

蒸馏过程及危险性分析详细版

文件编号:GD/FS-2405 (解决方案范本系列) 蒸馏过程及危险性分析详 细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

蒸馏过程及危险性分析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 化工生产中常常要将混合物进行分离,以实现产品的提纯和回收或原料的精制。对于均相液体混合物,最常用的分离方法是蒸馏。如从发酵的醪液提炼饮料酒,石油的炼制分离汽油、煤油、柴油等,以及空气的液化分离制取氧气、氮气等,都是蒸馏完成的。混合物的分离依据总是混合物中各组分在某种性质上的差异。蒸馏便是以液体混合物中各组分挥发能力的不同作为依据的。对大多数溶液来说,各组分挥发能力的差别表现在组分沸点的差别。因为蒸馏过程有加热载体和加热方式的安全选择问题,又有液相汽化分离及冷凝等的相变安全问题,即能量的转换和相态的变化,同时在系统中存在,蒸馏过程又是物质被

常减压装置

常减压装置 简介 常减压装置是常压蒸馏和减压蒸馏两个装置的总称,因为两个装置通常在一起,故称为常减压装置。主要包括三个工序:原油的脱盐、脱水;常压蒸馏;减压蒸馏。从油田送往炼油厂的原油往往含盐(主要是氧化物)带水(溶于油或呈乳化状态),可导致设备的腐蚀,在设备内壁结垢和影响成品油的组成,需在加工前脱除。 基本原理 电脱盐基本原理: 为了脱掉原油中的盐份,要注入一定数量的新鲜水,使原油中的盐充分溶解于水中,形成石油与水的乳化液。 在强弱电场与破乳剂的作用下,破坏了乳化液的保护膜,使水滴由小变大,不断聚合形成较大的水滴,借助于重力与电场的作用沉降下来与油分离,因为盐溶于水,所以脱水的过程也就是脱盐的过程。 常压蒸馏和减压蒸馏都属物理过程,经脱盐、脱水的混合原料油加热后在蒸馏塔里,根据其沸点的不同,从塔顶到塔底分成沸点不同的油品,即为馏分,这些馏分油有的经调和、加添加剂后以产品形式出厂,绝大多是作为二次加工装置的原料,因此,常减压蒸馏又称为原油的一次加工。 主要设备 1、电脱盐罐其主要部件为原油分配器与电级板。 原油分配器的作用是使从底部进入的原油通过分配器后能够均匀地垂直向上流动,目的一般采用低速槽型分配器。 电极板一般有水平和垂直两种形式。交流电脱盐罐常采用水平电极板,交直流脱盐罐则采用垂直电极板。水平电极板往往为两至三层。 2、防爆高阻抗变压器变压器是电脱盐设备的关键设备。 3、混合设施。油、水、破乳剂进脱盐罐前应充分混合,使水和破乳剂在原油中尽量分散到合适的浓度。一般来说,分散细,脱盐率高;但分散过细时可形成稳定乳化液反而使脱盐率下降。脱盐设备多用静态混合器与可调差压的混合阀串联来达到上述目的。 工艺流程:炼油厂多采用二级脱盐工艺,图:1-1 所在地址

炼油化工装置的具体工艺流程

炼油化工装置的具体工艺流程 一般炼油厂主要由炼油工艺装置和辅助设施构成。炼油工艺装置的作用是将原油加工成液体的轻质燃料和重质燃料,其中轻质燃料包括汽油、煤油、轻柴油,重质燃料包括重柴油和锅炉专用燃料等。此外,通过炼油工艺装置,还能将原油分解成润滑油、气态烃、液态烃、化工原料、沥青、石油焦、石蜡等。根据产品类别分类的话,就分为了燃料型、燃料-化工型、燃料-润滑油型。 一、常减压蒸馏的主要工艺流程 常减压蒸馏主要分为4个步骤,分别为:原油脱盐脱水、初馏、常压蒸馏、减压蒸馏。 1原油脱盐脱水

从地下采出的原油中含有一定比例的水分,这部分水分中含有矿物质盐类。如果原油中水分过大的话,不利于蒸馏塔稳定,容易损坏蒸馏塔。此外,水分过大势必需要延迟加热时间,增加了热量的吸取,增加了原料成本。水分中含有的矿物质盐会在蒸馏过程中产生腐蚀性的盐垢,附着在管道上,这样就会无形当中增加了原油的流动阻力,减慢了流动速度,增加了燃料消耗,所以需要对原油进行脱盐脱水处理。 2初馏 经过了第一步的脱盐脱水操作之后,原油要经过换热器提高温度,当温度达到200℃~250℃时,才可以进入初馏塔装置。在这里,将原油里剩余的水分、腐蚀性气体和轻汽油排出,这样就减少了塔的负担,保证了塔的稳定状态,起到了提高产品质量和尽可能多的回收原油的效果。 3常压蒸馏 从上一步骤出来的油叫拔顶油。经过输送泵进入常压炉后加热,加热要求是360℃左右,然后进入常压塔。从塔顶分离出来的油和气,经过冷凝和换热后,一些就成为汽油,一些就成为了煤油和柴油。 4减压蒸馏 减压蒸馏的主要工艺装置是减压塔,减压塔是将从常压塔里出来的重油,通过减压的方式进行二次加工和深加工。 二、催化裂化的主要工艺流程 催化裂化装置的原材料是需要二次加工和深加工的重质油。通过这道工序,可以将重质油裂解为我们需要的轻质油。 催化裂化的主要步骤为:反应-再生系统、分馏系统、吸收-稳定系统。

蒸发过程及危险性分析

编号:AQ-JS-06504 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 蒸发过程及危险性分析 Evaporation process and risk analysis

蒸发过程及危险性分析 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 在化工、医药和食品加工等工业生产中,常常需要将溶有固体溶质的稀溶液加以浓缩,以得到高浓度溶液或析出固体产品,此时应采用蒸发操作。 蒸发就是通过加热的方法将稀溶液中的一部分溶剂汽化并除去,从而使溶液浓度提高的一种单元操作,其目的是为了得到高浓度的溶液。 例如:在化工生产中,用电解法制得的烧碱(NaOH溶液)的质量浓度—般只在10%左右,要得到42%左右的符合工艺要求的浓碱液则需通过蒸发操作,由于稀碱液中的溶质NaOH不具有挥发性,而溶剂水具有挥发性,因此生产上可将稀碱液加热至沸腾状态,使其中大量的水分发生汽化并除去,这样原碱液中的溶质NaOH的浓度就得到了提高。又如:食品工业中利用蒸发操作将—些果汁加热,使一部分水分汽化并除去,以得到浓缩的果汁产品。

除此之外,蒸发操作还常常用来先将原料液中的溶剂汽化,然后加以冷却以得到固体产品,如食糖的生产、医药工业中固体药物的生产等都属此类。 在工业生产中应用蒸发操作时,需认识蒸发如下几方面的特点。 ①蒸发的目的是为了使溶剂汽化,因此被蒸发的溶液应由具有挥发性的溶剂和不挥发性的溶质组成,这一点与蒸馏操作中的溶液是不同的。整个蒸发过程中溶质数量不变,这是本章物料衡算的基本依据。 ②溶剂的汽化可分别在低于沸点和沸点时进行。在低于沸点时进行,称为自然蒸发。如海水制盐用太阳晒,此时溶剂的汽化只能在溶液的表面进行,蒸发速率缓慢,生产效率较低,故该法在其他工业生产中较少采用。若溶剂的汽化在沸点温度下进行,则称为沸腾蒸发,溶剂不仅在溶液的表面汽化,而且在溶液内部的各个部分同时汽化,蒸发速率大大提高。本章只讨论工业生产中普遍采用的沸点汽化。 较慢的那一步过程的速率,即热量传递速率,因此工程上通常

蒸馏过程及危险性分析示范文本

蒸馏过程及危险性分析示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

蒸馏过程及危险性分析示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 化工生产中常常要将混合物进行分离,以实现产品的 提纯和回收或原料的精制。对于均相液体混合物,最常用 的分离方法是蒸馏。如从发酵的醪液提炼饮料酒,石油的 炼制分离汽油、煤油、柴油等,以及空气的液化分离制取 氧气、氮气等,都是蒸馏完成的。混合物的分离依据总是 混合物中各组分在某种性质上的差异。蒸馏便是以液体混 合物中各组分挥发能力的不同作为依据的。对大多数溶液 来说,各组分挥发能力的差别表现在组分沸点的差别。因 为蒸馏过程有加热载体和加热方式的安全选择问题,又有 液相汽化分离及冷凝等的相变安全问题,即能量的转换和 相态的变化,同时在系统中存在,蒸馏过程又是物质被急 剧升温浓缩甚至变稠、结焦、固化的过程,安全运行就显

蒸馏过程及危险性分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 蒸馏过程及危险性分析 (正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5946-33 蒸馏过程及危险性分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 化工生产中常常要将混合物进行分离,以实现产品的提纯和回收或原料的精制。对于均相液体混合物,最常用的分离方法是蒸馏。如从发酵的醪液提炼饮料酒,石油的炼制分离汽油、煤油、柴油等,以及空气的液化分离制取氧气、氮气等,都是蒸馏完成的。混合物的分离依据总是混合物中各组分在某种性质上的差异。蒸馏便是以液体混合物中各组分挥发能力的不同作为依据的。对大多数溶液来说,各组分挥发能力的差别表现在组分沸点的差别。因为蒸馏过程有加热载体和加热方式的安全选择问题,又有液相汽化分离及冷凝等的相变安全问题,即能量的转换和相态的变化,同时在系统中存在,蒸馏过程又是物质被急剧升温浓缩甚至变稠、结焦、固化的过程,安全运行就显得十分重要。

炼油装置

炼油生产安全 中国是世界上最早发现、利用石油资源的国家之一。我国石油产品品种较为齐全,除能满足国内需要外,还可部分出口。我国39类炼油生产装置名称见表1。 表1我国39类炼油生产装置名称 炼油厂类型:炼油厂是以各类原油为原料,采用物理分离和化学反应的方法得到石油燃料、润滑油、石蜡、沥青、石油焦、液化石油气和石油基本化工原料等产品。按照原油性质,生产出不同类型的产品特性,炼油厂可分为五种类型:①燃料型;②燃料—润滑油型;③燃料—化工型;④燃料-润滑油-化工型;⑤燃料—化肥—化工型。从当前石油加工的趋势看,单纯的生产燃料或燃料—润滑油石油制品的企业已逐步转为以炼油为龙头向深度加工转化,同时还生产化肥、基本化工原料和各类化工产品,以充分利用资源取得最佳效益。 主要炼油生产装置:随着科学技术发展,炼油厂的生产规模越来越大,一般都有十几套或几十套装置组成。炼油生产主要装置介绍如下。 1.常减压蒸馏。它是每个炼油厂必须有的炼油加工的第一道工序,也是最基本的石油炼制过程。它采用蒸馏的方法反复地通过冷凝与汽化将原油分割成不同沸点范围的油品或半

成品,得到各种燃料和润滑油馏分,有的可直接作为产品调和出厂,但大部是为下一道工序提供原料。该装置通常由电脱盐,初馏、常压和减压蒸馏等工序组成。 图1 常减压蒸馏工艺方框流程图 首先将原油换热至90~130℃加入精制水和破乳剂,经混合后进入电脱盐脱水器,在高压交流电场作用下使混悬在原油中的微小液滴逐步扩大成较大液滴,借助重力合并成水层,将水及溶解在水中的盐、杂质等脱除。经脱盐脱水后的原油换热至220~250℃,进入初馏塔,塔顶拔出轻汽油,塔底拔顶原油经换热和常压炉加热到360~370℃进入常压分馏塔,分出汽油、煤油、轻柴油、重柴油馏分,经电化学精制后作成品出厂。常压塔底重油经减压炉加热至380~400℃进入减压分馏塔,在残压为2~8kPa下,分馏出各种减压馏分,作催化或润滑油原料。减压渣油经换热冷却后作燃料油或经换热后作焦化、催化裂化,氧化沥青原料。 2.催化裂化。催化裂化是重质油轻质化的最重要的二次加工生产装置。它以常压重油或减压馏分油掺入减压渣油为原料,与再生催化剂接触在480~500℃的条件下进行裂化、异构化、芳构化等反应,生产出优质汽油、轻柴油、液化石油气及干气(作炼油厂自用燃料)。使用催化剂的主要成分是硅酸铝,现大都为高活性的分子筛催化剂。反应后的催化剂经700℃左右高温烧焦再生后循环使用。催化裂化生产工艺方框流程见图2。 图2 重油催化裂化生产工艺方框流程图 3.加氢裂化。加氢裂化是重质油轻质化的一种工艺方法。以减压馏分油为原料,与氢气混合在温度400℃左右,压力约17MPa和催化剂作用下进行裂化反应,生产出干气、液化石油气、轻石脑油、重石脑油、航空煤油、轻柴油等产品。其生产方案灵活性大,产品质量稳定性好,但由于该装置对设备要求高,工艺条件苛刻,投资高,因而加氢裂化总加工量远不如催化裂化装置。 加氢裂化生产工艺方框流程见图3。 图3 加氢裂化生产工艺方框流程图 4.催化重整。由常减压蒸馏初馏塔、常压塔顶来的直馏轻汽油馏分,经预分馏切出肋℃以前的馏分,将60~180℃轻烃组分与氢气混合后,加热至280~340℃进行预加氢,以去除硫、氮、氧等杂质,再与氢气混合加热至490~510℃进入重整反应器,在铂催化剂的作用

常减压蒸馏的危险因素及其防范措施

编号:SM-ZD-95422 常减压蒸馏的危险因素及 其防范措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

常减压蒸馏的危险因素及其防范措 施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 (一)开停工危险因素及其防范 常减压装置的开工按以下主要步骤进行: 开工前的设备检查一设备、流程贯通试压一减压塔抽真空气密性试验一柴油冲洗一装置开车 装置开车顺序:原油冷循环一升温脱水一250℃恒温热紧一常压开侧线一减压抽真空开侧线→调整操作 在开工过程中,容易产生的危险因素主要是:机泵、换热器泄漏着火、加热炉升温过快产生裂纹。其危险因素及防范措施见表2—6。 常减压蒸馏装置的停工程序:原油降量一常压降温停侧线一减压降温消除真空度停侧线。

在停工过程中,容易产生的危险因素主要是:炉温降低过快导致炉管裂纹,洗塔冲翻塔盘。停工危险因素及其防范措施见表2—7。(二)正常生产中危险因素及其防范开工正常生产过程中的危险因素及其防范措施见表2—8。(三)设备防腐 随着老油田原油的继续开采,原油的重质化,劣质化日益明显。进口高硫原油的加工,对设备的防腐提出更高的要求。原油中引起设备和管线腐蚀的主要物质是无机盐类、各种硫化物和有机酸等。常减压装置设备腐蚀及其防范见表2—9。 (四)装置易发生的事故及其处理 装置的机泵机对其他设备,更容易发生事故。机泵的事故及处理见表2—10。 这里填写您的企业名字 Name of an enterprise

常减压蒸馏装置操作参数十六大影响因素

常减压蒸馏装置操作参数十六大影响因素((十一)常压塔底液位 常压塔底液位发生变化,会影响常压塔底泵出口流量发生波动,如果减压炉没有及时调整火嘴的发热量,会导致减压炉出口温度波动,即为减压塔进料温度发生变化,这样会导致减压塔操作波动,严重时会使减压侧线产品质量指标不合格。所以,常压塔底液位稳定是减压系统平稳操作的前提条件。一般,常压塔底液位控制在50%±10%的范围内。常压塔底液位的影响因素有:常压塔进料量、常底泵出口流量、汽化率(进料温度、进料性质、侧线抽出量多少.塔底注汽量、塔顶压力)。 1.进料量 常压塔底进料量主要由初底油泵出口流量控制,进料量增大,则常压塔底液面将升高,进料量减小,则常压塔底液面将降低。但是,如果改变了初底泵出口的流量,会引起初馏塔底液位的变化,就需要调节原油泵出口流量,这是不可取的,所以,一般不会采取调节初馏塔底泵出口流量来调节常压塔底液位。 2.常底泵出口流量 常底泵出口流量增大,则常压塔底液面将降低;常底泵出口流量减小,则常压塔底液面将升高。但是在调节常底泵出口流量的同时,也要考虑减压系统的操作平稳性,常底泵出口流量波动,一定要提前做好减压炉的相关调节工作,如燃料油火嘴和燃料气火嘴阀门的开

度、炉膛负压等,以保证减压塔进料的温度稳定,进而稳定整个减压塔的操作稳定。 3.汽化率 常压塔的汽化率主要是指常顶气体、常顶汽油、常一线、常二线、常三线产品的产率总和。常压塔底的汽化率升高,即为常顶产品和常压侧线产品的产率增加,则常底液面将下降;汽化率降低,则说明本应该汽化并从侧线馏出的组分没有馏出而是留存在塔底,使得常底液面将升高。常压塔底汽化程度是常压塔底液位影响的很重要的因素。 (1)进料性质 保持常压塔底温度不变,进科中轻组分的比例增大,则汽化率将升高。反之,降低。保持常压塔底温度、塔顶温度和压力不变,如果进料密度变小,进料中轻组分的比例增大,则常顶产品产量将会增加,汽化率将升高。反之,降低。 常底进料密度变小,说明本应该在初馏塔汽化馏出的组分没有馏出,而是随初底原油一同进入到了常压塔,这些组分便会在常顶馏出,如果不考虑塔顶压力的影响因素,常底进料性质的变化一般不会影响常压侧线产品的产率。 (2)进料温度 进料温度会促进油分的汽化,温度升高,则汽化率将升高;反之,则降低。 常压塔底进料温度与常压炉的加热程度和原油三段换热终温有关,从初馏塔底至常压炉进口这一段原油的换热系统称为原油三段换

2020年炼油厂常减压蒸馏装置危险有害因素分析

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020年炼油厂常减压蒸馏装置 危险有害因素分析 Safety management is an important part of production management. Safety and production are in the implementation process

2020年炼油厂常减压蒸馏装置危险有害因 素分析 (1)装置中存在的主要危险有害因素 装置中存在的主要危险有害因素是火灾、爆炸和中毒;此外,装置中还存在噪声、烫伤等危险有害因素。主要危险化学品分布见下表 装置主要危险化学品及危险有害因素分布 装置名称 主要危险部位 主要危险有害物质 主要危险有害因素 工艺操作条件 火灾危险性分类

常减压装置 电脱盐区 原油 火灾、爆炸触电 温度120℃ 甲 初馏塔区 原油、石脑油、液化石油气、硫化氢火灾、爆炸、中毒 温度220℃ 常压炉、减压炉 原油、常渣、燃料气 火灾、爆炸、烫伤、 噪声、中毒 温度365℃390℃ 常压塔区

石脑油、航煤、200#溶剂油、柴油、蜡油、常渣、不凝气、硫化氢、氨 爆炸、火灾、烫伤、噪声、中毒 温度356℃压力0.16MPa 减压塔区 不凝气、柴油、蜡油、减渣、硫化氢 火灾爆炸、烫伤、中毒 温度390℃ 压力15mmHg 稳定塔区 液化气石脑油不凝气 火灾爆炸、中毒 50℃1.0MPa 机泵区 石脑油、煤油、柴油、蜡油、常渣、减渣、原油 火灾、爆炸、烫伤、噪声

相关文档
最新文档