高中数学椭圆题型归纳

高中数学椭圆题型归纳
高中数学椭圆题型归纳

高中数学椭圆题型归纳

一.椭圆の标准方程及定义

1.已知椭圆+=1上一点P到椭圆の一个焦点の距离为3,则点P到另一个焦点の距离为()

A.2 B.3 C.5 D.7

2、已知椭圆の标准方程为,并且焦距为6,则实数mの值为.3.求满足下列条件の椭圆の标准方程

(1)焦点分别为(0,﹣2),(0,2),经过点(4,)

(2)经过两点(2,),()

4.求满足下列条件の椭圆方程:

(1)长轴在x轴上,长轴长等于12,离心率等于;

(2)椭圆经过点(﹣6,0)和(0,8);

(3)椭圆の一个焦点到长轴两端点の距离分别为10和4.

5.设F1,F2分别是椭圆+=1の左,右焦点,P为椭圆上任一点,点Mの坐标为(6,4),则|PM|+|PF1|の最大值为.

二、离心率

1、已知F1、F2是椭圆の两个焦点,P是椭圆上一点,∠F1PF2=90°,

则椭圆离心率の取值围是.

2.设F1、F2是椭圆E:+=1(a>b>0)の左右焦点,P是直线x=a 上一点,△F2PF1是底角为30°の等腰三角形,则椭圆Eの离心率为()

A.B.C.D.

3.已知点F1、F2是双曲线C:﹣=1(a>0,b>0)の左、右焦点,O为坐标原点,点P在双曲线Cの右支上,且满足|F1F2|=2|OP|,|PF1|≥3|PF2|,则双曲线Cの离心率の取值围为()A.(1,+∞)B.[,+∞) C.(1,] D.(1,]

三、焦点三角形

1、已知椭圆+=1左,右焦点分别为F1,F2,点P是椭圆上一点,且∠F1PF2=60°.

①求△PF1F2の周长

②求△PF1F2の面积.

2.已知点(0,﹣)是中心在原点,长轴在x轴上の椭圆の一个顶点,离心率为,椭圆の左右焦点分别为F1和F2.

(1)求椭圆方程;

(2)点M在椭圆上,求△MF1F2面积の最大值;

(3)试探究椭圆上是否存在一点P,使?=0,若存在,请求出点P の坐标;若不存在,请说明理由.

四、弦长问题

1、已知椭圆4x2+y2=1及直线y=x+m.

(1)当直线与椭圆有公共点时,数mの取值围.

(2)求被椭圆截得の最长弦の长度.

2、设F1,F2分别是椭圆の左、右焦点,过F1斜率为1の直线?与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求Eの离心率;

(2)设点P(0,﹣1)满足|PA|=|PB|,求Eの方程.

五、中点弦问题

1、已知椭圆+=1の弦ABの中点Mの坐标为(2,1),求直线AB

の方程,并求ABの长.

六、定值、定点问题

1、已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段ABの中点为M.(1)证明:直线OMの斜率与lの斜率の乘积为定值;

(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB 能否为平行四边形?若能,求此时lの斜率;若不能,说明理由.

七、对称问题

1.已知椭圆方程为,试确定mの围,使得椭圆上有不同の两点关于

直线y=4x+m对称.

高中数学椭圆题型归纳

参考答案与试题解析

一.选择题(共3小题)

1.(2016春?马山县期末)已知椭圆+=1上一点P到椭圆の一个焦点の距离为3,则点P到另一个焦点の距离为()

A.2 B.3 C.5 D.7

【分析】先根据条件求出a=5;再根据椭圆定义得到关于所求距离d の等式即可得到结论.

【解答】解:设所求距离为d,由题得:a=5.

根据椭圆の定义得:2a=3+d?d=2a﹣3=7.

故选D.

【点评】本题主要考查椭圆の定义.在解决涉及到圆锥曲线上の点与焦点之间の关系の问题中,圆锥曲线の定义往往是解题の突破口.

2.(2015秋?友谊县校级期末)设F1、F2是椭圆E:+=1(a>b>0)の左右焦点,P是直线x=a上一点,△F2PF1是底角为30°の等腰三角形,则椭圆Eの离心率为()

A.B.C.D.

【分析】利用△F2PF1是底角为30°の等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=a上一点,可建立方程,由此可求

椭圆の离心率.

【解答】解:∵△F2PF1是底角为30°の等腰三角形,

∴|PF2|=|F2F1|

∵P为直线x=a上一点

∴2(a﹣c)=2c

∴e==

故选:B.

【点评】本题考查椭圆の几何性质,解题の关键是确定几何量之间の关系,属于基础题.

3.(2016?模拟)已知点F1、F2是双曲线C:﹣=1(a>0,b>0)の左、右焦点,O为坐标原点,点P在双曲线Cの右支上,且满足|F1F2|=2|OP|,|PF1|≥3|PF2|,则双曲线Cの离心率の取值围为()

A.(1,+∞)B.[,+∞) C.(1,] D.(1,]

【分析】由直角三角形の判定定理可得△PF1F2为直角三角形,且PF1⊥PF2,运用双曲线の定义,可得|PF1|﹣|PF2|=2a,

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

高中数学各大题型详细方法总结

一三角函数 三角函数的题有两种考法,其中10%~20%的概率考解三角形,80%~90%的概率考三角函数本身。 1.解三角形 不管题目是什么,要明白,关于解三角形,只学了三个公式——正弦定理、余弦定理和面积公式。 所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。 2.三角函数 然后求解需要求的。套路一般是给一个比较复杂的式子,然后问这个函数的定义域、值域、周期、频率、单调性等问题。 解决方法就是,首先利用“和差倍半”对式子进行化简。化简成:

掌握以上公式,足够了。 关于题型,见下图: 二立体几何 立体几何的相关题目,稍微复杂一些,可能会卡住一些人。 这个题目一般有2~3问,一般会考查某条线的大小或者证明某个线/面与另外一个线/面平行或垂直,以及求二面角。 这类题目的解题方法有两种:空间向量法和传统法。这两种方法各有利弊。

向量法: 使用向量法的好处在于:没有任何思维含量,肯定能解出最终答案。缺点就是计算量大,且容易出错。 使用空间向量法,首先应该建立空间直角坐标系。建系结束后,根据已知条件可用向量确定每条直线。其形式为AB=(a,b,c),然后进行后续证明与求解。 箭头指的是利用前面的方法求解。如果有些同学会觉得比较乱,以下为无箭头标注的图。

传统法: 在学立体几何的时候,有很多性质定理和判定定理。但是针对高考立体几何大题而言,解题方法基本是唯一的,除了上图中6和8有两种解题方法以外,其他都是有唯一的方法。 所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。

椭圆的常见题型及解法(一).

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P (,)是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知1 1 PF e d ,又,所 以, 而 。

∴,。 2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y +=的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则10202,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知 可得 ,所以直线AB 的方程 为 ,代入椭圆方程 得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为

【精品】高中数学必修1经典题型总结

1.集合基本运算,数轴应用 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x << 2.集合基本运算,二次函数应用 已知集合{} {}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( ) A .]1,2[-- B . )2,1[- C..]1,1[- D .)2,1[ 3.集合基本运算,绝对值运算,指数运算 设集合{}{} ]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( ) A.]2,0[ B. )3,1( C. )3,1[ D. )4,1( 4.集合基本性质,分类讨论法 已知集合A= {} 22,25,12a a a -+,且-3 ∈A ,求a 的值 5.集合基本性质,数组,子集数量公式n 2 .集合A={(x,y)|2x+y=5,x ∈N,y ∈N },则A 的非空真子集的个数为( ) A 4 B 5 C 6 D 7 6.集合基本性质,空集意识 已知集合A={x|2a-1≤x≤a+2},集合B={x|1≤x≤5},若A∩B=A,求实数a 的取值范围. 7.函数解析式,定义域,换元法,复合函数,单调性,根式和二次函数应用,数形结合法 已知x x x f 2)1(+=+,定义域为:x>0 (1)求f(x)的解析式,定义域及单调递增区间 (2)求(-1)f x 解析式,定义域及最小值

8.函数基本性质,整体思想,解方程组 设1()满足2()()2,f x f x f x x -=求)(x f 9.函数基本性质,一次函数,多层函数,对应系数法 若f [ f (x )]=2x +3,求一次函数f (x )的解析式 10.不等式计算,穿针引线法 (1-x)(21)0(1)x x x +≥- 求x 取值范围 11.函数值域,反表示法,判别式法,二次函数应用,换元法,不等式法 求函数2241x y x +=-的值域 求函数2122 x y x x +=++的值域 求函数x x y 41332-+-=的值域 93(0)4y x x x =+> 12.函数值域,分类讨论,分段函数,数形结合,数轴应用 若函数a x x x f +++=21)(的最小值为3,则实数a 的值为 (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 13.函数单调性,对数函数性质,复合函数单调性(同增异减) 函数212 ()log (4)f x x =-的单调递增区间为 A.(0,)+∞ B.(-∞,0) C.(2,)+∞ D.(-∞,2)- 下列函数中,在区间(0,)+∞上为增函数的是( ) .A y 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+

高中数学必修一常见题型归类

常见题型归类 第一章集合与函数概念 1.1集合 题型1集合与元素 题型2 集合的表示 题型3 空集与0 题型4 子集、真子集 题型5 集合运算 题型5.1 已知集合,求集合运算 题型5.2 已知集合运算,求集合 题型5.3已知集合运算,求参数 题型6 “二维”集合运算 题型6自定义的集合 1.2函数及其表示 题型1 映射概念 题型2 函数概念 题型3 同一函数 题型4 函数的表示 题型5 已知函数解析式求值 题型6 求解析式 题型7定义域 题型7.1 求函数的定义域 题型7.2 已知函数的定义域问题 题型8 值域 题型8.1 图像法求函数的值域 题型8.2 转化为二次函数,求函数的值域 题型8.3转化为反比例函数,求函数的值域 题型8.4 利用有界性,求函数的值域 题型8.5单调性法求函数的值域 题型8.6 判别式法求函数的值域

题型8.7 几何法求函数值域 题型9 已知函数值域,求系数 1.3函数的基本性质单调性 题型1 判断函数的单调区间 题型2已知函数的单调区间,求参数 题型3 已知函数的单调性,比较大小 题型4 已知函数的单调性,求范围 1.4函数的基本性质奇偶性 题型1 判断函数的奇偶性 题型2 已知函数的奇偶性,求解析式 题型3 已知函数的奇偶性,求参数 题型4 已知函数的奇偶性,求值或解集等 1.5函数的图像 题型1 函数图像 题型2 去绝对值作函数图像 题型3 利用图像变换作函数图像 题型4 已知函数解析式判断图像 题型5 研究函数性质作函数图像 题型6 函数图像的对称性 第二章基本初等函数 2.1指数函数 题型1 指数运算7 题型2指数函数概念 题型3指数函数型的定义域、值域 题型4 指数函数型恒过定点 题型5 单调性 题型6 奇偶性 题型7图像 题型8方程、不等式 2.2对数函数

高中数学-选修2-1-椭圆题型大全-(1)

高中数学-选修2-1-椭圆题型大全-(1)

椭圆题 1、命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件 2、已知1 F 、2 F 是两个定点,且4 2 1=F F ,若动点P 满足4 2 1 =+PF PF 则动点P 的轨迹是( ) A 、椭圆 B 、圆 C 、直线 D 、线段 3、已知1 F 、 2 F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长1 F P 到Q ,使得2 PF PQ =,那么动点Q 的轨迹是 ( ) A 、椭圆 B 、圆 C 、直线 D 、点 4、已知1 F 、2 F 是平面α内的定点,并且) 0(22 1>=c c F F ,M 是α 内的动点,且a MF MF 221 =+,判断动点M 的轨迹. 5、椭圆 19 252 2=+y x 上一点M 到焦点1 F 的距离为2,N 为1 MF 的中 点,O 是椭圆的中心,则ON 的值是 。 6、若方程13 52 2=-+-k y k x 表示椭圆,求k 的范围. 7、 轴上的椭圆”的 表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A 、充分而不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件

8、已知方程 11 252 2=-+-m y m x 表示焦点在y 轴上的椭圆,则实数 m 的范围是 . 9、已知方程2 22 =+ky x 表示焦点在y 轴上的椭圆,则实数k 的范围是 . 10、方程2 31y x -= 所表示的曲线是 . 11、如果方程2 22 =+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围。 12、已知椭圆0 6322 =-+m y mx 的一个焦点为)2,0(,求m 的值。 13、已知方程2 22 =+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 . 14、根据下列条件求椭圆的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26; (2)长轴是短轴的2倍,且过点(2,-6); (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点) 2,3(),1,6( 21 --P P ,求椭圆方程. 15、以)0,2(1 -F 和)0,2(2 F 为焦点的椭圆经过点)2,0(A 点,则该椭 圆的方程为 。 16、如果椭圆:k y x =+22 4上两点间的最大距离为8,则k 的 值为 。 17、已知中心在原点的椭圆C 的两个焦点和椭圆 36 94:222=+y x C 的两个焦点一个正方形的四个顶点,且椭圆C

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高中数学_椭圆,知识题型总结

陈氏优学 教学课题 椭圆 知识点一:椭圆的定义 平面内一个动点到两个定点 、 的距离之和等于常数( ),这个动 点 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若,则动点的轨迹为线段; 若 ,则动点 的轨迹无图形. 讲练结合一.椭圆的定义 1.若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 知识点二:椭圆的标准方程 1.当焦点在轴上时,椭圆的标准方程:,其中; 2.当焦点在轴上时,椭圆的标准方程:,其中; 注意: 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有 和 ; 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为, ;当焦点在 轴上时,椭圆的焦点坐标为 , 。 讲练结合二.利用标准方程确定参数

1.椭圆22 14x y m + =的焦距为2,则m = 。 2.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。 知识点三:椭圆的简单几何性质 椭圆的的简单几何性质 (1)对称性 对于椭圆标准方程,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方 程都不变,所以椭圆是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的 中心对称图形,这个对称中心称为椭圆的中心。 (2)范围 椭圆上所有的点都位于直线x=±a 和y=±b 所围成的矩形内,所以椭圆上点的坐标满足|x|≤a ,|y|≤b 。

(3)顶点 ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0), A2(a,0),B1(0,―b),B2(0,b)。 ③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。a和b分别叫做椭圆的长半轴长 和短半轴长。 (4)离心率 ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。 ②因为a>c>0,所以e的取值范围是0<e<1。e越接近1,则c就越接近a,从而 越小,因 此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当 a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2。 椭圆的图像中线段的几何特征(如下图):

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

高中数学极坐标与参数方程高考题型全归纳题型部分

2019极坐标与参数方程高考题型全归纳 一.题型部分 (一) 极坐标与直角坐标的转化、参数方程与普通方程的转化,极坐标与参数 方程的转化 1. 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ= 。 2. 参数方程: 直线参数方程:0 0cos () sin x x t t y y t θ θ =+?? =+?为参数 00(,) x y 为直线上的定点, t 为直线上任一点(,)x y 到定点00(,)x y 的数量; 圆锥曲线参数方程: 圆的参数方程:cos ()sin x a r y b r θθθ =+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆2 2221x y a b +=的参数方程是cos ()sin x a y b θ θθ =??=?为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ =?? =?为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=? =?为参数 (二)有关圆的题型 题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d >个交点;相切,1:r d =个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= ,算出d ,在与半径

比较。 题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法) 思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= 第二步:判断直线与圆的位置关系 第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d = 题型三:直线与圆的弦长问题 弦长公式2 22 d r l -=,d 是圆心到直线的距离 延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义” (三)距离的最值: ---用“参数法” 1.曲线上的点到直线距离的最值问题 2.点与点的最值问题 “参数法”:设点---套公式--三角辅助角 ①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ②套公式:利用点到线的距离公式 ③辅助角:利用三角函数辅助角公式进行化一 例如:在直角坐标系xOy 中,曲线1 C 的参数方程为()sin x y α αα?=?? =?? 为参数,以坐标原 点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

高中数学排列组合题型归纳总结材料

排列组合 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1、.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解: 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2、 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解: 522 480A A A = 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序 有多少种? 解54 56A A 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两

个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4.、 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然 后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4 7A 种方法,其余的三个位置甲乙丙 共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题: 10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10 C 五.重排问题求幂策略 例5.、把6名实习生分配到7个车间实习,共有多少种不同的分法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节 目插入原节目单中,那么不同插法的种数为 42 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87 六.环排问题线排策略 例6.、 8人围桌而坐,共有多少种坐法? 解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把 圆形展成直线其余7人共有(8-1)!种排法即7! 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

高中数学椭圆练习题

椭圆标准方程典型例题 例1 已知椭圆0632 2=-+m y mx 的一个焦点为(0,2)求m 的值. 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 例5 已知椭圆方程()0122 22>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内 切,求动圆圆心P 的轨迹方程 例7 已知椭圆1222=+y x ,(1)求过点?? ? ??2121,P 且被P 平分的弦所在直线的方程;

(2)求斜率为2的平行弦的中点轨迹方程; (3)过()12, A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=?OQ OP k k , 求线段PQ 中点M 的轨迹方程. 例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为 5 102,求直线的方程. 例9 以椭圆13 122 2=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程. 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范 例10 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.

数学高考大题题型归纳必考

数学高考大题题型归纳必考题型例题

数学高考大题题型归纳必考题型例题 1数学高考大题题型有哪些 必做题: 1.三角函数或数列(必修4,必修5) 2.立体几何(必修2) 3.统计与概率(必修3和选修2-3) 4.解析几何(选修2-1) 5.函数与导数(必修1和选修2-2) 选做题: 1.平面几何证明(选修4-1) 2.坐标系与参数方程(选修4-4) 3.不等式(选修4-5) 2数学高考大题题型归纳 一、三角函数或数列 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。 二、立体几何 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步

高中数学-椭圆经典练习题-配答案

椭圆练习题 一.选择题: 1.已知椭圆 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D ) A .2 B .3 C .5 D .7 2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C ) A. B. C. D. 3.与椭圆9x 2 +4y 2 =36有相同焦点,且短轴长为4的椭圆方程是( B ) A 4.椭圆的一个焦点是,那么等于( A ) A. B. C. D. 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A. B. C. D. 6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B ) A. B . C . D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2| 的等差中项,则该椭圆方程是( C )。 A +=1 B +=1 C +=1 D +=1 8.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C ) (A)450 (B)600 (C)900 (D)120 9.椭圆 上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D . 116 252 2=+y x 22143x y +=22134x y +=2214x y +=22 14 y x +=5185 8014520125201 20 252222222 2=+=+=+=+y x D y x C y x B y x 2 2 55x ky -=(0,2)k 1-1512 21(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=22 1254 x y +=16x 29y 216x 212y 24x 23y 23x 24 y 222 1259 x y +=2 3

高考数学 题型全归纳:数列在生活中的应用(含答案)

数列在生活中的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活关系的精彩描述。 首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。 若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得(an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。 (二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。 (三)数列在艺术中的广泛应用

高中数学集合总结+题型分类+完美解析

集合 【知识清单】 1.性质:确定性、互易性、无序性. 2.元素和集合的关系:属于“∈”、不属于“?”. 3.集合和集合的关系:子集(包含于“?”)、真子集(真包含于“≠ ?”). 4.集合子集个数=n 2;真子集个数=12-n . 5.交集:{}B x A x x B A ∈∈=且| 并集:{}B x A x x B A ∈∈=或| 补集:{}A x U x x A C U ?∈=且| 6.空集是任何非空集合的真子集;是任何集合的子集. 题型一、集合概念 解决此类型题要注意以下两点: ①要时刻不忘运用集合的性质,用的最多的就是互易性; ②元素与集合的对应,如数对应数集,点对应点集. 【No.1 定义&性质】 1.下列命题中正确的个数是( ) ①方程022=++-y x 的解集为{}2,2- ②集合{} R x x y y ∈-=,1|2 与{}R x x y y ∈-=,1|的公共元素所组成的集合是{}1,0 ③集合{}01|<-x x 与集合{}R a a x x ∈>,|没有公共元素 A.0 B.1 C.2 D.3 分析:①中的式子是方程但不是一个函数,所以我们要求的解集不是x 的值所构 成的集合,而是x 和y 的值的集合,也就是一个点. 答案:A

详解:在①中方程022=++-y x 等价于? ??=+=-020 2y x ,即???-==22y x 。因此解集应为 (){}2,2-,错误; 在②中,由于集合{} R x x y y ∈-=,1|2的元素是y ,所以当R x ∈时,112-≥-=x y .同理, {}R x x y y ∈-=,1|中R y ∈,错误; 在③中,集合{}01|<-x x 即1,|,画出数轴便可知这两个集合可能有公共的元素,错误.故选A. 2.下列命题中, (1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素; (2)如果集合A 是集合B 的子集,则集合A 的元素少于集合B 的元素; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素; (4)如果集合A 是集合B 的子集,则集合A 和B 不可能相等. 错误的命题的个数是( ) A .0 B .1 C .2 D .3 分析:首先大家要理解子集和真子集的概念,如果集合M 是集合N 的子集,那么M 中的元素个数要小于或等于N 中元素的个数;如果集合M 是集合N 的真子集,那么M 中的元素个数要小于N 中元素的个数. 答案:C 详解:(1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素,故(1)正确; (2)如果集合A 是集合B 的子集,则集合A 的元素少于或等于集合的B 元素,故(2)不 正确; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素,故(3)正确; (4)如果集合A 是集合B 的子集,则集合A 和B 可能相等,故(4)不正确.故选C . 3.设P 、Q 为两个非空实数集,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合Q P +中的元素是b a +,其中P a ∈,Q b ∈,则Q P +中元素的个数是( ) A.9 B.8 C.7 D.6 分析:因为P a ∈,Q b ∈,所以Q P +中的元素b a +是P 中的元素和Q 中元素两两相加而得出的,最后得出的集合还要考虑集合的互易性. 答案:B 详解:当0=a 时,b 依次取1,2,6,得b a +的值分别为1,2,6; 当2=a 时,b 依次取1,2,6,得b a +的值分别3,4,8; 当5=a 时,b 依次取1,2,6,得b a +的值分别6,7,11;

高中数学 椭圆 知识点与例题

椭圆 知识点一:椭圆的定义 第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和为定值 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹不存在. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=. 注意:①只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; ②在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; ③椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 题型一、椭圆的定义 1、方程()()10222222=++++-y x y x 化简的结果是 2、若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 3、椭圆19 252 2=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为( ) A .4 B .2 C .8 D .2 3

4、椭圆22 12516 x y +=两焦点为12F F 、,()3,1A ,点P 在椭圆上,则1PF PA +的最大值为_____,最小值为 ___ 题型二、椭圆的标准方程 5、方程Ax 2+By 2=C 表示椭圆的条件是 (A )A , B 同号且A ≠B (B )A , B 同号且C 与异号 (C )A , B , C 同号且A ≠B (D )不可能表示椭圆 6、若方程22 153 x y k k +=--, (1)表示圆,则实数k 的取值是 . (2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k 的取值范围是 . 7、椭圆22 14x y m +=的焦距为2,则m = 8、已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值. 9、已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 10、求与椭圆224936x y +=共焦点,且过点(3,2)-的椭圆方程。 11、已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为 354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

相关文档
最新文档