必修三角恒等变换测试题修订稿

必修三角恒等变换测试题修订稿
必修三角恒等变换测试题修订稿

必修三角恒等变换测试

集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

第三章测试

(时间:120分钟,满分:150分)

一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.sin105°cos105°的值为( ) A.14 B .-14

C.34

D .-3

4

解析 原式=12sin210°=-12sin30°=-1

4.

答案 B

2.若sin2α=14,π4<α<π

2,则cos α-sin α的值是( )

A.3

2 B .-3

2

C.34

D .-34

解析 (cos α-sin α)2

=1-sin2α=1-14=3

4.

又π4<α<π2

, ∴cos α

2

. 答案 B

3.已知180°<α<270°,且sin(270°+α)=45,则tan α2

( )

A .3

B .2

C .-2

D .-3

答案 D

4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( )

A. 2

B.22

C.32

D. 2 解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(

32sin A +1

2

cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A

5.已知tan θ=13,则cos 2

θ+12sin2θ等于( )

A .-6

5

B .-45

C.45

D.65

解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=6

5.

答案 D

6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( )

A .等腰三角形

B .直角三角形

C .等腰直角三角形

D .等腰三角形或直角三角形

解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π

2.

答案 D

7.设a =22(sin17°+cos17°),b =2cos 2

13°-1,c =32,

则( )

A .c

B .b

C .a

D .b

解析 a =22sin17°+2

2

cos17°=cos(45°-17°)=cos28°,

b =2cos 213°-1=cos26°,

c =3

2

=cos30°,

∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A

8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( )

A .tan A ·tan

B >1 B. tan A ·tan B <1

C .tan A ·tan B =1

D .不能确定

解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐

角.

则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),

∴tan C =-tan(A +B )=-tan A +tan B

1-tan A ·tan B <0,

易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B

9.函数f (x )=sin 2

? ????x +π4-sin 2

?

????x -π4是( )

A .周期为π的奇函数

B .周期为π的偶函数

C .周期为2π的奇函数

D .周期为2π的偶函数

解析 f (x )=sin 2

? ????x +π4-sin 2

?

????x -π4

=cos 2

? ????π4-x -sin 2

?

????x -π4

=cos 2

? ????x -π4-sin 2

?

????x -π4

=cos ?

????

2x -π2

=sin2x . 答案 A

10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2]

B.?????

???

1+22,2

C.?????

??

?

1-22,1+22 D.????

??

-12,32 解析 y =cos 2

x +cos x sin x =1+cos2x 2+1

2

sin2x

=12+22? ??

???22sin2x +22cos2x =12+22sin(2x +π

4

).∵x ∈R , ∴当sin ? ????2x +π4=1时,y 有最大值1+22;

当sin ? ????2x +π4=-1时,y 有最小值1-2

2.

∴值域为?????

??

?

1-22,1+22. 答案 C

11.2cos10°-sin20°sin70°的值是( )

A.12

B.32

C. 3

D.2

解析 原式=2cos30°-20°-sin20°

sin70°

=2cos30°·cos20°+sin30°·sin20°-sin20°sin70°

=3cos20°cos20°= 3.

答案 C

12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=3

5

则cos α的值为( )

A.5665

B.1665

C.5665或1665

D .以上都不对

解析 ∵0<α+β<π,cos(α+β)=12

13>0,

∴0<α+β<π2,sin(α+β)=5

13.

∵0<2α+β<π,cos(2α+β)=3

5>0,

∴0<2α+β<π2,sin(2α+β)=4

5.

∴cos α=cos[(2α+β)-(α+β)]

=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=56

65. 答案 A

二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)

13.已知α,β为锐角,且cos(α+β)=sin(α-β),则tan α=________.

解析 ∵cos(α+β)=sin(α-β),

∴cos αcos β-sin αsin β=sin αcos β-cos αsin β. ∴cos α(sin β+cos β)=sin α(sin β+cos β).

∵β为锐角,∴sin β+cos β≠0,∴cos α=sin α,∴tan α=1.

答案 1

14.已知cos2α=1

3,则sin 4α+cos 4α=________.

解析 ∵cos2α=1

3,

∴sin 22α=8

9

.

∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.

答案 59

15.sin α+30°+cos α+60°2cos α

=________.

解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,

∴原式=cos α2cos α=1

2.

答案 12

16.关于函数f (x )=cos(2x -π3)+cos(2x +π

6

),则下列命题:

①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;

③y =f (x )在区间????

??

π24,

13π24上是减函数; ④将函数y =2cos2x 的图象向右平移π

24个单位后,将与已知

函数的图象重合.

其中正确命题的序号是________.

解析 f (x )=cos ? ????2x -π3+cos ? ????

2x +π6

=cos ? ????

2x -π3+sin ??????π2-? ????2x +π6

=cos ? ????2x -π3-sin ?

????

2x -π3

=2·???

?????22cos ? ????2x -π3-22sin ? ????2x -π3 =2cos ? ????2x -π3+π4

=2cos ?

????

2x -π12,

∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.

又当x ∈??????π24,13π24时,2x -π12∈[0,π],∴y =f (x )在

????

??

π24,13π24上是减函数,故③正确. 由④得y =2cos2? ????x -π24=2cos ?

????

2x -π12,故④正确.

答案 ①②③④

三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)

17.(10分)已知向量m =?

??

???cos α-23,-1,n =(sin x,1),m 与n

为共线向量,且α∈????

??-π2,0.

(1)求sin α+cos α的值;

(2)求sin2α

sin α-cos α的值.

解 (1)∵m 与n 为共线向量,

∴?

??

???cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23

.

(2)∵1+sin2α=(sin α+cos α)2=2

9,

∴sin2α=-7

9

.

∴(sin α-cos α)2

=1-sin2α=16

9

.

又∵α∈????

??

-π2,0,∴sin α-cos α<0.

∴sin α-cos α=-4

3.

sin2αsin α-cos α=7

12

.

18.(12分)求证:

2-2sin ?

????α+3π4cos ? ???

?

α+π4cos 4α-sin 4α

=1+tan α

1-tan α

. 证明 左边=

2-2sin ?

????α+π4+π2cos ? ???

?

α+π4cos 2α+sin 2αcos 2α-sin 2α

2-2cos 2

?

???

?

α+π4cos 2α-sin 2

α

1-cos ?

???

?

2α+π2cos 2α-sin 2α

=1+sin2αcos 2α-sin 2α=sin α+cos α2

cos 2α-sin 2α =cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.

19.(12分)已知cos ? ????x -π4=2

10,x ∈? ????π2

,3π4.

(1)求sin x 的值;

(2)求sin ?

????

2x +π3的值.

解 (1)解法1:∵x ∈? ????

π2

,3π4,

∴x -π4∈? ??

??

π4,π2,

于是sin ?

????

x -π4=

1-cos 2

? ??

??x -π4=72

10.

sin x =sin ??????

?

????x -π4+π4

=sin ? ????x -π4cos π4+cos ?

????x -π4sin π

4

7210×22+210×22

=45

. 解法2:由题设得

22cos x +22sin x =210, 即cos x +sin x =15.

又sin 2x +cos 2x =1,

从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-3

5

因为x ∈? ????π2,3π4,所以sin x =4

5.

(2)∵x ∈? ????

π2

,3π4,故

cos x =-1-sin 2

x =-1-? ??

??452=-35.

sin2x =2sin x cos x =-24

25.

cos2x =2cos 2

x -1=-7

25

.

∴sin ?

????

2x +π3

=sin2x cos π3+cos2x sin π

3

=-24+73

50.

20.(12

分)已知向量a

=?

????cos 3x 2,sin 3x 2,

b =

?

????

cos x 2,-sin x 2,c =(3,-1),其中x ∈R .

(1)当a ⊥b 时,求x 值的集合;

(2)求|a -c |的最大值. 解 (1)由a ⊥b 得a ·b =0, 即cos 3x 2cos x 2-sin 3x 2sin x

2=0,

则cos2x =0,得x =

k π2+π

4

(k ∈Z ),

∴x 值的集合是??????

???

?x ?

??

x =k π2+π

4,k ∈Z

. (2)|a -c |2

=? ????cos 3x 2-32+? ??

??sin 3x 2+12

=cos 2

3x 2-23cos 3x 2+3+sin 23x 2+2sin 3x 2

+1

=5+2sin 3x 2-23cos 3x

2=5+4sin ? ????3x 2

-π3,

则|a -c |2的最大值为9. ∴|a -c |的最大值为3.

21.(12分)某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为 1 cm ,求割出的长方形桌面的最大面积(如图).

连接OC ,设∠COB =θ,则0°<θ<45°,OC =1. ∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC =(cos θ-sin θ)·sin θ =-sin 2

θ+sin θcos θ=-12(1-cos2θ)+1

2

sin2θ

=12(sin2θ+cos2θ)-1

2

=2cos ?

??2θ-4-2.

当2θ-π4=0,即θ=π8时,S max =2-12(m 2

).

∴割出的长方形桌面的最大面积为

2-12

m 2

. 22.(12分)已知函数f (x )=sin(π-ωx )cos ωx +cos 2ωx (ω>0)的最小正周期为π.

(1)求ω的值;

(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的1

2

,纵

坐标不变,得到函数y =g (x )的图象,求函数g (x )在区间?

?????

0,π16上

的最小值.

解 (1)因为f (x )=sin(π-ωx )cos ωx +cos 2ωx . 所以f (x )=sin ωx cos ωx +1+cos2ωx

2

=12sin2ωx +12cos2ωx +12 =22sin ?

?

???2ωx +π4+12.

由于ω>0,依题意得2π

2ω=π.所以ω=1.

(2)由(1)知f (x )=22sin ? ?

???2x +π4+12.

所以g (x )=f (2x )=22sin ? ?

???4x +π4+12.

当0≤x ≤π16,π4≤4x +π4≤π

2

.

所以2≤sin ?

??4x +4≤1.

因此1≤g (x )≤1+2

2

.

故g (x )在区间?

?????

0,π16上的最小值为1.

新课标第一网系列资料

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

简单的三角恒等变换 知识点及习题

§3.2 简单的三角恒等变换 课时目标 1.了解半角公式及推导过程.2.能利用两角和与差的公式进行简单的三角恒等变换.3.了解三角变换在解数学问题时所起的作用,进一步体会三角变换的规律. 1.半角公式 (1)S α2:sin α2 =____________________; (2)C α2:cos α2 =____________________________; (3)T α2:tan α2 =______________(无理形式)=________________=______________(有理形式). 2.辅助角公式 使a sin x +b cos x =a 2+b 2sin(x +φ)成立时,cos φ=__________________,sin φ=______,其中φ称为辅助角,它的终边所在象限由__________决定. 一、选择题 1.已知180°<α<360°,则cos α2 的值等于( ) A .-1-cos α2 B.1-cos α2 C .-1+cos α2 D.1+cos α2 2.函数y =sin ????x +π3+sin ??? ?x -π3的最大值是( ) A .2B .1C.12D. 3 3.函数f (x )=sin x -cos x ,x ∈??? ?0,π2的最小值为( ) A .-2B .-3C .-2D .-1 4.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( ) A.π6 B.π3 C.π2 D.2π3 5.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( ) A.? ???-π,-5π6 B.????-5π6,-π6 C.????-π3,0D.????-π6,0 6.若cos α=-45,α是第三象限的角,则1+tan α21-tan α2 等于( ) A .-1B.1C .2D .-2

三角恒等变换各种题型归纳分析

三角恒等变换 α/4

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换 例1 方法:角不同的时候,能合一变换吗? . cos sin ,,cos sin .cos sin cos sin ) (;cos sin cos sin ) (.cos )(;cos )(;sin )(;sin )(.x x x x x 2203 132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθ θθθαα<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,5 4 cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,24,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==?? ? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπ απα? ?? ?? ? ? -??? ??---? -? -???72cos 36cos )2(;12 5cos 12 cos )1(.34cos 4sin )3(;2 3tan 23tan 1) 2(;2 cos 2 sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.12 4 4 2 2 ππ παα παα α α 求值:化简下列各式: 求下列各式的值:. )70sin(5)10sin(3.3. 2cos )31(2sin )31(,.212 cos 312 sin .1的最大值求大值有最大值?并求这个最 取何值时当锐角?++?+=- ++-x x y θθθπ π

三角恒等变换(测试题及答案)

三角恒等变换测试题 第I 卷 一、选择题(本大题共12个小题,每小题5分,共60分) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 3. 函数sin cos y x x =+的最小正周期为( ) A. 2 π B. π C. 2π D. 4π 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47 - B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于5 4 ,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( ) A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12 π 个单位

三角恒等变换问题(典型题型)

三角恒等变换问题 三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。 例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 2 3 αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221 cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36 αβαβ+-= 化简得,59sin()72 βα-=- 即59sin()72 αβ-= 方法评析:式的变换包括: 1、tan(α±β)公式的变用 2、齐次式 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) 4、两式相加减,平方相加减 5、一串特殊的连锁反应(角成等差,连乘)

例2 (角的变换---已知角与未知角的转化) 已知7sin()24 25π αα-= =,求sin α及tan()3 π α+. 解:由题设条件,应用两角差的正弦公式得 )cos (sin 22)4sin(1027ααπα-=-=,即5 7 cos sin =-αα ① 由题设条件,应用二倍角余弦公式得 故5 1sin cos -=+αα ② 由①和②式得5 3sin =α,5 4cos -=α, 于是3 tan 4 α=- 故3 tan()34πα-+=== 方法评析: 1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到. 2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例3(合一变换---辅助角公式)

三角恒等变换-高考理科数学试题

(二十二) 三角恒等变换 [小题对点练——点点落实] 对点练(一) 三角函数的求值 1.(2017·山东高考)已知cos x =3 4,则cos 2x =( ) A .-14 B.14 C .-18 D.18 解析:选D cos 2x =2cos 2x -1=1 8 . 2.(2018·太原一模)若cos ????α-π6=-3 3,则cos ????α-π3+cos α=( ) A .- 22 3 B .±223 C .-1 D .±1 解析:选C 由cos ????α-π3+cos α=12cos α+3 2sin α+cos α=3cos ????α-π6=-1,故选C. 3.(2018·安徽十校联考)sin 47°-sin 17°cos 30° cos 17°=( ) A .-32 B .-12 C.12 D.32 解析:选C sin 47°-sin 17°cos 30° cos 17° =sin (30°+17°)-sin 17°cos 30° cos 17° =sin 30°cos 17°+sin 17°cos 30°-sin 17°cos 30° cos 17° = sin 30°cos 17°cos 17°=sin 30°=1 2 . 4.(2018·湖南郴州质检)已知x ∈(0,π),sin ???? π3-x =cos 2????x 2+π4,则tan x =( ) A.1 2 B .-2 C.22 D. 2

解析:选D 由已知,得sin π3cos x -cos π3sin x =cos ????x +π2+12,即32cos x -1 2sin x = -12sin x +12,所以cos x =3 3 .因为x ∈(0,π),所以tan x = 2. 5.(2018·河北唐山一模)已知α为锐角,且cos ????α+π4=3 5,则cos 2α=( ) A.24 25 B.725 C .- 2425 D .±2425 解析:选A ∵0<α<π2,cos ????α+π4=35>0,∴π4<α+π4<π 2,∴sin ????α+π4=45,∴sin α=sin ????????α+π4-π4=sin ????α+π4cos π4-cos ????α+π4sin π4=45×22-35×22=2 10,∴cos 2α=1-2sin 2α=1-2× ????2102=2425 .故选A. 6.(2018·广东广州模拟)设α为锐角,若cos ????α+π6=35,则sin ????α-π 12=( ) A .-210 B.210 C.2 2 D.45 解析:选B 因为α为锐角,所以0<α<π2,则π6<α+π6<2π 3,因此sin ????α+π6>0,所以sin ??? ?α+π 6= 1-cos 2??? ?α+π 6= 1-????352=45.所以sin ????α-π12=sin ??? ?????α+π6-π4=sin ????α+π6cos π4-cos ????α+π6sin π4=45×22-35×22=2 10 . 7.(2018·荆州一模)计算:sin 46°·cos 16°-cos 314°·sin 16°=________. 解析:sin 46°·cos 16°-cos 314°·sin 16°=sin 46°·cos 16°-cos 46°·sin 16°=sin(46°-16°)=sin 30°=12 . 答案:1 2 8.(2018·洛阳一模)已知sin ????α-π3=14,则cos ????π 3+2α=________. 解析:cos ????π3+2α=cos ????π-2π3+2α=-cos 2????α-π3=2sin 2????α-π3-1=-7 8. 答案:-7 8

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

三角恒等变换知识点和例题.doc

精品 三角恒等变换基本解题方法 1 、两角和与差的正弦、余弦、正切公式及倍角公式: sin sin cos cos sin cos cos cos msin sin tan tan tan 1mtan tan 2 tan tan 2 2 1 tan 令 sin2 2sin cos 令 cos2 cos 2 sin 2 2cos 2 1 1 2sin 2 cos 2 = 1+cos2 2 sin 2 = 1 cos2 2 如( 1 )下列各式中,值为 1 的是 2 A 、 o o B 、 2 2 C 、 tan 22.5o 1 cos30o sin15 cos15 cos 12 sin 12 tan 2 22.5o D 、 1 2 ( 2 )命题 P : tan( A B ) 0 ,命题 Q : tan A tan B 0,则 P 是Q 的 A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件 ( 3)已知 sin( )cos cos( )sin 3 ,那么 cos 2 的值为 ____ 5 1 3 o 的值是 ______ ( 4 ) o sin 80 sin 10 (5) 已知 tan110 0 a ,求 tan 50 a 3 1 a 2 的值(用 a 表示)甲求得的结果是 ,乙求得的结果是 ,对甲、 1 3a 2a 乙求得的结果的正确性你的判断是 ______ 2. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与 角之间的关系, 注意角的一些常用变式, 角的变换是三角函数变换的核心! 第二看函数名称之间的关系,通常“切化弦” ;第三观察代数式的结构特点。基本的技巧有 : (1 )巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其 和差角的变换 . 2 2 如( ) ( ),2( ) ( ),2( ) ( ) , , 2 2 2 等),

(完整版)《三角恒等变换》单元测试题

普通高中课程标准实验教科书·数学·必修④第三章 《三角恒等变换》单元测试题 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的) 1、已知3cos 5α=-,,2παπ??∈ ???,12sin 13β=-,β是第三象限角,则()cos βα-的值是 ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 2、已知α和β都是锐角,且5sin 13α=,()4cos 5αβ+=-,则sin β的值是 ( ) A 、3365 B 、1665 C 、5665 D 、6365 3、已知32,244x k k ππππ? ?∈- + ???()k Z ∈,且3cos 45x π??-=- ???,则cos2x 的值是 ( ) A 、725- B 、2425- C 、2425 D 、725 4、设()()12cos sin sin cos 13 x y x x y x +-+=,且y 是第四象限角,则2 y tan 的值是 ( ) A 、23± B 、32± C 、32- D 、23- 5、函数()sin cos 22f x x x π π =+的最小正周期是 ( ) A 、π B 、2π C 、1 D 、2

6、已知12sin 41342x x πππ????+=<< ? ?????,则式子cos 2cos 4x x π??- ??? 的值为( ) A 、1013- B 、2413 C 、513 D 、1213 - 7 、函数sin 22 x x y =+的图像的一条对称轴方程是 ( ) A 、x =113 π B 、x =53π C 、53x π=- D 、3x π=- 8、已知1cos sin 21cos sin x x x x -+=-++,则sin x 的值为 ( ) A 、45 B 、45 - C 、35- D 、9、已知0,4πα? ? ∈ ???,()0,βπ∈,且()1tan 2αβ-=,1tan 7 β=-,则2αβ-的值是 ( ) A 、56π- B 、23π- C 、 712 π- D 、34π- 10、已知不等式( )2cos 0444x x x f x m =+≤对于任意的566 x ππ-≤≤恒成立,则实数m 的取值范围是 ( ) A 、m ≥ 、m ≤ C 、m ≤ 、m ≤ 二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在题中的横线上) 11 、函数sin 234y x x π??=+++ ??? 的最小值是 12、关于函数( )cos2cos f x x x x =-,下列命题:

三角恒等变换知识点加练习汇总

三角恒等变换测试题 _____贺孝轩 三角函数 1.画一个单位圆,则x y x y ===αααtan ,cos ,sin 2.一些诱导公式 ααπααπααπtan )tan(,cos )cos(,sin )sin(-=--=-=- ααπ ααπααπ cot )2 tan(,sin )2cos(,cos )2sin( =-=-=-? (只要两角之和为/2就行) 3.三角函数间的关系 1cos sin 22=+α ? αα22sec 1tan =+, α α αcos sin tan = ?αααcos tan sin ?= 4.和差化积 βαβαβαsin cos cos sin )sin(±=± , βαβαβαsin sin cos cos )cos( =± β αβ αβαtan tan 1tan tan )tan(?±= ± 5.二倍角 αααcos sin 22sin = , ααααα2222sin 211cos 2sin cos 2cos -=-=-= α α α2tan 1tan 22tan -= 6.二倍角扩展 αα cos 12 cos 22 += , αα cos 12 sin 22 -= , 2)2 cos 2(sin sin 1α α α±=± )tan tan 1)(tan(tan tan βαβαβα +=± 7.)sin(cos sin 22θαβα++= +b a b a ,其中2 2 cos b a a += θ,2 2 sin b a b += θ a b = θtan 8.半角公式 θ θ θ θθ θ θθ sin cos 12 cos 2sin 22 sin 22 cos 2sin 2 tan 2 -= ==

三角函数与三角恒等变换-经典测试题-附答案

三角函数与三角恒等变换(A) 一、填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上) 1. 半径是r,圆心角是α(弧度)的扇形的面积为________. 2. 若 ,则tan(π+α)=________. 3. 若α是第四象限的角,则π-α是第________象限的角. 4. 适合 的实数m的取值范围是_________. 5. 若tanα=3,则cos2α+3sin2α=__________. 6. 函数 的图象的一个对称轴方程是___________.(答案不唯一) 7. 把函数 的图象向左平移 个单位,所得的图象对应的函数为偶函数,则 的最小正值为___________. 8. 若方程sin2x+cosx+k=0有解,则常数k的取值范围是__________.

9. 1-sin10°·sin 30°·sin 50°·sin 70°=__________. 10. 角α的终边过点(4,3),角β的终边过点(-7,1),则sin(α+β)=__________. 11. 函数 的递减区间是___________. 12. 已知函数f(x)是以4为周期的奇函数,且f(-1)=1,那么 __________. 13. 若函数y=sin(x+ )+cos(x+ )是偶函数,则满足条件的 为_______. 14. tan3、tan4、tan5的大小顺序是________. 二、解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)已知 ,求

的值. 16. (本小题满分14分)已知函数f(x)=2sinx(sinx+cosx). (1) 求函数f(x)的最小正周期和最大值; (2) 在给出的直角坐标系中,画出函数y=f(x)在区间 上的图象. 17. (本小题满分14分)求函数y=4sin2x+6cosx-6( )的值域. 18. (本小题满分16分)已知函数 的图象如图所示. (1) 求该函数的解析式; (2) 求该函数的单调递增区间. 19. (本小题满分16分)设函数

简单的三角恒等变换(讲义)

简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公 式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会 换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理 问题的能力. 要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式: 22 1 cos2 2cos , 1 cos2 2sin 降幂公式: 2 1 cos 2 2 1 cos2 cos , sin 22 要点诠释: 利用二倍角公式的等价变形: 1 cos 2sin 2 , 1 cos 2cos 2 进行“升、降幂”变换,即由左边的 22 “一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为 “降幂”变换. 要点二:辅助角公式 1.形如 asinx b cosx 的三角函数式的变形: asin x bcosx asin x b cosx = a 2 b 2 sin x cos a 2 b 2 sin(x ) (其 中 角所在 象限由 a,b 的 符号确 定, 角的值 由 tan b 确定, 或由 sin b 和 a 确定, 或由 a 2 b 2 a cos 共同确定.) a 2 b 2 2.辅助角公式在解题中的应用 通过应用公式 asinx bcosx = a 2 b 2 sin (x )(或 asinx bcosx = a 2 b 2 cos ( ) ),将形如 asinx bcosx ( a, b 不同时为零)收缩为一个三角函数 a 2 b 2 sin (x )(或 a 2 b 2 cos ( )).这种 恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数, 这样做有利于函数式的化 简、求值等. a a 2 b 2 sinx cosx 令 cos a a 2 b 2 ,sin cosxsin b a 2 b 2 b

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

三角恒等变换知识讲解(基础)

三角恒等变换 【考纲要求】 1、会用向量的数量积推导出两角差的余弦公式. 2、能利用两角差的余弦公式导出两角差的正弦、正切公式. 3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【知识网络】 【考点梳理】 考点一、两角和、差的正、余弦公式 ()sin()sin cos cos sin ()S αβαβαβαβ±±=± ()cos()cos cos sin sin ()C αβαβαβαβ±±= ()tan tan tan()()1tan tan T αβαβ αβαβ ±±±= - 要点诠释: 1.公式的适用条件(定义域) :前两个公式()S αβ±,()C αβ±对任意实数α,β都成立,这表明该公式是R 上的恒等式;公式()T αβ±③中,∈,且R αβk (k Z)2 ±≠ +∈、、π αβαβπ 2.正向用公式()S αβ±,()C αβ±,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数。公式()T αβ±正向用是用单角的正切值表示和差角 ()±αβ的正切值化简。 考点二、二倍角公式 1. 在两角和的三角函数公式()()(),,S C T αβαβαβαβ+++=中,当时,就可得到二倍角的三角函数公式 222,,S C T ααα: sin 22sin cos ααα= 2()S α;

ααα22sin cos 2cos -=2()C α; 22tan tan 21tan α αα= -2()T α 。 要点诠释: 1.在公式22,S C αα中,角α没有限制,但公式2T α中,只有当)(2 24 Z k k k ∈+≠+ ≠ππ αππ α和时才成立; 2. 余弦的二倍角公式有三种:ααα2 2 sin cos 2cos -==1cos 22 -α=α2 sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。 3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍, 24α α是的二倍,332 α α是的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公 式的关键。 考点三、二倍角公式的推论 降幂公式:ααα2sin 2 1 cos sin = ; 22cos 1sin 2 αα-=; 22cos 1cos 2 αα+=. 万能公式:α α α2 tan 1tan 22sin +=; α α α2 2tan 1tan 12cos +-=. 半角公式:2cos 12 sin α α -± =; 2cos 12 cos α α +± =; α α α cos 1cos 12 tan +-± =. 其中根号的符号由2 α 所在的象限决定. 要点诠释: (1)半角公式中正负号的选取由 2 α 所在的象限确定; (2)半角都是相对于某个角来说的,如 2 3α 可以看作是3α的半角,2α可以看作是4α的半角等等。 (3)正切半角公式成立的条件是α≠2k π+π(k ∈Z)

高中数学-三角恒等变换测试题

高中数学-三角恒等变换测试题 (A 卷) (测试时间:120分钟 满分:150分) 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数sin 23cos 2y x x =-的图象的一条对称轴方程为( ) A . π 12 x = B . π12x =- C . π6x = D . π6 x =- 【答案】B 2. 若0,2πα? ? ∈ ?? ? ,且2 3 cos cos 2tan 210 πααα??++== ???,则( ) A. 1 2 B. 13 C. 14 D. 15 【答案】B 【解析】10 3)22 cos(cos 2 =++απα,23 cos 2sin cos 10 ααα-= 2 2 12tan 33tan 20tan 701tan 10αααα-=?+-=+ 所以()1 tan ,tan 73 αα==-舍 3. θ为锐角,2sin 410πθ? ?-= ??? ,则1tan tan θθ+=( ) A . 2512 B .724 C .247 D .12 25 【答案】A 【解析】因为θ为锐角,且2sin()410θπ -= ,所以(0,)42 θππ-∈,所以72cos()410θπ-=,

所以1tan()47θπ-=,即 tan tan 1471tan tan 4 θθπ -=π+,解得3tan 4θ=,所以13425 tan tan 4312 θθ+ =+= ,故选A . 4.若 sin cos 1 sin cos 2αααα+=-,则tan 2α等于( ) A.34- B.3 4 C.43- D.43 【答案】B 【解析】由 sin cos 1sin cos 2αααα+=-可得3tan -=α,则43 9162tan =--=α,故应选B. 5.若tan =34α??+- ?? ? π,则2 cos 2sin 2αα+=( ) A. 9 5 B.1 C.35- D.75 - 【答案】A 【解析】3tan 1tan 1)4 tan(-=-+= + α α π α,解得2tan =α, 22 22 cos 4sin cos cos 2sin 2sin cos ααα αααα++=+ 2 14tan 9 tan 15 αα+= =+.故选A. 6. 【天津市静海县第一中学、杨村一中、宝坻一中等六校高三上学期期中】若点 ()cos ,sin P αα 在直线2y x =-上,则2sin cos 22παα?? ++ = ?? ? ( ) A. 0 B. 25 C. 65 D. 85 【答案】D

简单的三角恒等变换(教案)

简单的三角恒等变换(一) 张掖中学 宋娟 一、教学目标 知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用; 过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力; 情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点 教学重点:利用公式进行简单的恒等变换; 教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容 复习引入(学生组织完成) 问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解 思考1(学生组织完成):如何用cos α表示222sin cos tan 222 ααα、、? 分析:观察α与2 α 的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的 变形公式. 解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2 α 代 替α,即得2cos 12sin 2 α α=-, 所以21cos sin 22 αα -=; ① 在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2 α 代替α,即得 2cos 2cos 12 α α=-, 所以21cos cos 22 αα +=. ② 将①②两个等式的左右两边分别相除,即得 21cos tan 21cos ααα-=+. 思考2:若已知cos α,如何计算sin cos tan 222 ααα、、?

三角恒等变换知识点和例题

三角恒等变换基本解题方法 1、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αα αβααβααβααααα =±=???→=-↓=-=-±±=?-↓=-m m 如(1)下列各式中,值为12 的是 A 、1515sin cos o o B 、221212cos sin ππ - C 、22251225tan .tan .-o o D (2)命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件 (3)已知35 sin()cos cos()sin αβααβα---=,那么2cos β的值为____ (4 )11080sin sin -o o 的值是______ (5)已知0tan110a =,求0tan 50的值(用a ,乙求得的结果是212a a -,对甲、乙求得的结果的正确性你的判断是______ 2. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与 角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--, 22αβαβ++=?,()() 222αββααβ+=---等),

三角恒等变换各种题型归纳分析

三角恒等变换基础知识及题型分类汇总 /4的两倍,3α是 “二倍角”的

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换(利用辅助角公式结合正余弦的和角差角公式进行变形) 例1 方法:角不同的时候,能合一变换吗? .cos sin ,,cos sin .cos sin cos sin )(;cos sin cos sin )(.cos )(;cos )(; sin )(;sin )(.x x x x x 2203132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθθθθα α<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,54cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,2 4,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==??? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπαπα????? ??-??? ??---?-?-???72cos 36cos )2(;125cos 12cos )1(.34cos 4sin )3(;23tan 23tan 1)2(;2cos 2sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.124422πππααπαααα求值:化简下列各式:求下列各式的值:.)70sin(5)10sin(3.3.2cos )31(2sin )31(,.212 cos 312sin .1的最大值求大值有最大值?并求这个最取何值时当锐角?++?+=-++-x x y θθθππ

(完整版)简单的三角恒等变换(一)

§3.2 简单的三角恒等变换(一) 学习目标:⒈熟练掌握二倍角的正弦、余弦、正切公式的正用、逆用. ⒉能灵活应用和(差)角公式、二倍角公式进行简单三角恒等变形. 教学重点:以推导积化和差、和差化积、半角公式作为基本训练,学习三角变 换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计, 不断提高从整体上把握变换过程的能力. 教学方法:讲练结合. 教具准备:多媒体投影. 教学过程: (Ⅰ)复习引入: 师:前面一段时间,我们学习了三角函数的和(差)角公式、二倍角公式等十一个公式,请同学们默写这些公式. 生:(默写公式). 师:学习了上述公式以后,我们就有了研究三角函数问题的新工具,从而使三角函数的内容、思路和方法更加丰富,为我们提高推理、运算能力提供了新的平台 本节课我们将利用已有的这十一个公式进行简单的三角恒等变换,了解三角恒等变换在数学中的应用. (Ⅱ)讲授例题: 例1试以cos α表示2 sin 2α,2cos 2α,2tan 2α. 分析:α是2 α的二倍角,因此在仅含α的正弦、余弦的二倍角公式(2)C α中,以2 α代替α就可以得到2sin 2α、2cos 2α,然后运用同角三角函数的基本关系可得2tan 2 α. 解:略. 师:例1的结果还可以表示为:

sin 2α =cos 2α=tan 2α=, 有些书上称之为半角公式,其符号由角2 α终边的位置确定. 师:由例题1和以往的经验,你认为代数式变换与三角变换有什么不同? 生:代数式变换往往着眼于式子结构形式的变换.三角恒等变换常常首先寻找式子所包含的角之间的联系. 师:由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此以式子所包含的角之间的关系为依据选择可以联系它们的适当公式,这是三角恒等变换的特点. 例2求证: ⑴1sin cos [sin()sin()]2 αβαβαβ=++-; ⑵sin sin 2sin cos 22 θ?θ?θ?+-+=. 分析:对于⑴我们可以从其中右式出发,利用和(差)的正弦公式展开、合并即可得出左式.我们也可以从两个式子结构形式的不同点考虑,发现 sin cos αβ与和(差)的正弦公式之间的联系.记sin cos x αβ=,cos sin y αβ=, 则有sin()x y αβ+=+,sin()x y αβ-=-,由此解出x ,即求出了sin cos αβ. ⑵的证明可以直接利用⑴的结果,令αβθ+=,αβ?-=,解出α、β后代如即可. 证明:略 师:在此例中,如果不利用⑴的结果,怎样证明⑵?大家可以从角与角之间的关系入手考虑. 生:将22θ?θ?θ+-=+,22 θ?θ??+-=-代入左边,然后利用和(差)的正弦公式展开、合并即可得出右式. 师:在例2的证明中,把sin cos αβ看成x ,cos sin αβ看成y 把等式看作x , y 的方程,通过解方程组求得x ,是方程思想的体现;把αβ+看作θ,αβ-看作?,从而把包含α、β的三角函数式变换成θ、?的三角函数式,是换元思想的应用.

相关文档
最新文档