轨距尺检定装置量值比对及测量不确定度评定要点

轨距尺检定装置量值比对及测量不确定度评定要点
轨距尺检定装置量值比对及测量不确定度评定要点

轨距尺检定装置量值比对

及测量不确定度评定

一引言

计量比对是在规定条件下,在相同量的计量基准、计量标准所复现或保持的量值之间进行比较、分析和评价的过程。通过比对,可以综合考察实验室的检测能力,比较准确地了解实验室的环境条件及仪器设备准确度,客观地反映实验室的能力与水平,考察检定人员的技术水平并可识别实验室中的问题及技术能力方面上的不足,并制定相应的补救措施,这些措施可能涉及诸如个别人员的行为或仪器的校准,或者检测方法等,从而保证所传量值的准确、一致、可靠。

2011年8月,×××(单位名称略)组织了本局轨距尺检定装置量值比对工作。由×××(单位名称略)作为主导实验室,其主要任务为:

a)制定并提出比对方案;

b)提供传递标准;

c)提出比对测量参考装置;

d)负责比对样品数据的准确和稳定可靠;

e)负责整理比对实验结果,提供分析和比对结论,完成比对报告;

f)遵守并执行保密规定;

g)负责解答与比对有关的技术问题。

参加此次轨距尺检定装置量值比对的参比实验室分别是×××工务段计量室、×××工务段计量室、×××工务段计量室、×××工务段计量室、×××工务段计量室、×××工务段计量室、×××工务段计量室、×××工务段计量室、×××工务机械段计量室、×××工务段计量室等10家单位。参比实验室比对使用的计量标准器是轨距尺检定装置,分别为石家庄铁路司机学校生产的Ⅰ、Ⅱ级轨距尺检定器和苏家屯轨距尺厂生产的Ⅱ级轨距尺检定器。

本次由主导实验室提供的传递标准是石家庄铁路司机学校生产的2根名义尺寸均为1435mm的量规,编号为001的量规作为正式传递标准,编号为002的量规作为备用传递标准,2根传递标准的参考值在比对试验开始前和结束后均测量一次量值。各参比实验室依据JJG219-2008《标准铁路轨距尺》检定规程分别对编号为001的传递标准进行比对检测,给出测量结果和测量不确定度评定报告,×××(单位名称略)作为主导实验室对各参比实验室提供的检测数据进行了认真统计,合理周密地分析研究,形成比对结果报告。

二比对路线和时间安排

1 比对路线

此次量值比对工作采取环形比对方式,首先由×××(主导实验室)对2根传递标准进行测量,然后将传递标准依次送到上述10个参比实验室单位进行测量,最后将传递标准返还到主导实验室进行复校,以验证传递标准量值变化是否正常。若两次测量结果均在测量不

确定度范围内,则本次所有比对数据有效,从而保证了传递标准在传递过程中没有损坏,保证了比对工作客观、公正、准确,科学。

2 比对时间安排

参比实验室要在规定时间内完成传递标准交接,测量、数据处理,送还传递标准并上交比对试验记录、比对结果报告、测量不确定度等。比对时间安排见表1。

表1 时间表

三比对进程

2011年由×××(单位名称略)下达比对计划,2011年6月主导实验室完成了比对实施细则的编写以及传递标准的准备工作;2011年6月召开了比对准备工作研讨会,讨论确定了比对实施细则;2011

年8月-9月完成了10个参比实验室的比对试验;各参比实验室从2011年9月5日前提交了比对报告;主导实验室于2011年9月6日开始整理比对数据,对试验数据进行了分析处理,于2011年9月底完成了比对数据汇总分析及比对总结报告。

四轨距尺检定装置量值比对方法及比对过程

轨距尺检定装置量值比对的检测方法采用比较测量法,检测依据JJG219-2008《标准铁路轨距尺》检定规程。

轨距尺检定装置量值比对的主要内容:根据检定规程对传递标准进行检测,传递标准由比对工作组携带到各参比单位进行现场比对检测,到达每个单位实验室后,在现场检测前比对工作组对2件传递标准的包装盒进行启封,该参比实验室项目负责人要立即核查是否有任何损坏,也要做好记录,填好验收单后交比对工作组,并在封样状态下对传递标准进行2小时恒温处理,恒温后由比对工作组成员与参比单位操作人员共同检查编号001的传递标准状态并做好交接记录。如发现该传递标准出现异常,应立即启用另一传递标准进行比对检测。如果由于参比单位造成传递标准出现异常,则视为参比单位失格,取消继续比对资格,在下一参比单位启用备用传递标准进行检测。

比对检测规定的时间为30分钟(包括数据处理)。参加比对检测的检定人员至少二人,且已取得计量检定人员证。传递标准每次测量时都必须重新调整轨距尺检定装置,且要连续重复测量10次,并做好原始记录,签好字,完成比对试验后,由考核组当场封样,带走传递标准和原始记录。

五 比对结果 1 比对数据汇总

主导实验室和各参比实验室比对数据的基本情况见表2.

表2 比对数据

2 参比实验室比对结果的一致性

参加实验室比对结果的一致性是指各参比实验室比对结果与参考值的一致程度,用E n 值表示。

2

2

ref

lab n U U X x E +-=

式中,n E —比对结果的评价值,即归一化偏差;

x -参比实验室的测量结果;

X -主导实验室的测量结果;

lab U -参比实验室测量结果的不确定度;

ref U -主导实验室测量结果的不确定度。

其中lab U 和ref U 的扩展因子均取k =2

E数的判别准则是:

n

当:

E≤1—满意;

n

E>1—不满意。

n

En值见表2。

从表中可以看出除少数个别单位之外,大多数参比实验室的测量结果与主导实验室的参考值之差在合理的预期之内,比对的一致性可以接受。

六轨距尺检定装置量值比对测量结果及不确定度评定

1 主导实验室使用测长机测量传递标准测量结果

使用测长机测量传递标准(量规)尺寸结果:

传递标准(量规),编号001,规格:1435mm,测量结果:1434.950mm。测量方法:移动头座、尾座分别对在毫米、分米金属标尺零位上,利用调整螺钉找转折点调正两测帽并置零位,将五等和四等量块组成尺寸1435mm,用量块支架将其固定在支撑板上,调整测长机工作台对好仪器,然后将量块卸下,将传递标准安装在测长机上,使两支承点位于距两端为0.2203L(白塞尔点)处,即:0.2203×1435=316mm 处,测量传递标准尺寸,测量结果报告如下:

实验人员: ×××核验人员:×××

2 使用测长机测量传递标准(量规:编号001)测量结果的不确定度评定

2.1 数学模型

δ+=S L L

式中:-L 传递标准的长度;

-S L 五等和四等组合量块的长度;

-δ比对样品和五等和四等量块差值的算术平均值;

2.2 计算分量标准不确定度

1 测长机的示值误差引起的标准不确定度分量)(L u

1.1测长机的示值误差由分米刻度尺的误差1?、毫米刻度尺的误差2?和微米刻度尺的误差3?组成。根据JJF1066—2000《测长机校准规范》,

1?=±(0.5+L /100)= ±(0.5+1400/100)= ±14.5μm; 2?=±(0.6+L /200)= ±(0.5+35/100)= ±0.85μm;

3?=±0.2μm;

以上三项误差为均匀分布且有较高的置信概率,估计其相对不确

定度为10﹪,则

自由度ν(Δ1)=ν(Δ2)=ν(Δ3)=50

)(1?u =Δ1/3 =14.5/3=8.37μm; )(2?u =Δ2/3 =0.85/3 =0.49μm;

)(3?u =Δ3/3 = 0.2/3 =0.12μm;

1.2 测量重复性估算的标准不确定度分量)(4L u

实验标准偏差4SL 是以传递标准在测长机上受检10次求出,

4SL =0.0006mm ,则)(4L u =0.0006mm=0.6μm ,自由度ν(L 4)=9。

以上各项合并,得

)(2L u =)(12?u +)(22?u +)(32?u +)(42L u

=8.372+0.492+0.122+0.62

=70.67 则,)(L u =8.4μm

2 量块的标准不确定度分量2u

1435mm 尺寸是由五等量块500mm 、400mm 、30mm 、5mm 和四等400mm 等组合而成。4块五等量块的测量不确定度分别为U 500=3μm 、U 400=2.5μm 、U 30=0.8μm 、U 5=0.60μm ,取k=2.8;四等量块500mm 测量不确定度为U 500=1.2μm ,取k=2.8;则五等量块标准不确定度为:u 500=3/2.8≈1.07μm 、 u 400=2.5/2.8≈0.89μm 、u 30=0.8/2.8≈0.29μm 、u 5=0.6/2.8≈0.21μm ;

四等量块标准不确定度为:u 500=1.2/2.8≈0.43μm ,由此引起的标准不确定度分量:

m u μ5.143.021.029.089.007.1222222=++++=

3 传递标准和量块线膨胀系数差估算的标准不确定度分量3u

传递标准和测长机分米刻度尺热膨胀系数α均在(11.5±1)×

10-6℃-1范围,其膨胀系数差δα在半宽2×10-6℃-1

的区间内均匀分布,温度变化范围为±1℃,估计其相对不确定度为10﹪,故: 3u =1435×2×10-6

℃-1

×1/3 =2μm

4 传递标准和量块间的温度差估算的不确定度分量4u

量规与量块有一定的温差存在,并以均匀分布落于估计区间-0.5℃—+0.5℃内任何处,相对不确定度10﹪,则 4u =1435×22.6×10-6

℃-1

×/3 =20μm 5 标准不确定度一览表

表1 标准不确定度一览表

6 合成标准不确定度

c u 2 =)(2L u +22u +32u +42u

=8.42+1.52+22+202

=476.55

c

u

=21.83μm

7 扩展不确定度U 95

U 95= 2×c u =2×21.83=43.66μm =0.044mm 。

8 测量结果的表示

L=(1434.950±0.044)mm 。

七 比对分析和总结

1.本次比对各参比实验室都能独立完成比对试验,并且完成了数据

处理和不确定度分析。从比对结果中可以看出,有2个实验室的En值>1,1个实验室的En值无值,这说明这些实验室在比对的过程中以及比对结果的数据处理中存在着一定的问题,现分析与总结如下:

1 从效果上看,这次比对工作十分重要也非常成功,通过这次量值比对工作,对提高站段检测能力起到了积极的促进和激励作用,从客观上验证了10个单位的检测能力;

2 各个单位从段领导、技术科负责人到计量检定员,对此次比对工作非常重视,都作了精心准备,各参比实验室检测的数据的一致性较好,取得了预期的效果;

3 各个单位的计量室的环境条件都不一样,由于工作量规和传递标准材质一样,因此,大多数单位都能对温度影响传递标准检测的不确定度分析评定准确;

4 大多数参比实验室的比对结果En值的绝对值都小于1,说明每个参比实验室都能做好计量标准的维护和管理,检定人员都能规范熟练地开展检定工作;

5 个别单位在实际操作中,对如何用工作量规实际尺寸通过百分表对轨距尺检定器进行修正还存在一定问题,应该是量规的实际尺寸与检定器百分表的读数相一致;

6 各参比实验室对测量不确定度的分析基本上能够从本单位环境条件、人员因素、检定器、测量方法以及工作量规与传递标准五个方面

进行分析,总体来说,大多数单位分析的基本正确,但个别单位不确定度分析,没有从传递标准与工作量规的关系考虑,而是从检定器与传递标准方面分析不确定度分量,分析过程不对;有的单位不确定度分析结果出现不带单位的百分数,在不确定度分析方面还存在一定的问题。

最后,提几点建议:

1 提高轨距尺检定装置实际操作能力,尤其是如何用工作量规实际尺寸对准检定器进行修正问题以及温度对材质不同的被测件的修正问题;

2 继续加强测量不确定度评定能力的提高,从实际工作出发,分析方法与实际相符;

3 明确比对工作目的,及时纠正比对中发现的问题。

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

ISO17025:2017实验室-测量不确定度评定程序

页次第 69 页共 6页文件名称测量不确定度评定程序发布日期2019年1月1日 1 目的 对测量结果不确定度进行合理的评估,科学表达检测结果。 2 范围 本程序适用于客户有要求时、新的或者修订的测试方法验证确认时、当报告值与合格临界值接近时需评定不确定度并在报告中注明。 3 职责 3.1 检测人员根据扩展不确定度评定的适用范围,按规定在记录和报告中给出测量结果的不确定度。 3.2 检测组组长负责审核测量不确定度评定过程和结果报告。 3.3 技术负责人负责批准测量不确定度评定报告。 4 工作程序 4.1 测量不确定度的来源 4.1.1 对被测量的定义不完善或不完整。 4.1.2 实现被测量定义的方法不理想。 4.1.3 取样的代表性不够,即被测量的样本不能代表所定义的被测量。 4.1.4 对被测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善。 4.1.5对模拟仪器的读数存在认为偏差(偏移)。 4.1.6测量仪器的分辨力或鉴定力不够。 4.1.7赋予测量标准和测量物质的值不准。 4.1.8用于数据计算的常量和其他参量不准。 4.1.9测量方法和测量程序的近似性和假定性。 4.1.10 抽样的影响。

页次 第 70 页 共 6页 文件名称 测量不确定度评定程序 发布日期 2019年1月1日 4.1.11在表面上看来完全相同的条件下,被测量重复观测值的变化。 4.2 测量不确定度的评定方法 4.2.1 检测组根据随机取出的样本做重复性测试所获得的结果信息,来推断关于总体性质时,应采用A 类不确定度评定方法,用符号A u 表示,其评定流程如下: A 类评定开始 对被测量X 进行n 次独立观测得到 一系列测得值 (i=1,2,…,n )i x 计算被测量的最佳估计值x 1 1n i i x x n ==∑计算实验标准偏差() k s x 计算A 类标准不确定度() A u x ()()() k A s x u x s x n == 4.2.2 检测组根据经验、资料或其他信息评估时,应采用B 类不确定度评定方法,用符号B u 表示,B 类不确定度评定的信息来源有以下六项: 4.2.2.1 以前的观测数据。 4.2.2.2 对有关技术资料和测量仪器特性的了解和经验。 4.2.2.3 相关部门提供的技术说明文件。 4.2.2.4 校准证书或其他文件提供的数据,准确度的等别或级别,包括目前暂

测量不确定度评定作业指导书(含表格)

测量不确定度评定作业指导书 (IATF16949/ISO9001-2015) 1.目的: 规定了测量不确定度的评定方法,保证实验室对测量结果进行不确定度评定和报告出具。 2.适用范围: 适用于各检测项目的不确定度评定与表示。 3.依据的技术文件: JJF1059.1Y2012 测量不确定度的评定与表示。 4. 不确定度的评定方法: 测量不确定度评定依据JJF 1059.1-2012《测量不确定度评定与表示》进行,应对由仪器设备、人员、试验环境、试验方法等各方面可能引入的不确定度分量进行全面分析,然后根据JJF 1059.1-2012的要求合成不确定度,作出正确的分析报告。不确定度愈小,分析测试结果与真值愈靠近,其质量愈高,数据愈可靠。因此,测量不确定度就是对测量结果质量和水平的定量表征。 5.测量不确定度评定的步骤: 5.1一般评定不确定度的流程如下:

5.2建立测量的数学模型 测量的数学模型是指测量结果与其直接测量的量、引用的量以及影响量等有关量之间的数学函数关系。当被测量Y由N个其他量X1、X2、…、XN的函数关系确定时,被测量的数学模型为: Y = f (X1、X2、…、XN) 5.3测量不确定度的来源 一般应从被测量、样本离散性、环境、人员、仪器设备、方法、试剂、用于数据计算的常量及其他参量、测量方法及测量重复性等方面考虑不确定度来源。详细介绍如下: 1、对被测量的定义不完整或不完善 若在定义要求的温度和压力下测量,就可避免由此引起的不确定度。 2、实现被测量定义的方法不理想 如上例,被测量的定义虽然完整,但由于测量时温度和压力实际上达不到定义的要求(包括由于温度和压力的测量本身存在不确定度),使测量结果中引入了不确定度。

测量不确定度的评定方法.

测量不确定度的评定方法 鉴于测量不确定度在检测,校准和合格评定中的重要性和影响,考虑到试验机行业应用测量不确定度时间不长,现就有关测量不确定度概念、测量不确定度的评定和表示方法,谈谈学习体会。奉献给同行业人员。由于本人学识浅薄,力不从心,有不妥或错误处,期望批评指正。 (一)测量不确定度的概念 《测量不确定度表示指南》(GUM),即国际指南,给出的测量不确定度的定义是:与测量结果相关联的一个参数,用以表征合理地赋予被测量之值的分散性。 其中,测量结果实际上指的是被测量的最佳估计值。被测量之值,则是指被测量的真值,是为回避真值而采取的。我国计量技术规范JJF1059—1999《测量不确定度评定与表示》中,亦推荐这一用法(见该规范2.3注4)。 须知,真值对测量是一个理想的概念,如何去估计它的分散性?实际上,国际指南(GUM)所评定的并非被测量真值的分散性,也不是其约定真值的分散性,而是被测量最佳估计值的分散性。 关于测量不确定度的定义,过去曾用过: ① 由测量结果给出的被测量估计的可能误差的度量; ② 表征被测量的真值所处范围的评定。 第①种提法,概念清楚,只是其中有“误差”一词,后来才改为第②种提法。现行定义与第②种提法一致,只是用被测量之值取代了真值,评定方法相同、表达式也一样,并不矛盾。 至于参数,可以是标准差或其倍数,也可以是给定置信概率的置信区间的半宽度。用标准差表示测量不确定度称为测量标准不确定度。在实际应用中如不加以说明,一般皆称测量标准不确定度为测量不确定度,甚至简称不确定度。 用标准差值表示的测量不确定度,一般包括若干分量。其中,一些分量系用测量列结果的统计分布评定,并用标准差表示:而另外一些分量则是基于经验或其他信息而判定的(主观的或先验的)概率分布评定,也以标准差值表示。可见,后者有主观鉴别的成分,这也是在定义中使用“合理地赋予”的主要原因。 为了和传统的测量误差相区别,测量不确定度用u(不确定度英文uncertainty的字头)来表示,而不用s。 应当指出,用来表示测量不确定度的标准差,除随机效应的影响外,还包括已识别的系统效应不完善的影响,如标准值不准、修正量不完善等。 显然,测量结果中的不确定度,并未包括未识别的系统效应的影响。尽管未识别的系统效应会使测得值产生某种系统偏差。 所以,可以概括地说,测量不确定度是由于随机效应和已识别得系统效应不完善的影响,而对被测量的测得值不能确定(或可疑)的程度。(注:这里的测得值,系指对已识别的系统效应修正后的最佳估计值)。 (二)不确定度的来源 在国际指南(GUM)中,将测量不确定度的来源归纳为10个方面: ① 对被测量的定义不完善; ② 实现被测量的定义的方法不理想; ③ 抽样的代表性不够,即被测量的样本不能代表所定义的被测量; ④ 对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善; ⑤ 对模拟仪器的读数存在人为偏移; ⑥ 测量仪器的分辨力或鉴别力不够; ⑦ 赋予计量标准的值或标准物质的值不准; ⑧ 引用于数据计算的常量和其他参量不准; ⑨ 测量方法和测量程序的近似性和假定性; ⑩ 在表面上看来完全相同的条件下,被测量重复观测值的变化。 上述的来源,基本上概括了实践中所能遇到的情况。其中,第①项如再加上理论认识不足,即对被测量的理论认识不足或定义不完善似更充分些;第⑩项实际上是未预料因素的影响,或简称之为“其他”。 可见,测量不确定度一般来源于随机性和模糊性。前者归因于条件不充分,而后者则归因于事物本

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

测量不确定度评定程序

1 目的 对检验方法和结果的测量不确定度进行评定和报告,进一步提高评价检验结果的可信程度,以满足客户与认可准则的要求。 2 适用范围 适用于检验中心开展的标准或非标准方法的检验结果的测量不确定度评定。 3 职责 3.1技术负责人负责测量不确定度的评定。 3.2技术负责人负责不确定度的评定的培训,以确保其在实验室检测活动中的运用水平; 3.3 检测员负责协助提供不确定度评定所需的检测数据; 4 控制程序 4.1 测量不确定评定检验项目的选择 4.1.1可能的情况下,实验室应对所有被测量进行不确定来源分析和评定,以确保测量结果的可信程度。 4.1.2技术负责人确定进行测量不确定评定的检验项目,确定进行评定的原则如下: a)当检验项目仅为定性分析时,不进行测量不确定度的评定。 b)对于公认的检验方法,检验项目已给出相应的测量不确定度及其来源时,可以不进行测量不确定度的评定。 c)除上述两种情况,各检验领域中关键、典型和重要的检验项目,均应进行测量不确定度的评定。 d)在评定测量不确定度时,对给定条件下的所有重要不确定度分量,均应采用适当的分析方法加以考虑。 e)当顾客对检验项目的测量不确定度提出要求时,应进行测量不确定度的评定。 f)在微生物检测领域,某些情况下,一些检测无法从计量学和统计学角度对测量不确定度进行有效而严格的评估,这时至少应通过分析方法,考虑它们对于检测结果的重要性,列出各主要的不确定分量,并作出合理的评估。有时在重复性和再现性数据的基础上估算不确定度也是合适的。 4.2测量不确定度的评定方法 本程序拟规定两种方法对测量不确定度进行评定。一种是GUM 法,另一种是top-down 评定方法。 Ⅰ 测量不确定度评定与表示 GUM 法 4.2.1 列出测量不确定度的来源 用GUM 法评定测量不确定度的一般流程见下图1。 图1 用GUM 法评定测量不确定度的一般流程

测量不确定度评定举例

测量不确定度评定举例 A.3.1 量块的校准 通过这个例子说明如何建立数学模型及进行不确定度的评定;并通过此例说明如何将相关的输入量经过适当处理后使输入量间不相关,这样简化了合成标准不确定度的计算。最后说明对于非线性测量函数考虑高阶项后测量不确定度的评定结果。 1).校准方法 标称值为50mm 的被校量块,通过与相同长度的标准量块比较,由比较仪上读出两个量块的长度差d ,被校量块长度的校准值L 为标准量块长度 L s 与长度差d 之和。即: L=L s +d 实测时,d 取5次读数的平均值d ,d =0.000215mm ,标准量块长度L s 由校准证书给出,其校准值L s =50.000623mm 。 2)测量模型 长度差d 在考虑到影响量后为:d =L (1+?? )-L s (1+?s ?s ) 所以被校量的测量模型为: 此模型为非线性函数,可将此式按泰勒级数展开: L =ΛΛ+-++)(θαθαs s s s L d L 忽略高次项后得到近似的线性函数式: )(θαθα-++=s s s s L d L L () 式中:L —被校量块长度; L s —标准量块在20℃时的长度,由标准量块的校准证书给出; ? —被校量块的热膨胀系数; ?s —标准量块的热膨胀系数; ? —被校量块的温度与20℃参考温度的差值; ?s —标准量块的温度与20℃参考温度的差值。

在上述测量模型中,由于被校量块与标准量块处于同一温度环境中,所以?与?s 是相关的量;两个量块采用同样的材料,?与?s 也是相关的量。为避免相关,设被校量块与标准量块的温度差为??,??= ?-?s ;他们的热膨胀系数差为??,??= ?-?s ;将?s = ?-?? 和 ?=??+?s 代入式(),由此,数学模型可改写成: = ][θαδαθδs s s l d l +-+ () 测量模型中输入量??与?s 以及??与?不相关了。 特别要注意:在此式中的??和??是近似为零的,但他们的不确定度不为零,在不确定度评定中要考虑。由于??和??是近似为零,所以被测量的估计值可以由下式得到: L =L s +d () 3).测量不确定度分析 根据测量模型, 即: l = ][θαδαθδs s s l d l +-+ 由于各输入量间不相关,所以合成标准不确定度的计算公式为: )()()()()()()(222222222222θδαδθαδδθαθ αu c u c u c u c d u c l u c l u s d s s c s +++++= () 式中灵敏系数为: 1)(11=+-=??= =θαδαθδs s s l f c c , 由此可见,灵敏系数c 3和c 4为零,也就是说明?s 及? 的不确定度对测量结果的不确定度没有影响。合成标准不确定度公式可写成: )()()()()(22222222θαδαδθu l u l d u l u l u s s s s c +++= () 4).标准不确定度分量的评定 ○ 1标准量块的校准引入的标准不确定度u (l s ) 标准量块的校准证书给出:校准值为l s =50.000623mm ,U = 0.075?m (k =3),

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

评定测量不确定度程序

评定测量不确定度程序 1.目的 合理地赋予被测量值的分散性。 2.范围 适用于本公司开展检测项目的检测不确定度评定。 3.职责 3.1技术负责人是本程序实施的负责人。 3.2检测室是本程序的实施部门。 4.程序 4.1评定要求 4.1.1自制方法的检测项目、自校仪器设备的检测参数要进行不确定度评定;客户要求出具检测结果的测量不确定度时,在有能力的条件下要提供检测结果的不确定度。 4.1.2在公认的检测方法规定了测量不确定度主要来源值的极限,并规定了计算结果的表示形式,只要遵守该检测方法和报告的要求,不需要重新评定测量不确定度。 4.1.3由于检测方法的性质,在某些情况下,会妨碍对测量不确定度进行严密的计量学和统计学上的有效计算,要找出不确定度的所有分量并作出合理评定。 4.1.4测量不确定度评定所需的精度取决于:检测方法要求、客户要求及确定符合某规范所依据的限量范围。评价测量不确定度时,不考虑检测样品预计的远期特性。 4.1.5对已评定的方法进行某些更改,要重新进行评定。 4.2 测量不确定度评定

4.2.1 成立以技术负责人为组长,以相关岗位监督人员、检测方法使用人员、自制方法编制人员以及检测方法所用仪器设备责任人为成员的评估小组。必要时,聘请有关专家参加。 4.2.2 根据国家计量技术规范《测量不确定度评定与表示》,实施本检测公司的不确定度评定工作。 4.2.3 检测公司负责起草“XXX(方法)XXX(项目)不确定度评定与表述规程”,自制方法编制人员负责起草“XXX(自制方法)XXX(项目)不确定度评定与表述规程”,起草的不确定度评定程序经评定小组审定通过后,由技术负责人批准发布。 4.2.4检测人员根据客户要求,使用“XXX(方法,自制方法)XXX(项目)不确定度评定与表述规程”对测量结果进行不确定度评定和表述,并填写《测量不确定度评定报告》此报告经校核人员核对后,作原始记录保存。 4.2.5《检测报告》中测量不确定度的说明 A除非采用国际上公认的检测方法,可以按该方法的测量结果表示形式外,在检测完成后应给出完整的测量结果Y Y=y±U B应给出获得扩展不确定度U时的标准不确定值UC和包含因子k。 5.质量记录 《测量不确定度评定报告》

秒表测量误差测量不确定度的评估

6.6 秒表测量误差测量不确定度的评估 6.6.1 概述 6.6.1.1测量依据:JJG237-2010《秒表检定规程》 6.6.1.2 计量标准:主要计量标准为时间检定仪,时间间隔测量范围(1~99999)s 。 表1 实验室的计量标准器和配套设备 6.6.1.3被校对象: 表2 被校准的机械秒表和电子秒表的分类 6.6.1.4 测量方法: 6.6.1.4.1 机械秒表测量误差的测量方法:按被校机械秒表的秒度盘和分度盘的满刻度值两个校准点进行校准,对每一被校准测量点测量3次,按下式(1)计算每次的测量误差,按(2)式取其中误差最大的作为校准结果。 0T T T i i -=? (1) {}Max i T T ?=? (2) 式中: i T —— 每次的测量值; 0T —— 时间检定仪给出的标准值; i T ?—— 每次测量得到的测量误差; T ?—— 校准结果给出的测量误差。 6.6.1.4.2 电子秒表测量误差的测量方法:对电子秒表的测量误差选择10s 、10min 、1h 三个校准点进行校准,对10s 、10min 两个受校点测量3次,1h 受校点测量2次,按下式(1)计算每次的测量误差,按(2)式取其中误差最大的作为校准结果。 6.6.1.5环境条件 1) 环境温度:(20±5)℃,校准过程中温度变化不超过2℃;相对湿度(65±15)%; 2) 周围无影响仪器正常工作的电磁干扰和机械振动; 3) 电源电压在额定电压的±10%,50Hz 。 6.6.2数学模型

{}Max i T T T 0-=? (3) 式中: T ? —— 机械秒表、电子秒表走时示值测量误差; i T —— 被校机械秒表、电子秒表每次走时测量值; 0T —— 时间检定仪给出的标准时间间隔值。 i —— 测量次数, 一般为3次, 当电子秒表测量1h 点时, 为2次。 6.6.3不确定度传播率 )()()(02 222212T u c T u c T u i c +=? 式中,灵敏系数1/1=???=i T T c ,1/02=???=T T c 。 6.6.4机械秒表、电子秒表测量误差标准不确定度的评定 6.6.4.1 输入量T 0的标准不确定度 标准设备时间检定仪标准装置的扩展不确定度为U 0=1.55×10-6×T+0.0092s, k =2 则将校准点3s ,对应的标准时间T 0的扩展不确定度为 U 0=1.55×10-6×3s+0.0092s=0.0092s ,k=2 ;则该标准引起的标准不确定度 分量为:s s k U T u 0046.02 0092.0)(00== =。 6.6.4.2 输入量T i 的标准不确定度 以被校机械秒表、分辨力0.01s 、校准点3s 为例 1)示值重复性引起的不确定度:校准3s 测量点,共进行3次的重复测量,极差为0.005s, 则单次测量的重复性为: s s s d R T s n i 0030.000295.0693 .1005.0)(≈=== 。 因测量误差为取最大的单次测量误差, 则A 类标准不确定度分量为单次测量的重复性为:s T s T u i i 0030.0)()(1==。 2)读数误差引起的不确定度: 由被校准机械秒表的分辨力引起的,采用B 类标准不确定度评定。已知分辨力为0.01s ,则不确定度区间半宽度为0.005s ,按均分布计算, s s T u i 00289.03 005.0)(2== 由于重复性分量包含了人员读数引入的不确定度分量,为避免重复计算,只计算最大影响量)(1i T u ,舍弃)(2i T u 。 6.6.5合成标准不确定度 6.6.5.1主要标准不确定度汇总表3

不确定度评定报告

不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型 数学模型 A=A S +δ 式中:A —频率计上显示的频率值 A S —参考频率标准值; δ—被测与参考频标频率的误差。 3、输入量的标准不确定度 3.1 标准晶振引入的标准不确定度()s A u ,用B 类标准不确定度评定。 标准晶振的频率准确度为±2×10-10,即当被测频率为10MHz 时,区间半宽为a =10×106×2×10-9=2×10-2Hz ,在区间内认为是均匀分布,则标准不确定度为 ()s A u =a/k =1.2×10-2Hz ()=rel s A u 1.2×10-2/107=1.2×10-9 3.2被测通用计数器的测量重复性引入的标准不确定度分量u(δ2) u(δ2)来源于被测通用计数器的测量重复性,可通过连续测量得到测量列,采用A 类方式进行评定。对一台通用计数器10MHz 连续测量10次,得到测量列9999999.6433、9999999.6446、9999999.6448、9999999.6437、9999999.6435、9999999.6428、9999999.6446、9999999.6437、9999999.6457、9999999.6451Hz 。 由测量列计算得 算术平均值 ∑==n i i f n f 1 1=9999999.6442Hz, 标准偏差 () Hz n f f s n i i 00091.01 2 1 =--= ∑=

标准不确定度分量u(δ 3 )=0.00091/=0.00029Hz u(δ 3 )rel=2.9×10-11 4 合成标准不确定度评定 主要标准不确定度汇总表 输入量A S 、δ 1 、δ 2 相互独立,所以合成标准不确定度为 u c (A)= 9 2 2 2 1 210 5.1 ) ( ) ( ) (- ? = + +δ δu u A u S 5 扩展不确定度评定 取k=2,则 扩展不确定度为 U rel =k×u c=2×1.5×10-9=3×10-9 6测量不确定度报告 f=f0(1±3×10-9)Hz,k=2 不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型

测量不确定度评定例题

测量不确定度评定与表示 一.思考题 1.什么是概率分布? 答:概率分布是一个随机变量取任何给定值或属于某一给定值集的概率随取值而变化的函数,该函数称为概率密度函数。 2.试写出测量值X 落在区间[]b a ,内的概率p 与概率密度函数的函数关系式,并说明其物理意义。 答:()()dx x p b X a p b a ?= ≤≤ 式中,()x p 为概率密度函数,数学上积分代表面积。 物理意义 : 概率分布曲线 概率分布通常用概率密度函数随随机变量变化的曲线来表示,如图所示。 测量值X 落在区间[]b a ,内的概率p 可用上式计算 由此可见,概率p 是概率分布曲线下在区间[]b a ,内包含的面积,又称包含概率或置信水平。当9.0=p ,表明测量值有90%的可能性落在该区间内,该区间包含了概率分布下总面积的90%。在(一∞~+∞)区间内的概率为1,即随机变量在整个值集的概率为l 。当=p 1(即概率为1)表明测量值以100%的可能性落在该区间内,也就是可以相信测量值必定在此区间内。 3.表征概率分布的特征参数是哪些? 答:期望和方差是表征概率分布的两个特征参数。 4.期望和标准偏差分别表征概率分布的哪些特性? 答:期望μ影响概率分布曲线的位置;标准偏差σ影响概率分布曲线的形状,表明测量值的分散性。 5.有限次测量时,期望和标准偏差的估计值分别是什么? 答:有限次测量时,算术平均值X 是概率分布的期望μ的估计值。即:∑=n i i x n X 1 1= 有限次测量时,实验标准偏差s 是标准偏差σ的估计值。即:()() 1 1 2 --=∑=n X x x s n i i

测量不确定度评定程序文件

1 目的 为评价中心检测/校准结果的可信程度,规范测量不确定度的评 定与表达方法,科学、合理、准确的进行测量不确定度评定 2 应用范围 适用于中心检测/校准结果的测量不确定度的评定与表示。 3 职责 3.1 技术负责人负责测量不确定度评定工作。 3.2 技术科组织实施测量不确定度的评定,负责拟定有关检测项目测量不确定度评定的作业指导书,指导测试人员控制各标准方法规定的影响量,编写《不确定度评定报告》,负责对检测结果测量不确定度报告的验证。 3.3 检测人员严格遵守方法标准和规范化作业技术,认真检查原始记录和检测结果。 4 程序 4.1化验中心采用公认的检测方法时应遵守该方法对不确定度的表述。 4.2化验中心采用非标准方法或偏离的标准方法时,应重新进行确认,并对方法的测量不确定度进行评定。 4.3由技术负责人组织或指定有关技术人员(可包括监督员、检测人员、设备责任人等)进行测量不确定度的评定工作。 4.4不确定度评定和报告根据JJF1059-2012《测量不确定度评定与表示》来实施。具体步骤如下: XX 公司化验中心 程序文件 第01版 第0次修订 第 页 共 页 测定不确定度评定程序 文 号 YYH/CX28-2014 颁布日期 2014年3月14日

4.1.1建立不确定度的数学模型 建立被测对象与其他对其有影响量的函数关系。以通过这些量的不确定度给出被测对象的不确定。 4.1.2确定不确定度的来源,找出构成不确定度的主要分量。 分析测试领域的测量不确定度的来源一般有以下几种: a.被测量量的定义不完整; b.被测样品代表性不够,即样品不能完全代表所定义的被测对象; c.复现被测量的测量方法不够理想; d.对测量过程受环境影响的认识不恰如其分,或对环境的测量与控制不完善; e.读数存在人为偏移; f.测量仪器的计量性能的局限性(如分辨率、灵敏度、稳定性、噪音水平等影 响,以及自动分析仪器的滞后影响和仪器检定校准中的不确定度); g.测量标准和标准物质的不确定度; h.引用的数据或其它参量的不确定度; i.包括在检测方法和程序中某些近似和假设,某些不恰当的校准模式选择,以及数据计算中的舍、入影响; j.测试过程中的随机影响等。 在确定这些影响不确定度的因素对总不确定度的贡献时,还要考虑这些因素相互之间的影响。 4.1.3量化不确定度分量 要对每一个不确定度来源通过测量或估计进行量化。首先估计每一个分量对合成不确定度的贡献,排除不重要的分量。可用下面几种方法进行量化: a.通过实验进行定量; b.使用标准物质进行定量; c.基于以前的结果或数据的估计进行定量; d.基于判断进行定量。 4.1.4计算合成标准不确定度 根据JJF1059-2012中第4、5、6节规定的方法,通过确定A类和B类标准不确

测量不确定度评估报告

测量不确定度评估报告 1.识别测量不确定度的来源 在医学实验室中构成测量不确定度的4个主要分量主要包括“检验过程不精密度”、“校准品赋值的不确定度”、“样品影响分量”和“其它检验影响分量”。我们参考CNAS-GL05:2011《测量不确定度要求的实施指南》和CNAS-TRL-001:2012《医学实验室―测量不确定度的评定与表达》的要求,制定了测量不确定度评定程序,评估了本科室申报的定量项目的测量不确定度。由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故我们只评估了前两个分量的不确定度。 2.目标不确定度 2.1 确定的检验程序在正式启用前,实验室应为每个测量程序确定目标不确定度,即规定每个测量程序的测量不确定度性能要求。 2.2 检验科每个测量程序的目标不确定度由各实验室确定。 2.3 各实验室在确定目标不确定度时可以基于生物变异、国内外专家组的建议、管理准则或当地医学界的判断。根据应用要求,对不同水平的测量结果可以确定一个或多个目标不确定度。 2.4目标不确定度如下: 2.4.1临床化学项目将TEa(国家标准(GB/T20470-2006)、卫生部临床检验中心室间质量评价标准)作为目标扩展不确定度。 2.4.2血液学项目,将TEa(行业标准WS/T406-2012)指标作为目标扩展不确定度。 3.确立输出量与输入量之间的数学模型 若输出量为Y(被测量值),输入量X的估计值为xi,则被测量与各输入量之间的函数关系为Y=f(x1,x2,x3,x4…);由于在医学实验室中“样品影响分量”和“其它检验影响分量”的不确定度难以估计,故只对前两个分量的不确定进行评估。 4测量不确定度的计算 4.1 A类评估:检验过程不精密度评估样本使用高低2个水平的室内质控品作为实验用样本。 计算本室2水平质控品的日间精密度。计算批间变异系数CV。

相关文档
最新文档