《导数及其应用》经典题型总结

《导数及其应用》经典题型总结
《导数及其应用》经典题型总结

《导数及其应用》经典题型总结

一、知识网络结构

题型一 求函数的导数及导数的几何意义 考点一 导数的概念,物理意义的应用

例1.(1)设函数()f x 在2x =处可导,且(2)1f '=,求0

(2)(2)

lim

2h f h f h h

→+--;

(2)已知()(1)(2)(2008)f x x x x x =+++L ,求(0)f '.

考点二 导数的几何意义的应用

例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值

例3:已知曲线y=.3

43

13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程.

题型二 函数单调性的应用

考点一 利用导函数的信息判断f(x)的大致形状

例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( )

考点二 求函数的单调区间及逆向应用

例1 求函数522

4

+-=x x y 的单调区间.(不含参函数求单调区间)

例2 已知函数f (x )=1

2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间)

练习:求函数x

a

x x f +=)(的单调区间。

例3 若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用)

练习1:已知函数0],1,0(,2)(3

>∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。

2. 设a>0,函数ax x x f -=3

)(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 3. 已知函数f (x )=ax 3+3x 2-x+1在R 上为减函数,求实数a 的取值范围。

总结:已知函数)(x f y =在),(b a 上的单调性,求参数的取值范围方法: 1、利用集合间的包含关系

2、转化为恒成立问题(即0)(0)(/

/

≤≥x f x f 或)(分离参数)

3、利用二次方程根的分布(数形结合) 例4 求证x x

练习:已知x>1,证明x>ln(1+x).

题型三 函数的极值与最值 考点一 利用导数求函数的极值。

例1 求下列函数的极值:(1)f(x)=x +14x ;(2)f(x)=ln x +1

x .(不含参函数求极值)

例2 设a>0,求函数f(x)=x 2+

a

x

(x>1)的单调区间,并且如果有极值时,求出极值.(含参函数求极值)

例3设函数f(x)=a

3x 3+bx 2+cx +d(a>0),且方程f′(x)-9x =0的两个根分别为1,4.若f(x)在(-∞,

+∞)内无极值点,求a 的取值范围.(函数极值的逆向应用)

例4 已知函数f(x)=x 3-3ax -1,a ≠0. (利用极值解决方程的根的个数问题) (1)求f(x)的单调区间;

(2)若f(x)在x =-1处取得极值,直线y =m 与y =f(x)的图象有三个不同的交点,求m 的取值范围.

题型四 函数的最值 例1 求函数[]2,2,1

4)(2

-∈+=x x x

x f 的最大值与最小值。(不含参求最值)

例2 已知函数f(x)=ax 3-6ax 2+b ,试问是否存在实数a 、b ,使f(x)在[-1,2]上取得最大值3,最小值-29,若存在,求出a ,b 的值;若不存在,请说明理由.(最值的逆向应用)

例3 已知f(x)=xlnx ,g(x)=x 3+ax 2-x +2. (1)求函数f(x)的单调区间.

(2)若对任意x ∈(0,+∞),2f(x)≤g ′(x)+2恒成立,求实数a 的取值范围.(利用极值处理恒成立问题)

练习1 已知

f (x )=x 3-

1

2

x 2-2x +5,当x ∈[-1,2]时,f (x )

(2)f (x )=ax 3-3x +1对于x ∈[-1,1]恒有f (x )≥0成立,则a =________.

二、知识点

1、函数()f x 从1x 到2x 的平均变化率:()()

2121

f x f x x x --.

2、导数定义:()f x 在点0x 处的导数记作x

x f x x f x f y x x x ?-?+='='

→?=)()(lim

)(000

00

3、函数()y f x =在点0x 处的导数的几何意义是曲线()

y f x =在点

()()

00,x f x P 处的切线的斜率.

4、常见函数的导数公式:

①'

C 0=;②1')(-=αααx

x ; ③x x cos )(sin '

=;④x x sin )(cos '

-=;

⑤a a a x

x ln )('

=;⑥x

x e e ='

)(; ⑦a

x x a ln 1)(log '

=

;⑧x x 1)(ln '

=

5、导数运算法则:

()1 ()()()()f x g x f x g x '

''±=±????;

()2 ()()()()()()f x g x f x g x f x g x '''?=+????;

()3()()()()()()

()()()2

0f x f x g x f x g x g x g x g x '??''-=≠????????.

6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减.

7、求解函数()y f x =单调区间的步骤:

(1)确定函数()y f x =的定义域; (2)求导数'

'

()y f x =;

(3)解不等式'

()0f x >,解集在定义域内的部分为增区间; (4)解不等式'

()0f x <,解集在定义域内的部分为减区间.

8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:

()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值;

()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.

9、求解函数极值的一般步骤:

(1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根

(4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:

()1求函数()y f x =在(),a b 内的极值;

()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最

小的一个是最小值.

高三导数压轴题题型归纳

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-1 0+m =0?m =1, 定义域为{x |x >-1},f ′(x )=e x -1 x +m = e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1 x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1 x +22>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-1 2,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1 t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1 t +2+t = 1+t 2 t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)121 1()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f =

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

初中物理杠杆经典例题

1.为了使杠杆保持静止,可以在A点拖加一个力F,力的方向不同,需要力的大小也不同,请在下图中画出力F最小时的示意图. 2.两个小孩坐在跷跷板上,当跷跷板处于平衡时 A.两个小孩的重力一定相等 B.两个小孩到支点的距离一定相等 C.轻的小孩离支点近一些 D.重的小孩离支点近一些 如果在A点施加一个如图所示的动力F使杠杆在水平 方向上平衡,则该杠杆为 A.费力杠杆 B.省力杠杆 C.等臂杠杆 D.以上三种情况都有可能

4.同一物体沿相同水平地面被匀速移动,如下图所示,拉力分别为F F乙、F丙,不记滑轮与轻绳间的摩擦,比较它们的大小,则 甲、 F乙<F丙甲>F乙>F丙甲>F乙=F丙甲=F乙>F丙 甲< 5.如图所示,定滑轮重2N,动滑轮重1N。物体A在拉力F的作用下,1s内将重为8N的物体A沿竖直方向匀速 提高了0.2m。如果不计绳重和摩擦,则以下计算结果正 确的是 A.绳子自由端移动速度为0.6m/s B.滑轮组的机械效率为80% C.拉力F的功率为 D.拉力F的大小为5N 6.如图所示,分别用甲、乙两套装置将同一物体 匀速提升相同的高度,所用的拉力分别为 F甲、F 、η乙。则下列关系 乙,它们的机械效率分别为η甲 正确的是(不计绳重与摩擦.且动滑轮重小于物重) ()

η甲>η乙 B. F甲F乙 C. F甲>F乙η甲<η乙 D. F甲η乙 7.如图所示,重力不计的杠杆OAB,可绕O点在 竖直平面内转动。重力为100N的物体挂在 OA的中点处。已知OA=40cm,AB=30cm,OA 垂直于AB,杠杆与转动轴间的摩擦忽略不计。 要使杠杆平衡,且OA段处于水平位置,那么作用于B端的最小力的力臂等于 cm,最小力的大小等于 N。 8.右图是小明用滑轮组提升水中物体A的示意图。 当物体A完全在水面下被匀速提升的过程中,物体A 所受浮力为80N,小明对绳子竖直向下的拉力为F1, 水平地面对小明的支持力为N1。 当物体A有1/2的体积露出水面且静止时,小明对绳子竖直向 下的拉力为F2,水平地面对小明的支持力为N2。已知动滑轮所受重力为120N,小明所受重力为600N,N1:N2=13:12。不计绳重、滑轮与轴的摩擦以及水的阻力,则物体A所受重力为 N。

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,固定的粗糙弧形轨道下端B 点水平,上端A 与B 点的高度差为h 1=0.3 m ,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C 点到B 点的高度差为 h 2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m =1 kg 的滑块(可看作质点)从轨道的A 点由静止滑下,然后从B 点抛出,恰好以平行于传送带的速度从C 点落到传送带上,传送带逆时针传动,速度大小为v =0.5 m/s ,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g =10 m/s 2,试求: (1).滑块运动至C 点时的速度v C 大小; (2).滑块由A 到B 运动过程中克服摩擦力做的功W f ; (3).滑块在传送带上运动时与传送带摩擦产生的热量Q . 【答案】(1)2.5 m/s (2)1 J (3)32 J 【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。 (1) 在C 点,竖直分速度: 22 1.5/y v gh m s == 0sin37y c v v =,解得: 2.5/c v m s = (2)C 点的水平分速度与B 点的速度相等,则372/B x C v v v cos m s ?=== 从A 到B 点的过程中,据动能定理得: 2 112 f B mgh W mv -=,解得: 1f W J = (3) 滑块在传送带上运动时,根据牛顿第二定律得: 3737mgcos mgsin ma μ??-= 解得: 20.4/a m s = 达到共同速度所需时间5c v v t s a -== 二者间的相对位移52 c v v x t vt m +?= -= 由于3737mgsin mgcos μ?

高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

二项式定理知识点及典型题型总结

、基本知识点 n On 1n 1. 1 rnrr nn, 1、二项式疋理:(a b) Ca 6a b C.a b C n b (n N ) 2、几个基本概念 (1)二项展开式:右边的多项式叫做(a b)n的二项展开式 (2)项数:二项展开式中共有n 1项 (3)二项式系数:C n (r 0,1,2, ,n)叫做二项展开式中第r 1项的二项式系数 (4)通项:展开式的第r 1项,即T r 1 C;a n r b r (r 0,1, ,n) 3、展开式的特点 (1) 系数都是组合数,依次为c,,c:,c n,…,c n (2) 指数的特点①a的指数由厂0(降幕)。 ②b的指数由0 * n (升幕)。 ③a和b的指数和为n。 (3) 展开式是一个恒等式,a, b可取任意的复数,n为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等?即C m c:m (2)增减性与最值 二项式系数先增后减且在中间取得最大值 n 当n是偶数时,中间一项取得最大值c n2 n 1 n 1 当n是奇数时,中间两项相等且同时取得最大值=CF 二项式定理 c0 c1 c2 (3)二项式系数的和:Cn Cn Cn Cn C:奇数项的二项式系数的和等于偶数项的二项式系数和2n 即C0+Cn+L W + L =2n-1

二项式定理的常见题型 一、求二项展开式 1?“ (a b)n”型的展开式 例1?求(3 . x1 )4的展开式;a J x 2. “(a b)n”型的展开式 —1 例2?求)4的展开式; J V 3?二项式展开式的“逆用” 例3?计算 1 3C:9C2 27 C3 .... ( 1)勺匕:; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知(£.. X)9的展开式中x3的系数为9,常数a的值为_______________ x \ 2 4 2.确定二项展开式的常数项 例5. (-x 31 )10展开式中的常数项是_________________ 3' X

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200, 半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速 度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ =,则物体在两斜面上(不包括圆弧部分)一共能走多少路程(g=10m/s 2 ). 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O R E h

高考导数压轴题型归类总结材料

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>. 一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x .

所以当33= x 时,)(x g 有最小值9 3 2)33(- =g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 1 1222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论: ①a 若> 3 2 ,则a 2-<2-a .当x 变化时,)()('x f x f ,的变化情况如下表: )(所以x f .3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极大值在函数 .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在函数 ②a 若<3 2 ,则a 2->2-a ,当x 变化时,)()('x f x f ,的变化情况如下表: 所以)(x f .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极大值在函数

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结 知识点精讲 一、二项式定理 ()n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100+?++?++=+--( )* N n ∈. 展开式具有以下特点: (1)项数:共1+n 项. (2)二项式系数:依次为组合数n n n n n C C C C ,?,,,2 1 . (3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地, ()n n n n n n x C x C x C x +?+++=+22111. 二、二项式展开式的通项(第1+r 项) 二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ?=.其中r n C 的二项式系数.令变量(常用x )取1, 可得1+r T 的系数. 注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r r n r n b a C -是第1+r 项,而不是第r 项; ②在通项公式r r n r n r b a C T -+=1中,含n r b a C T r n r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的 情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数 二项式系数仅指n n n n n C C C C ,?,,,2 1 而言,不包括字母b a ,所表示的式子中的系数.例如: ()n x +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而r x 的系数应该是 r n r n C -2(即含r x 项的系数). (2)二项式系数的性质 ①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即 22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=. ②二项展开式中间项的二项式系数最大. 如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2 最大;如果二项式的幂指数n 是奇数,中间项有两项,即为第21+n 项和第 12 1 ++n 项,它们的二项式系数21-n n C 和21 +n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和 011+12n n n n n n C C C ++?+==() .

杠杆作图【经典总结】

1 向上用力 向下用力 四类杠杆作图 (一) 按要求画力臂 画出下图中杠杆示意图中的动力臂和阻力臂。 (二)已知力臂画力 如下图,一个绕O 点转动的杠杆已知阻力F 2(或F 1)的方向,以及动力F 1(或F 2)的力臂,在图中 补全F 2(或F 1)的力臂以及动力F 1(或F 2)。 (三)画最小的动力 1、如图所示,使用羊角锤拔钉子,动力作用在锤柄上A 点. 请作出拔钉子时所用最小动力F 的示意图. . 2﹑如上图2所示,唐师傅想用最省力的方法把一个油桶推上台阶.请你在图中画出这个力的示意图. 3、 如上图3所示,要求用一最小的力F 使上右图中的曲形杠杆处于平衡状态,请画出此力F 的示意图,并标出它的力臂L 。 4.如下图所示,O 为杠杆AC 的支点,在B 处挂一小球,AO =OB =BC ,为使杠杆在水平位置平衡,画出作用在杠杆上最小动力F ,并标出F 的方向。 5.曲杆AOBC 自重不计,O 为支点,AO=60cm ,OB=40cm ,BC=30cm 要使曲杆在图示位置平衡,请作出最小的力F 的示意图及其力臂l. 6.在左下图中画出杠杆平衡时作用在B 点最小的力和这个力的力臂(O 为支点). 7.画出使杠杆AB 在图所示位置静止时所用最小力F 的作用点和方向。 8.(1)如图是列车上售食品的手推车,当前轮遇到障碍物时,售货员向下按扶把,使手推车前轮向上翘起,请画出售货员所用的最小动力及其力臂. (2)在下列有关书桌书柜的两图中,要将书桌或书柜的C 点轻轻抬起,请在图中画出最小的动力F; (3)在下面最右图中画出最小的动力F; 9.一块质量分布均匀的长方形木板放在水平地面上,现在要将木板从N 端抬起,请你在图16中标出支点O 的位置,并画出所用最小动力F 的示意图和动力臂L (板的厚度不计)。 10.在下图中,分别画出向上、向下用力撬动大石头最小力的作用点和方向。并比较二次最小力的大小,得到真正的最小力。 (四)涉及滑轮的杠杆作图 1、如下左图所示,轻质杆OA 可绕O 点转动,B 处悬挂重物,A 端用细绳通过顶部定滑轮被拉住时(定滑轮质量及摩擦不计),整个系统静止,请在图中画出杆OA 所受各力的力臂。 2、某剧组为拍摄需要,设计了如图所示的装置来改变照明灯的高度.轻质杠杆ABO 可绕O 点转动,在图中画出ABO 所受阻力F2的示意图,并画出动力臂L1和阻力臂L2. 3、如左图中ABO 可看成杠杆,O 为支点,请在图中画出该杠杆的动力臂和所受阻力的示意图。 O A B C A O △ A B C

高一物理动能定理经典题型总结材料(全)

高一物理动能定理经典题型总结材料(全) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1、动能定理应用的基本步骤 应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是: ①选取研究对象,明确并分析运动过程. ②分析受力及各力做功的情况,受哪些力每个力是否做功在哪段位移过程中做功正功负功做多少功求出代数和. ③明确过程始末状态的动能E k1及E K2 ④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性 (1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制. (2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识. (3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即 V 0

初二物理杠杆总结

专题复习 杠杆与简单机械 一、杠杆:定义:在力的作用下绕着固定点转动的硬棒。 1、 五要素——组成杠杆示意图 ①支点②动力③阻力④动力臂,从支点到动力作用线的距离; ⑤阻力臂,从支点到阻力作用线的距离; 2、画力臂方法:⑴ 找支点O ;⑵ 画动力和阻力(实线),如果需要延长力的作用线(虚线); ⑶ 画力臂(虚线,过支点垂直力的作用线作垂线);⑷ 标力臂(大括号)。 3、研究杠杆的平衡条件:杠杆静止或匀速转动;动力×动力臂=阻力×阻力臂;F1l1=F2l2 4、杠杆应用 实验注意事项:实验前,应调节杠杆两端的螺母,使杠杆在水平位置平衡。(杠杆平衡时动力最小问题) 1、某同学在做单臂俯卧撑运动,如图所示。他的重心在A 点,所受重力为520N , 他将身体撑起处于平衡状态时,地面对手的支持力为 N 。 2、要使杠杆处于平衡状态,在A 点分别作用的四个力中,最小的是( ) A .F 1 B .F 2 C .F 3 D .F 4 2题图 3题图 3、如图所示是一弯曲的杠杆,O 是支点,OB=CA=4 cm ,OC=3 cm 。在B 点挂一重物G=10 N ,在A 点加一力,要使杠杆平衡,力F 最小值为多大? = 12、利用钓鱼竿钓鱼的示意图如图所示,O 为支点,F 1是手对鱼竿的作用力,请 画出: O

13、怎样调节平衡螺母使杠杆平衡? 1.作用在杠杆上的动力为50N ,阻力为600N ,杠杆恰好平衡,则杠杆的动力臂 和阻力臂之比为 。(题型四) 2.如图12-24所示,杠杆每小格的长度相等,质量不计,以 O为支点.杠杆的左端挂有物体M,支点右边的A处挂钩 码,杠杆平衡.若将支点移到B 点,要使杠杆重新平衡, 在A 点应挂 个相同的钩码。 (题型三) 3.如图12-25所示,AB为一根质量不计的细棒,用绳在 O处吊起,当A、B两端分别挂两个重物甲、乙时恰 好平衡.若OA=0.8m ,OB=0.4m ,甲的质量为10 kg ,则乙的质量为 kg .(题型四) 4.下列工具中,属于省力杠杆的是 ( ) (题型四) A .夹邮票用的镊子 B .理发师修剪头发用的剪刀 C .剪铁丝用的钢丝钳 D .钓鱼用的鱼竿 5.如图12-26所示的杠杆中,动力的力臂用L 表示,图中所画力臂正确的是( ) (题型一) 6.在图12-27中画出力F 1和F2 的力臂.(题型一) 7.如图12-28,工人师傅用吊车搬运集装箱.集装箱重G =2×104N,支撑杆对吊车臂的支持力 为F .在图中画出集装箱所受重力的示意图和支持力F 对转动 点O 的力臂. (题型一) 8.工人剪铁皮时,有时用两根铁管套在剪刀柄上(如图 12-29),这是什么道理? (题型四) 9 .在研究“杠杆的平衡条件”实验中,有一组同学猜想杠图12-24 图 12-25 图 12-26 图12-27 图12-28 图12-29

高考数学导数与三角函数压轴题综合归纳总结教师版0001

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题, 内容主要包 括函数零点个数的确定、 根据函数零点个数求参数范围、 隐零点问题及零点存在 性赋值理论 .其形式逐渐多样化、综合化 . 、零点存在定理 例1【. 2019全国Ⅰ理 20】函数 f(x) sinx ln(1 x),f (x)为f (x)的导数.证明: 1) f (x)在区间 ( 1, 2 )存在唯一极大值点; 2) f (x) 有且仅有 2 个零点. 可得 g'(x)在 1, 有唯一零点 ,设为 2 则当x 1, 时,g x 0;当 x ,2 时,g'(x) 0. 所以 g(x) 在 1, 单调递增,在 , 单调递减 ,故g(x) 在 2 值点 ,即 f x 在 1, 存在唯一极大值点 . 2 (2) f x 的定义域为 ( 1, ). (i )由( 1)知, f x 在 1,0 单调递增 ,而 f 0 0,所以当 x ( 1,0)时, f'(x) 0,故 f x 在 ( 1,0)单调递减 ,又 f (0)=0 ,从而 x 0是 f x 在( 1,0] 的唯 一零点 . 【解析】( 1)设 g x f x ,则 g x 当x 1, 时, g'(x)单调递减,而 g 2 1 1 sinx 2 1 x 2 cosx ,g x 1x 0 0,g 0, 2 1, 存在唯一极大 2

, 时, f '(x) 0.故 f (x) 在(0, )单调递增,在 , 单调递 22 3 变式训练 1】【2020·天津南开中学月考】已知函数 f (x) axsin x 2(a R), 且 在, 0, 2 上的最大值为 (1)求函数 f(x)的解析式; (2)判断函数 f(x)在( 0,π)内的零点个数,并加以证明 【解析】 (1)由已知得 f(x) a(sin x xcosx) 对于任意的 x ∈(0, ), 3 有 sinx xcosx 0,当 a=0 时,f(x)=- ,不合题意; 2 当 a<0时,x ∈(0,2 ),f ′(x)从<0而, f(x)在(0, 2 )单调递减, 3 又函数 f(x) ax sin x 2 (a ∈ R 在) [0, 2 ]上图象是连续不断的, 故函数在 [0, 2] 上的最大值为 f(0) ,不合题意; 当 a>0时,x ∈(0, 2),f ′(x)从>0而, f(x)在(0, 2 )单调递增, 3 又函数 f(x) ax sin x (a ∈R 在) [0, ]上图象是连续不断的, 33 故函数在[0, 2 ]上上的最大值为 f( 2)=2a- 23= 23,解得 a=1, 3 综上所述 ,得 f(x) xsinx 3(a R),; (2)函数 f(x) 在(0, π内)有且仅有两个零点。证明如下: 从而 f x 在 0, 没有零点 . 2 ( iii ) 当 x , 时 , f x 0 , 所 以 f x 在 单调递减.而 2 2 f 0, f 0 ,所以 f x 在, 有唯一零点 . 2 2 ( iv )当 x ( , ) 时,ln x 1 1,所以 f (x) <0,从而 f x 在( , ) 没有零点 . 减.又 f (0)=0 , f 1 ln 1 22 0 ,所以当x 0,2 时,f(x) 0. 综上, f x 有且仅有 2个零点. ii )当 x 0,2 时,由(1)知,f'(x)在(0, )单调递增 ,在 单调递减 ,而 f ' (0)=0 2 0 ,所以存在 ,2 ,使得 f'( ) 0,且当x (0, ) 时, f'(x) 0 ;当 x

二项式定理知识点及典型题型总结

二项式定理 一、基本知识点 1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n ΛΛ 2、几个基本概念 (1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1+n 项 (3)二项式系数:),,2,1,0(n r C r n Λ=叫做二项展开式中第1+r 项的二项式系数 (4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T r r n r n r Λ==-+ 3、展开式的特点 (1)系数 都是组合数,依次为C 1n ,C 2n ,C n n ,…,C n n (2)指数的特点①a 的指数 由n 0( 降幂)。 ②b 的指数由0 n (升幂)。 ③a 和b 的指数和为n 。 (3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.即 (2)增减性与最值 二项式系数先增后减且在中间取得最大值 当n 是偶数时,中间一项取得最大值2n n C 当n 是奇数时,中间两项相等且同时取得最大值21-n n C =21+n n C (3)二项式系数的和: 奇数项的二项式系数的和等于偶数项的二项式系数和.即 m n n m n C C -=n n n k n n n n C C C C C 2 210=+???++???+++∴L L 0213n-1 n n n n C +C +=C +C +=2

二项式定理的常见题型 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x +的展开式;a 2. “n b a )(-”型的展开式 例2.求4)13(x x -的展开式; 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知9)2(x x a -的展开式中3x 的系数为4 9 ,常数a 的值为 2.确定二项展开式的常数项

杠杆提高练,各种典型例题

杠杆复习 杠杆在中考中主要以画图和选择题形式出现,以下是老师总结的近几年杠杆典型题型,请同学们认真对待,做到真正理解。 ————腾大教育方老师 典型例题一:力臂 力臂:支点.到力作用线.的垂直.. 距离 检查:虚线、垂直、大括号 1.如图,轻杆OB 在外力作用下保持静止(O 为支点),请在图中画出动力臂和阻力臂. 2 AOB 臂L 2。 3.筷子是我国传统的用餐工具,它应用了杠杆的原理,如图所示,请你在右下图中标出这根筷子使用时的支点O .并画出动力F 1,和阻力臂L 2。 4.如图所示,用夹子夹住物体时,画出动力臂和阻力 5.图中ABO 可看成杠杆O 为支点,请在图中画出该杠杆的动力臂和所受阻力的示意图。 6.如图所示,F 1是作用在抽水机手柄A 点处的动力,O 为支点。请画出动力F 1的力臂L 1和阻力F 2。 典型例题二:判断杠杆重新平衡 例:如图一均匀杠杆A 处挂2个钩码,B 处挂1个钩码,杠杆恰好平衡,若钩码质量均为50g ,在A 、B 两处再各加一个钩码,那么 ( ) A. 杠杆仍平衡 B. 杠杆左边向下倾

C. 杠杆右边向下倾 D. 无法确定杠杆是否平衡 练习:1、如图所示的轻质杠杆,AO小于BO.在A、B两端悬挂重物G1和G2后杠杆平衡.若将G1和G2同时向支点O移动相同的距离,则 ( ) A. 杠杆仍保持平衡 B. 杠杆的A端向下倾斜 C. 杠杆的B端向下倾斜 D. 无法判断 2、如图所示,粗细均匀的直尺AB,将中点O支起来,在B端放一 支蜡烛,在AO的中点O′上放两支蜡烛,如果将三支完全相同的 蜡烛同时点燃,它们的燃烧速度相同.那么在蜡烛燃烧的过程中, 直尺AB将() A.始终保持平衡 B.蜡烛燃烧过程中A端逐渐上升,待两边蜡烛燃烧完了以后,才恢复平衡 C.不能保持平衡,A端逐渐下降 D.不能保持平衡,B端逐渐下降 3、取一根粗细均匀的直铁丝,在它的中点用线悬挂起来,铁丝恰好平衡。如果把其右半段对折起来,如图所示,那么铁丝将( ) A、仍保持平衡; B、往左端下沉; C、往右端下沉; D、无法确定。 典型例题三:求最小力问题 例:画出使杠杆AB在图所示位置静止时所用最小力F的作用点和方向。 练习:1、如图所示,曲杆AOBC自重不计,O为支点,AO=60cm,OB=40cm, BC=30cm,要使曲杆在图示位置平衡,请 作出最小的力F的示意图及其力臂L。 2、如图所示,唐师傅想用最省力的方法把一个油桶推上台阶.请你在图中画出这个力的示意图. 3、如图所示,一只圆柱形油桶,高80cm,底部直径为60cm,盛满油以后总重为3000N,要想使底部D稍稍离开地面,在B点要加的最小力为多大?同时请作出最小的力F的示意图及其力

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

相关文档
最新文档