固定污染源排气中氯气的测定_甲基橙分光光度法

固定污染源排气中氯气的测定_甲基橙分光光度法
固定污染源排气中氯气的测定_甲基橙分光光度法

固定污染源排气中氯气的测定甲基橙分光光度法

HJ/T 30-1999 1.适用围

1.1 本方法适用于固定污染源有组织排放和无组织排放的氯气测定。

1.2 当采集无组织排放样品体积为30L时,方法的检出限为0.03mg/m3,定量测定的浓度围为0.086~3.3mg/m3,当采集有组织排气样品体积为5.0L时,方法的检出限为0.2mg/m3,定量测定的浓度围为0.52~20mg/m3。

1.3 游离溴有和氯相同的反应而产生正干扰,微量二氧化硫对测定有明显负干扰。

2. 方法原理

含溴化钾、甲基橙的酸性溶液和氯气反应,氯气将溴离子氧化成溴,溴能在酸性溶液中将甲基橙溶液的红色减退,用分光光度法测定其退色的程度来确定氯气的含量。

3. 试剂和材料

除非另有说明,分析过程中均使用符合国家标准的分析纯试剂和蒸馏水。

3.1 浓硫酸:ρ=1.84g/ml。

3.2 甲基橙。

3.3 溴化钾。

3.4 溴酸钾:基准试剂。

3.5 硫酸溶液:1+6。

量取100ml浓硫酸,缓慢地、边倒边搅拌加入到600ml水中

3.6 甲基橙吸收贮备液

称取0.1000 g甲基橙,溶解于100ml 40~50℃的水中,冷却至室温,加无水乙醇20ml,移入1000ml容量瓶中,加水稀释至刻度,混匀。此溶液放置暗处可保存半年。

3.7 甲基橙吸收使用液

用吸管移取甲基橙吸收储备液250ml,置于1000ml容量瓶中,加入500ml 1+6硫酸溶液,再加入5.0g溴化钾,溶解后用水稀释至刻度,混匀。

3.8 溴酸钾标准贮备液:c(l/6KBrO3)1.41×10-1mol/L。

称取1.9627g溴酸钾,用少量水溶解,移入500ml容量瓶中,加水稀释至刻度,混匀。此溴酸钾标准贮备溶液每毫升相当于5.00mg氯。放置暗处,可保存半年。

3.9 溴酸钾标准使用液:c(l/6KBrO3)1.41×10-3mol/L。

用吸管移取溴酸钾标准贮备液10ml,移入1000ml容量瓶中,加水稀释至刻度,混匀。此溴酸钾标准使用液每毫升相当于50.0μg氯。

4. 仪器

4.1 分光光度计:具1cm比色皿。

4.2 采样仪器

4.2.1 有组织排放监测采样仪器

参照GB 16157—1996中9.3有关部分配置采样仪器。

4.2.1.1 采样管

以硬质玻璃、氟树脂或氯乙烯树脂为材质,具有适当尺寸的管料为采样管。

4.2.1.2 取样装置

25ml多孔玻板吸收管。

4.2.1.3 流量计量装置

按GB 16157—1996中9.3.6配置流量计量装置。

4.2.1.4 抽气泵

按GB 16157—1996中9.3.7配置抽气泵。

4.2.1.5 连接管

聚四氟乙烯软管或衬聚四氟乙烯薄膜的硅橡胶管。

4.2.2 无组织排放监测采样仪器

4.2.2.1 引气管

以聚四氟乙烯或聚乙烯软管作引气管,在其头部接一玻璃漏斗。

4.2.2.2 取样装置

25ml多孔玻板吸收管。

4.2.2.3 流量计量装置

按GB 16157—1996中9.3.6配置流量计量装置。

4.2.2.4 抽气泵

按GB 16157—1996中9.3.7配置抽气泵。

4.2.2.5 连接管

聚四氟乙烯软管或衬聚四氯乙烯薄膜的硅橡胶管。

5. 样品采集和保存

5.1 有组织排放样品采集

5.1.1 采样位置和采样点

按GB 16157—1996中9.1.1和9.1.2确定采样位置和采样点。

5.1.2 采样装置的连接

参考GB 16157—1996中9.3图28,按采样管、样品吸收装置、流量计量装置和抽气泵的顺序连接好采样系统,连接管要尽可能短。按GB 16157—1996中9.4的要求检查采样系统的气密性和可靠性。

5.1.3 样品采集

将采样管头部塞适量玻璃棉后,插入排气筒采样点,用两支串联,装10.0ml 甲基橙吸收液的多孔玻板吸收管,以0.2L/min的流量采样。当吸收液颜色有明显减退时,即可停止采样。如不退色,采样时间选择60min。

5.2 无组织排放样品采集

5.2.1 采样位置和采样点

按GB 16297—1996附录C的规定确定无组织排放监控点的位置,或按其他特定要求确定环境空气采样点。

5.2.2 采样装置的连接

按引气管、样品吸收装置、流量计量装置和抽气泵的顺序连接采样装置。按GB 16157—1996中9.4 的要求检査采样系统的气密性和可靠性。

5.2.3 样品采集

串联两支装l0.0ml甲基橙吸收液的多孔玻板吸收管,以0.6L/min的流量采样。当甲基橙吸收液颜色明显减退时,即可停止采样。如不退色,采样时间选择60min。

5.3 样品的保存

采样后,将两管样品溶液全部转移到100ml容量瓶中,用水洗涤吸收管,合并转移到此容量瓶中。用水稀释至标线,混匀,待测定。该样品显色完成后溶液颜色稳定,常温下至少可保存15天。

6. 分析步骤

6.1 校准曲线的绘制

取7只100ml容量瓶,各加入20.0ml甲基橙吸收液,并按次序分别移入溴酸钾标准使用溶液0.00、0.20、0.40、0.80、1.20、1.60、2.00ml (即相当于含氯量为0、10、20、40、60、80、100μg),用水稀释至刻度,混匀。放置40min后,用lcm比色皿,在波长507nm处,以水为参比,测定吸光度。以吸光度对氯含量(μg)绘制校准曲线,并计算得到校准曲线的线性回归方程。

6.2 样品测定

采样后转移到100ml容量瓶中的溶液,放置40min后,用lcm比色皿,在波长507nm处,以水为参比,测定吸光度。

7. 计算和结果表示

7.1 样品中氯气浓度的计算:

测得样品吸光度后,在校准曲线上读得其对应的氯含量x;或根据回归直线方程:y=a+bx来计算求得氯含量x。即:

x= (Y-a) /b

式中:

Y——吸光度;

a——截距;

b——斜率,1/μg;

x——氯含量,μg。

结果计算的公式为:c=x/V nd。

式中:

c——样品气体的含氯浓度,mg/m3;

x——样品溶液中测得的含氯量,μg;

V nd——换算成标准状态下的干采气体积,L。

按GB 16157—1996 中10.1 或10.2 计算V nd。

7.2 氯气有组织排放的“排放浓度”计算

按GB 16157 —1996中11.1.2或11.1.4计算氯气的“排放浓度”。

7.3 氯气有组织排放的“排放速率(kg/h)”计算

按GB 16157—1996中11.4计算氯气的“排放速率”。

7.4 氯气的“无组织排放监控浓度值”计算

7.4.1 按下式计算一个无组织排放监控点的氯气平均浓度

式中:

c——一个无组织排放监控点的氯气平均浓度;

c i——一个样品中的氯气浓度;

n——一个无组织排放监控点采集的样品数目。

7.4.2 “无组织排放监控浓度值”的计算

按GB 16297—1996附录C中C2.3计算氯气的“无组织排放监控浓度值”。

8. 说明

8.1 温度低于20℃时,校准曲线绘制和样品测定都必须延长反应显色时间;或将反应后的吸收液置于20~30℃恒温水浴中40min。

8.2 在现场采样时,如氯气浓度较高,则操作人员应在上风向并戴好防毒口罩操作,严防氯气中毒。

硫酸根离子的测定

MM_FS_CNG_0301制盐工业通用试验方法 硫酸根离子重量法光度法(适用于微量硫酸根含量的测定)容量法(EDTA络合滴定法) MM_FS_CNG_0301 制盐工业通用试验方法硫酸根离子的测定 1.适用范围 本方法适用于制盐工业中工业盐、食用盐(海盐、湖盐、矿盐、精制盐)、氯化钾、工业氯化镁试样中硫酸根含量的测定。 2.重量法 .原理概要 样品溶液调至弱酸性,加入氯化钡溶液生成硫酸钡沉淀,沉淀经过滤、洗涤、烘干、称重,计算硫酸根含量。 .主要试剂和仪器 2.2.1.主要试剂 氯化钡:/L溶液; 配制:称取氯化钡,溶于500mL水中,室温放置24h,使用前过滤; 盐酸:2mol/L溶液; 甲基红:%溶液。 仪器 一般实验室仪器。 .过程简述 吸取一定量样品溶液〔见附录A(补充件)〕,置于400mL烧杯中,加水至150mL,加2滴甲基红指示剂,滴加2mol/L盐酸至溶液恰呈红色,加热至近沸,迅速加入40mL(硫酸根含量>%时加入60mL)/L氯化钡热溶液,剧烈搅拌2min,冷却至室温,再加少许氯化钡溶液检查沉淀是否完全,用预先在120℃烘至恒重的4号玻璃坩埚抽滤,先将上层清液倾入坩埚内,用水将杯内沉淀洗涤数次,然后将杯内沉淀全部移入坩埚内,继续用水洗涤沉淀数次,至滤液中不含氯离子(硝酸介质中硝酸银检验)。以少量水冲洗坩埚外壁后,置电烘箱内于120±2℃烘1h后取出。在干燥器中冷却至室温,称重。以后每次烘30min,直至两次称重之差不超过视为恒重。 .结果计算 硫酸根含量按式(1)计算。 硫酸根(%)=(G1-G2)× ×100 (1) W 式中:G1——玻璃坩埚加硫酸钡质量,g;G2——玻璃坩埚质量,g;W——所取样品质量,g;——硫酸钡换算为硫酸根的系数。 .允许差 允许差见表1。 表 1 硫酸根,%允许差,% < ~<

水质亚硝酸盐氮的测定分光光度法

水质亚硝酸盐氮的测定分光光度法

水质亚硝酸盐氮的测定分光光度法 本标准等效采用ISO 6777-1984《水质亚硝酸盐氮测定分子吸收分光光度法》。 本标准根据我国标准的格式对ISO 6777-1984标准技术上稍作修改和补充。 1 适用范围 本标准规定了用分光光度法测定饮用水、地下水、地面水及废水中亚硝酸盐氮的方法。 1.1 测定上限 当试份取最大体积(50ml)时,用本方法可以测定亚硝酸盐氮浓度高达0.20mg/L。 1.2 最低检出浓度 采用光程长为10mm的比色皿,试份体积为50ml,以吸光度0.01单位所对应的浓度值为最低检出限浓度,此值为0.003mg/L。 采用光程长为30mm的比色皿,试份体积为50ml,最低检出浓度为0.001mg/L。 1.3 灵敏度 采用光程长为10mm的比色皿,试份体积为50ml时,亚硝酸盐氮浓度cN=0.20mg/L,给出的吸光度约为0.67单位。 1.4 干扰 当试样pH≥11时,可能遇到某些干扰,遇此情况,可向试份中加入酚酞溶液(3.12)1滴,边搅拌边逐滴加入磷酸溶液(3.4),至红色刚消失。经此处理,则在加入显色剂后,体系pH值为1.8±0.3,而不影响测定。 试样如有颜色和悬浮物,可向每100ml试样中加入2ml氢氧化铝悬浮液(3.9),搅拌,静置,过滤,弃去25ml初滤液后,再取试份测定。 水样中常见的可能产生干扰物质的含量范围见附录A。其中氯胺、氯、硫代硫酸盐、聚磷酸钠和三价铁离子有明显干扰。 2 原理 在磷酸介质中,pH值为1.8时,试份中的亚硝酸根离子与4-氨基苯磺酰胺 (4-aminobenzenesulfonamide)反应生成重氮盐,它再与N-(1-萘基)-乙二胺二盐酸盐 [N-(1-naphthyl-1,2-diaminoethane dihydrochlo-ride]偶联生成红色染料,在540nm波长处测定吸光度。 如果使用光程长为10mm的比色皿,亚硝酸盐氮的浓度在0.2mg/L以内其呈色符合比尔定律。 3 试剂 在测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂,实验用水均为无亚硝酸盐的二次蒸馏水。 3.1 实验用水 采用下列方法之一进行制备: 3.1.1 加入高锰酸钾结晶少许于1 L蒸馏水中,使成红色,加氢氧化钡(或氢氧化钙)结晶至溶液呈碱性,使用硬质玻璃蒸馏器进行蒸馏,弃去最初的50ml馏出液,收集约700ml不含锰盐的馏出液, 待用。 3.1.2 于1 L蒸馏水中加入硫酸(3.3)1ml、硫酸锰溶液[每100ml水中含有36.49硫酸锰(MnSO4·H2O)]0.2ml,滴加0.04%(V/V)高锰酸钾溶液至呈红色(约l~3ml),使用硬质玻璃蒸馏器进行蒸馏,弃去最初的50ml馏出液,收集约700ml不含锰盐的馏出液,待用。 3.2 磷酸:15mol/L,ρ=1.70g/ml。 3.3 硫酸:18mol/L,ρ=l.84g/ml。 3.4 磷酸:1+9溶液(1.5mol/L)。

硫酸根离子精确检测方法

2.重量法 2.1.原理概要 样品溶液调至弱酸性,加入氯化钡溶液生成硫酸钡沉淀,沉淀经过滤、洗涤、烘干、称重,计算硫酸根含量。 2.2.主要试剂和仪器 2.2.1.主要试剂 氯化钡:0.02mol/L溶液; 配制:称取2.40g氯化钡,溶于500mL水中,室温放置24h,使用前过滤; 盐酸:2mol/L溶液; 甲基红:0.2%溶液。 2.2.2.仪器 一般实验室仪器。 2.3.过程简述 吸取一定量样品溶液〔见附录A(补充件)〕,置于400mL烧杯中,加水至150mL,加2滴甲基红指示剂,滴加2mol/L盐酸至溶液恰呈红色,加热至近沸,迅速加入40mL(硫酸根含量>2.5%时加入60mL)0.02mol/L氯化钡热溶液,剧烈搅拌2min,冷却至室温,再加少许氯化钡溶液检查沉淀是否完全,用预先在120℃烘至恒重的4号玻璃坩埚抽滤,先将上层清液倾入坩埚内,用水将杯内沉淀洗涤数次,然后将杯内沉淀全部移入坩埚内,继续用水洗涤沉淀数次,至滤液中不含氯离子(硝酸介质中硝酸银检验)。以少量水冲洗坩埚外壁后,置电烘箱内于120±2℃烘1h后取出。在干燥器中冷却至室温,称重。以后每次烘30min,直至两次称重之差不超过0.0002g视为恒重。 2.4.结果计算 硫酸根含量按式(1)计算。 硫酸根(%)=(G1-G2)×0.4116 ×100 (1) W 式中:G1——玻璃坩埚加硫酸钡质量,g; G2——玻璃坩埚质量,g; W——所取样品质量,g; 0.4116——硫酸钡换算为硫酸根的系数。 2.5.允许差 允许差见表1。 表1 硫酸根,%允许差,% <0.50 0.03 0.50~<1.50 0.04 1.50~3.50 0.05 2.6.分析次数和报告值 同一实验室取双样进行平行测定,其测定值之差超过允许差时应重测,平行测定值之差如不超过允许差取测定值的平均值作为报告值。

HJT 31-1999 固定污染源排气 光气 方法证实

1方法依据 本方法依据HJ/T 31-1999固定污染源排气中光气的测定 2仪器和设备 紫外可见分光光度计 3.分析步骤 参考HJ/T 31-1999固定污染源排气中光气的测定苯胺紫外分光光度法 4.验证结果 4.1校准曲线及线性范围 按HJ/T 31-1999方法操作,数据见表1 表1校准曲线数据 浓度(μg) 0.000.200.50 1.00 2.00 5.0010.0吸光度(As) 0.0020.0070.0170.0330.0630.1600.315吸光度(As-Ao) 0.0000.0050.0150.0310.0610.1580.313 回归方程:y=0.0314x-0.0006 r=0.9999

4.2 检出限实验 在10个空白样品中分别加入5倍检出限浓度的标准物质(即0.24μg/mL ),以15L 采样体积进行测定,按HJ 168-2010规定MDL=S n t ?-)99.0,1(进行计算,结果如下: 表2 方法检出限测定结果(N=10) 根据光气,0 *a *)3/(V Vnd V W m mg C = 计算得出方法检出限。 其中:C —光气含量(mg/m 3); Va —样品溶液总体积(mL ); W —测定时所分取的样品溶液中光气含量(g ); V 0—分析时所分取的样品溶液体积(mL ); Va —所采气体换算成标准状态下的干采气体积(L ); 4.3精密度实验 取2个高低浓度水平的样品,低浓度样品1浓度为1.00μg /ml ,高浓度样品2浓度为6.00μg /ml ,按照步骤3,分别做6次平行实验,计算出样品的浓度平均值,标准偏差并求出相对标准偏差,结果见表3

地下水—硝酸根的测定—紫外分光光度法.

FHZDZDXS0075 地下水硝酸根的测定紫外分光光度法 F-HZ-DZ-DXS-0075 地下水—硝酸根的测定—紫外分光光度法 1 范围 本方法适用于地下水中硝酸根含量的测定。 最小检测量为10μg。 测定范围:0.2mg /L~20mg /L。 2 原理 在紫外光谱区,硝酸根有强烈的吸收,其吸收值与硝酸根的浓度成正比。在波长210nm~220nm处,可测定其吸光度。 水中溶解的有机物,在波长220nm及275nm处均有吸收,而硝酸根在275nm处没有吸收,从而可通过测定275nm的吸光度对硝酸盐的吸光度进行校正。 3 试剂 除非另有说明,本法所用试剂均为分析纯,水为蒸馏水、二次去离子水或等效纯水。 3.1 盐酸溶液[c(HCl)=1mol/L]:量取83mL盐酸(ρ=1.19g/mL),用蒸馏水稀释至1000mL。 3.2 氨基磺酸铵溶液(50g/L):称取5g氨基磺酸铵(NH4SO3NH2)溶解于蒸馏水并稀释至100mL。 3.3 硝酸根标准溶液 3.3.1 硝酸根标准贮备溶液,0.1mg/mL:称取0.1631g已在105℃~110℃烘干1h的硝酸钾(KNO3,光谱纯),用蒸馏水溶解。移入1000mL容量瓶中并稀释至刻度,摇匀。此溶液1.00mL 含0.10mg硝酸根。 3.3.2 硝酸根标准溶液,10.0μg/ mL:吸取10.00mL硝酸根标准贮备溶液(100μg/ mL)于100mL 容量瓶中,用蒸馏水稀释至刻度,摇匀。此溶液1.00mL含10.0μg硝酸根。 4 仪器设备 4.1 紫外分光光度计。 4.2 石英吸收皿。 5 试样制备 5.1 取原水样分析,试样量为50mL。 6 操作步骤 6.1 水样分析 取50.0mL水样于100mL容量瓶中,加入1mL盐酸溶液[c(HCl)=1mol/L],摇匀。加入3mL~5mL氨基磺酸铵溶液(50g/L),用蒸馏水稀释至刻度,摇匀。于紫外分光光度计上,于波长210nm 处,用1cm石英吸收皿,以试剂空白作参比,测定吸光度(A210);调整波长至275nm处,仍以试剂空白作参比,再一次测定吸光度(A275)。 注:在含有极微量有机物的水样中,加入0.5mL氨基磺酸铵(50g/L)时,回收率及精密度均很差。当提

磺基水杨酸分光光度法测定陶瓷原料中的微量铁_蔡新安

中国陶瓷│CHINA CERAMICS │2008(44)第 11 期│63 【摘 要】:采用磺基水杨酸分光光度法,以磺基水杨酸为显色剂、双氧水为氧化剂, 控制pH 值为1.5~3,磺基水杨酸与Fe 3+生成稳定的紫红色配合物(1∶1),其最大吸收波长在515nm 处,在等吸收点处测定吸光度,铁量在0.00~1.00mg 范围内符合比尔定律,该方法适用于陶瓷原料中微量铁的测定。 【关键词】:磺基水杨酸,分光光度法,铁 引 言 影响陶瓷白度的主要元素是铁化合物,故检验陶瓷原料中的铁含量对制备高质量的陶瓷十分重要,现有陶瓷原料中铁的测定主要采用原子吸收光谱法[1] ,由于原子 吸收光谱仪价贵昂贵,对一些小型原料厂不太现实,磺基水杨酸分光光度法以其特有的仪器简单,操作简便灵敏度高优点,非常适合铁含量的测定[2],本文在此基础上,经过实验研究发现,在pH=1.5~3时,磺基水杨酸与Fe 3+ 可生成稳定的紫红色配合物(1∶1),利用铁(Ⅲ)-磺基水杨酸显色体系及光度特性,可成功地用于陶瓷原料中微量铁的测定。 1 实验部分 1.1 主要仪器与试剂 752 型紫外-可见分光光度计(上海光谱仪器有限公司),Fe 3+ 标准溶液:准确称取经400℃灼烧的三氧 化二铁(光谱纯)0.1000g 于烧杯中,加入(1+1)盐酸30mL,浓硝酸5mL,于水浴上溶解之后,移入1L 容量瓶中,加水稀释至刻度,摇匀,以每毫升含三氧化二铁0.1mg/mL 做为储备液,使用时并稀释至0.05mg/mL。pH2.0的盐酸溶液∶于1L 水中加入浓盐酸2.5mL,并用酸度计校正至2.0。磺基水杨酸溶液浓度为10%。以上试剂均为分析纯,水为双蒸馏水。 1.2 实验方法 取一定量的含铁(Fe 3+)溶液于50mL 容量瓶中,加入少量双氧水使其中部分Fe 2+氧化为Fe 3+,然后加入磺基水杨酸溶液,用蒸馏水稀释并同时调节pH 值,定容,摇匀,以试剂空白为参比,采用1cm 比色皿测吸光度, 求其中的铁含量。 准确称取0.5克左右烘干的陶瓷原料试样(精确至0.0001g)置于镍钳锅中,取NaOH 4g 将熔剂的2/3 与试样混匀,剩下的1/3 覆盖于上面,先低温加热,逐渐升高至1000℃,熔融10~15min 取出冷却后,将熔块用热水浸出于500mL 烧杯中,加入盐酸(密度1.19g/cm 3)20mL,盖上表面皿,待反应停止后用盐酸(1+1)及热水洗净坩埚、坩埚盖及表面皿,将烧杯移至沸水浴上,浓缩至硅酸胶体析出仅带少量液体为止(约10mL)。取下,冷却至室温,加沸水10mL,用慢速定量滤纸过滤于100mL 容量瓶中,用热盐酸(1+19)洗涤5~6次,再用热水洗涤沉淀无氯离子止,加水定容至刻度。移取5mL 于50mL 容量瓶中,加入少量双氧水氧化Fe 2+为Fe 3+,然后加入磺基水杨酸溶液,用蒸馏水稀释并同时调节pH 值,定容,用1cm 比色皿,以试剂空白作参比,在550nm 波长处,测定其吸光度。由测得的吸光度值,通过工作曲线,查取铁的浓度,从而计算出试样中铁的含量。 2 结果与讨论 2.1吸收光谱 按实验方法配制磺基水杨酸铁溶液, 在波长460~640nm 范围内每隔10nm 测定一次吸光度,以波长为横坐标,吸光度为纵坐标,绘制吸光度随波长的变化曲线,如图1所示。结果表明,515nm 为铁与磺基水杨酸所形成配合物的最佳吸收波长。 2.2溶液pH 值对吸光度的影响 Fe 3+与磺基水杨酸配合物的形成与溶液pH 值有密切的关系。图2为溶液pH 值对吸光度的影响。由图2可见:Fe 3+与磺基水杨酸形成的配合物的吸光度随pH 值的增大而升高。当pH 值<1.5和pH 值>3.0时,吸光度随pH 磺基水杨酸分光光度法测定陶瓷原料中的微量铁 蔡新安1,章慧芳1,李 硕2,杨晓波1 (1景德镇高等专科学校生化系, 景德镇 333000; 2中国轻工业陶瓷研究所, 景德镇 333000) 图1 吸光度随波长变化曲线 收稿日期:2008-8-29 基金项目:景德镇高等专科学校科研重点资助项目,编号:TCYJ-08-01 作者简介:蔡新安,男,江西丰城人,副教授。主要从事有机化学、分析化学实验教学及陶瓷材料研究工作。

硫酸盐的测定(EDTA滴定法)

本文由324ok3h4ew贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 中华人民共和国行业标准 硫酸盐的测定 (EDTA滴定法)(EDTA滴定法)滴定法 SL85—SL—1994 Determination of sulfate (EDTA titration method)) 水利部 1995/05/01 批准 1995/05/01 实施//// 1 总则 1.1 主题内容本标准规定用EDTA络合滴定法测定水中的硫酸盐。 1.2 适用范围本方法适用于硫酸根(SO42-)含量在 10~200mg/L范围的天然水。但经过稀释或浓缩,可以扩大适用范围。 1.3 干扰及消除凡影响镁离子测定的金属离子均干扰本法对硫酸盐的滴定。氰化物可以使锌、铅、钴的干扰减至最小;存在铝、钡、铅、锰等离子干扰时,需改用重量法或分光光度法测定。 2 方法原理 先用过量的氯化钡将溶液中的硫酸盐沉淀完全。过量的钡在pH为 10 的氨缓冲介质中以铬黑T作指示剂,添加一定量的镁,用EDTA二钠(乙二胺四乙酸二钠)盐溶液进行滴定。从加入钡、镁所消耗EDTA溶液的 量(用空白试验求得)减去沉淀硫酸盐后剩余钡、镁所耗EDTA的溶液量,即可得出消耗于硫酸盐的钡量,从而间接求出硫酸盐含量。水样中原有的钙、镁也同时消耗EDTA,在计算硫酸盐含量时,还应扣除由钙、镁所消耗的EDTA溶液的用量。 3 仪器 3.1 锥形瓶:250mL。 3.2 滴定管:25mL。 3.3 加热及过滤装置。 3.4 常用实验设备。 4 试剂 4.1 EDTA标准滴定溶液:C(Na2EDTA)≈0.010mol/L。称取 3.72g二水合乙二胺四乙酸二钠溶于少量水中,移入 1000mL容量瓶中,再加蒸馏水稀释到标线。用下法以锌基准溶液(或碳酸钙基准溶液)标定其准确浓度。精确称取 0.6538g高纯锌,溶于(1+1)盐酸溶液 6mL中,待其全部溶解后移入 1000mL容量瓶中,用水稀释至标线,即锌基准溶液C(Zn2 + )=0.0100mol/L。吸取此液 25.00 mL置锥形瓶中,加 775mL水 及 10mL氨缓冲溶液(4.2),放约 20mg铬黑T指示剂,摇匀后,用EDTA标准滴定溶液滴定至溶液由淡紫红色变为蓝色即为终点,记录用量,用下式计算其浓度:式中:C1———EDTA标准滴定溶液浓度,mol/L;V1———EDTA标准滴定溶液体积,mL;C2———锌基准溶液浓度,mol/L;V2———锌基准溶液体积,mL。 4.2 氨缓冲溶液:称取 20g氯化铵溶于 500mL水中, 100mL浓氨水加(ρ=0.9g/mL),用水稀释至 1000mL。 4.3 铬黑T指示剂:称取 0.5g铬黑T,烘干,加 100g(105±5℃)干燥过 2h的固体氯化钠研磨均匀后贮于棕色瓶中。 4.4 钡镁混合溶液:称取 3.05g氯化钡(BaCl2·2H2O)和 2.54g氯化镁(MgCl2·6H2O)溶于 100mL水中,移入 1000mL容量瓶中,用水稀释至标线。 4.5 盐酸溶液:1+1。 4.6 氯化钡溶液:10%(m/V)。称取 10g氯化钡(BaCl2·2H2O)溶于水中并稀释至100mL。 5 步骤

硫酸根离子精确检测方法

硫酸根离子精确检 测方法

2.重量法 2.1.原理概要 样品溶液调至弱酸性,加入氯化钡溶液生成硫酸钡沉淀,沉淀经过滤、洗涤、烘干、称重,计算硫酸根含量。 2.2.主要试剂和仪器 2.2.1.主要试剂 氯化钡:0.02mol/L溶液; 配制:称取2.40g氯化钡,溶于500mL水中,室温放置24h,使用前过滤; 盐酸:2mol/L溶液; 甲基红:0.2%溶液。 2.2.2.仪器 一般实验室仪器。 2.3.过程简述 吸取一定量样品溶液〔见附录A(补充件)〕,置于400mL烧杯中,加水至150mL,加2滴甲基红指示剂,滴加2mol/L盐酸至溶液恰呈红色,加热至近沸,迅速加入40mL(硫酸根含量> 2.5%时加入60mL)0.02mol/L氯化钡热溶液,剧烈搅拌2min,冷却至室温,再加少许氯化钡溶液检查沉淀是否完全,用预先在120℃烘至恒重的4号玻璃坩埚抽滤,先将上层清液倾入坩埚内,用水将杯内沉淀洗涤数次,然后将杯内沉淀全部移入坩埚内,继续用水洗涤沉淀数次,至滤液中不含氯离子(硝酸介质中硝酸银

检验)。以少量水冲洗坩埚外壁后,置电烘箱内于120±2℃烘1h 后取出。在干燥器中冷却至室温,称重。以后每次烘30min,直至两次称重之差不超过0.0002g视为恒重。 2.4.结果计算 硫酸根含量按式(1)计算。 硫酸根(%)=(G1-G2)×0.4116 ×100 (1) W 式中:G1——玻璃坩埚加硫酸钡质量,g; G2——玻璃坩埚质量,g; W——所取样品质量,g; 0.4116——硫酸钡换算为硫酸根的系数。 2.5.允许差 允许差见表1。 表 1 硫酸根,%允许差,% <0.50 0.03 0.50~<1.50 0.04 1.50~3.50 0.05 2.6.分析次数和报告值

磺基水杨酸分光光度法测定海带中的铁

磺基水杨酸分光光度法测定海带中的铁 开题报告 房如玉 1.研究背景 铁是人体内必不可少的重要元素之一,对人体有重要的生理生化作用,铁元素在人体中具有造血功能,参与血蛋白,细胞色素及各种酶的合成,促进生长,铁还在血液中起运输氧和营养物质的作用,人的颜面泛出红润之美,离不开铁元素,人体缺铁会发生小细胞性贫血,免疫功能下降和新陈代谢紊乱,缺铁或铁过量都能引起人体代谢过程紊乱,使人容易感到疲劳,从而影响人的正常工作、学习与生活,而人体所摄取的铁中实际上只有大约8%被吸收而进入血液之中,体内的铁大部分用于制造血红素。血红素在血液细胞每120天更换新细胞时被循环再利用。与蛋白质结合的铁贮藏在体内,而组织铁(存在于肌血球素中)贮藏在体内的量则非常少,因此,人体需保证摄入适量的铁元素,而海带是一种受人们欢迎的副食,且含有一定量的铁元素,对铁缺乏症的预防和辅助治疗有作用[1]。海带为海生植物,性味咸,入药名为“昆布”。据文献记载:海带含有褐藻、胶酸、纤维素、粗蛋白、碳水化合物、甘露醇、钾、碘、铁等成分,经常适量食用海带,不仅可以乌发美容养颜,还能预防肝病,心血管病,对治疗急性肾功能衰竭,脑水肿,乙型脑炎,脚气病,消化不良,排尿不畅等症都有一定的效果。因此在食品、医药、卫生等方面对铁的含量测定均有严格要求,对铁的测定方法研究也有重大意义。 2.研究现状 近几年来,铁的可见光光度分析检测方法报道很多,其中,主要有催化动力学光度法[2,3]、显色反应分光光度法[4,5]和固相分光光度法[6]。催化动力学分光光度法根据待测物质对某些反应的催化作用,利用反应速率与催化剂的浓度之间的定量关系,通过测量与反应速率成比列关系的吸光度,来计算待测物质的浓度。其中段秀云[7]基于在HCl介质中,Fe(Ⅲ)催化H2O2氧化次甲基绿的反应,建立了测定痕量Fe(Ⅲ)的方法,检出限为0.005μg/L,相对标准偏差3×10-3,线性范围为

分光比浊法测定硫酸根离子

分光比浊法测定硫氰酸铵中硫酸根 摘要:通过实验,建立了在酸性介质中,吸收波长为410 nm、以聚乙烯醇(PVA)作稳定剂测定硫氰酸铵成品中硫酸根的分光比浊分析方法。试验考察了稳定剂的选择、稳定剂的PVA浓度、PVA存在下体系的稳定时间、盐酸加入量、硫氰酸根的影响等因素对该法的影响并进行优化。 由于硫氰酸铵成品中硫酸根含量极少,测定其含量不能用普通的重量法和滴定法,而传统的目视比浊法不能得到精确连续的数据,且带有个人主观性。根据目视比浊法的原理,采用分光光度计比浊法来测定硫氰酸铵成品中少量的硫酸根。本实验基于在酸性介质中,试样溶液中的硫酸盐与加入的钡离子形成细微的硫酸钡结晶,使水溶液混浊,其混浊程度和试样中硫酸盐含量呈正比关系这一原理,采用聚乙烯醇作稳定剂,用分光比浊法测定硫氰酸中硫酸盐,测试结果准确,且操作简便、快捷,可批量检测,尤其适合工厂或基层实验室的常规分析,具有较高的实用价值。 1.实验部分 1.1仪器与试剂 6B-80型COD快速测定仪; 硫酸盐标准溶液:称取0.1479g无水硫酸钠,溶于少量水中,并定容至1000ml,即为0.1mg/ml-1硫酸盐(SO42-)标准贮备溶液。 盐酸:(1+3)盐酸溶液; 无水乙醇(95%,分析纯); 氯化钡溶液:称取62.5g氯化钡 (AR),溶于二次蒸馏水,移入250ml容量瓶,稀释至刻度。 稳定剂:称取20g醇(AR)放入烧杯,加入100 ml二次蒸馏水,置于电炉上加热,边加热边搅拌,直到聚乙烯醇完全溶解,待冷却后移入1000 ml容量瓶,润洗烧杯3次,移入容量瓶,稀释至刻度。 1.2实验方法 称取20g试样(准确至0.0001g),置于干燥清洁的烧杯中,加水20ml,用玻璃棒搅拌5min,用滤纸过滤得澄清待测溶液。取3ml待测液于50ml比色管,加1ml盐酸,摇匀,加入3ml氯化钡和10ml PVA溶液,用水定容至50 ml,摇匀,静置20 min。在410 nm波长、1cm比色皿条件下,以硫酸根标准溶液空白为参比测定其吸光值。 1.3 实验原理 吸光比浊法的原理[2]:以Tyndall效应为基础,当溶液中的颗粒受到光照射后,发生散射作用。散射光强度(I)用reyleigh公式表示: I=KI0uV2/λ 4 (1) 式中:K为常数;I0为入射光强度;K为波长;u为单位体积的粒子数;V为单个粒子的体积。由上式可知,在吸光浊度法测定中,散射光强度I愈大,吸光度A愈高,且与单位体积的粒子数u

固定污染源排气中丙烯腈的测定-气相色谱法 HJT 37-1999

1 适用范围 1.1 本标准适用于固定污染源有组织排放和无组织排放的丙烯腈测定。 1.2 当采样体积为30L时,方法的检出限为0.2 mg/m3。方法的定量测定浓度范围为0.26~33.0 mg/m3。 2 方法原理 丙烯腈(CH 2=CHCH 2 CN)用活性炭常温吸附富集,再经二硫化碳常温解吸,解吸 液中各组分通过色谱柱得到分离后进人氢火焰离子化检测器(FID),从测得的丙烯腈色谱峰高(或面积),对解吸液中丙烯腈浓度定量,最后由解吸液体积、浓度和采样体积计算出气体样品中丙烯腈的浓度。 3 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文: GB 16297-1996 大气污染物综合排放标准 GB 16157-1996 固定污染源排气中颗粒物测定和气态污染物采样方法 4 试剂和材料 4.1 丙烯腈:色谱纯(或分析纯,但必须对丙烯腈无色谱干扰峰)。 4.2 二硫化碳:分析纯(对丙烯腈的色谱测定无干扰峰,否则需进行蒸馏,取46~47℃的馏分)。 4.3 气相色谱固定相:GDX-502, 60~80目。 4.4 氮气:纯度99.99%,并用分子筛或活性氧化铝净化. 4.5 氢气:纯度99.99%,并用分子筛或活性氧化铝净化。 4.6 空气。 4.7 活性炭吸附管 活性炭吸附管的结构如图1所示。玻璃管的两端熔封密闭,并配有两个塑胶帽盖,以备采样完毕后盖紧密闭用。管内填装活性炭粒度为20~40目,A段含100mg, B段含50mg。A段活性炭前的玻璃棉上压着一个V字型弹簧钩,以免炭粒松动。活性炭应对气态丙烯腈有很强的吸附能力,并可用二硫化碳解吸被吸附的丙烯腈。目前市售的用于采集空气中有机蒸气,并以二硫化碳作解吸溶剂的活性炭吸附管能满足要求。 4.8 丙烯腊标准储备液:c=10. 0 mg/ml。 用分析天平准确称取一定t的丙烯腈(4.1)于容量瓶中,小心加人二硫化碳至刻度,配制成溶液的丙烯腈浓度为10.0 mg/ml,作为储备液,密闭存放于低温(4~8℃)下,备用。存放期不得超过一个月。 4.9 丙烯腈标准使用液:c=1.00 mg/ml。 取1.00ml丙烯睛标准储备液(4.8)于10ml容量瓶中,用二硫化碳稀释至刻度。 5 仪器 5.1 气相色谱仪:附氢火焰离子化检测器。 5.2 色谱柱

硝酸盐氮的测定(紫外分光光度法)

xx行业标准 硝酸盐氮的测定 (紫外分光光度法) SL84—1994 Determination of nitrogen (nitrate) (Ultraviolet spectrophtometric method) 水利部1995/05/01批准1995/05/01实施 1总则 1.1主题内容 本标准规定了用紫外分光光度法测定水中的硝酸盐氮。 1.2适用范围 本方法适用于清洁地面水和未受明显污染的地下水中硝酸盐氮的测定,其最低检出浓度为0.08mg/L,测量上限为4mg/L硝酸盐氮。 1.3干扰及消除溶解的有机物、表面活性剂、亚硝酸盐、六价铬、溴化物、碳酸氢盐和碳酸盐等干扰测定,需进行适当的预处理。本法采用絮凝共沉淀和大孔中性吸附树脂进行处理,以去除水样中大部分常见有机物、浊度和Fe3+、Cr6+对测定的干扰。 2方法原理 利用硝酸根离子在220nm波长处的吸收而定量测定硝酸盐氮。溶解的有机物在220nm处和275nm处均有吸收,而硝酸根离子在275nm处没有吸收。因此,在275nm处作另一次测量,以校正硝酸盐氮值。 3仪器 3.1紫外分光光度计。

3.2离子交换柱(?1.4cm,装树脂高5~8cm)。 3.3常用实验设备。 4试剂 4.1氢氧化铝悬浮液: 溶解125g硫酸铝钾[KAl(SO 4) 2·12H 2O]或硫酸铝铵[NH 4Al(SO 4)12H 2O]于1000mL水中,加热至60℃。 2· 然后边搅拌边缓缓加入55mL浓氨水。放置约1h后,移至一个大瓶中,用倾泻法反复洗涤沉淀物,直到该溶液不含铵离子为止。最后加300mL纯水成悬浮液。使用前振荡均匀。 4.2硫酸锌溶液:10%(m/V)。 4.3氢氧化钠溶液: C(NaOH)=5mol/L。 4.4大孔型中性树脂: CAD/40或XAD/2型及类似型号树脂。 4.5甲醇。

磺基水杨酸分光光度法测铁

磺基水杨酸分光光度法测铁 、目的和要求 1练习使用移液管、容量瓶 2、 掌握用磺基水杨酸显色法测定铁的原理和方法。 3、 掌握722型分光光度计的使用方法。 二、实验原理 磺基水杨酸是分光光度法测定铁的有机显色剂之一。磺基水杨酸(简式为 HR )与Fe 3+可以形 成稳定的配合物,因溶液 pH 的不同,形成配合物的组成也不同。在 pH=9?11.5的NH 3H2O-NHCI 溶液中, Fe 3+与磺基水杨酸反应生成三磺基水杨酸铁黄色配合物。 3+ + Fe SO 3H 该配 剂用量及溶液酸度略有改 CaT 、Mg 2+、Al 3+等与磺基水杨酸能生 成无色配合 _ 3 — 量时,不干扰测定。F 、NQ 、PO 4等离子对测定无影响。 在时干扰测定。由于 Fe 2+在碱性溶液中易被氧化, 所以。本法所测定的铁实际上是溶液中铁的总含 量。 磺基水杨酸铁配合物在碱性溶液中的最大吸收波长为 420nm,故在此波长下测量吸光度。 三、实验仪器及试剂 1, 15mlFeCI3 溶液(0.05mg/L ) 2.4.8g 的 NH4CI 固体,50ml1mol/L 氨水稀释至 500ml ( pH=9 的 NH4CL-NH3缓冲溶液) 3, 2ml10%磺基水杨酸溶液 4, 752型分光光度计 5, 50ml 容量瓶7个 6, 250ml 烧杯1个,500ml 烧杯1个 7, 蒸馏水 8, 移液管3个 9, 塑料滴管1个 10.50ml 量筒1个 11.pH 计1个 四、实验步骤 1、进入实验室,将实验要用到的有关仪器从仪器橱中取出,把玻璃器皿按洗涤要求洗涤干净 备用。 2、系列标准溶液的配制 在6只5Oml 容量瓶中,用移液管分别加入 0.00、1.00、2.00、3.00、4.00、5.00浓度为 0.025mg/L 的铁盐标准溶液,各加2ml 2%磺基水杨酸溶液,滴加pH=9-11.5的NH4CL-NH 缓冲溶液) 直到溶液变成黄色。 -COO - - Fe Ar 。- -SO3 3 6- 2+ 2+ 合物很稳定,试 变都无影响。 物,在显色剂过 Cr 等离子大量存 2+ Cu 、Co 、Ni 、 COOH HO 2+ 2+ 3+

固定污染源采样

第二节污染源采样 (一)固定污染源采样 一、填空题 1.对除尘器进出口管道内气体压力进行测定时,可采用校准后得标准皮托管或其她经过校正得非标准型皮托管(如S形皮托管),配压力计或倾斜式压力计进行测定。 2.按等速采样原则测定锅炉烟尘浓度时,每个断面采样次数不得少于次,每个测点连续采样时间不得少于 min,每台锅炉测定时所采集样品累计得总采气量应不少于1m3,取3次采样得算术均值作为管道得烟尘浓度值。 3。采集烟尘得常用滤筒有玻璃纤维滤筒与滤筒两种。 4。烟尘测试中得预测流速法,适用于工况得污染源。 5。固定污染源排气中颗粒物等速采样得原理就是:将烟尘采样管由采样孔插入烟道中,采样嘴气流,使采样嘴得吸气速度与测点处气流速度,并抽取一定量得含尘气体,根据采样管上捕集到得颗粒物量与同时抽取得气体量,计算排气中颗粒物浓度、 6。在烟尘采样中,形状呈弯成90°得双层同心圆管皮托管,也称型皮托管。 7。在矩形烟道内采集烟尘,若管道断面积〈0.1m2,且流速分布、对称并符合断面布设得技术要求时,可取断面中心作为测点。 8.蒸汽锅炉负荷就是指锅炉得蒸发量,即锅炉每小时能产生多少吨得,单位为比。9.测定锅炉烟尘时,测点位置应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化得部位、测点位置应在距弯头、接头、阀门与其她变径管段得下游方向大于倍直径处。 10。用S形皮托管与U形压力计测量烟气得压力时,可将S形皮托管一路出口端用乳胶管与U形压力计一端相连,并将S形皮托管插入烟道近中心处,使其测量端开口平面平行于气流方向,所测得得压力为。 11、通常在风机后得压入式管道中进行烟尘采样,管道中得静压与动压都为(填“正”或“负”),全压为 (填“正"或“负”)、

硝酸盐氮的测定(紫外分光光度法)

中华人民共和国行业标准 硝酸盐氮的测定 (紫外分光光度法) SL84—1994 Determination of nitrogen (nitrate) (Ultraviolet spectrophtometric method) 水利部1995/05/01批准1995/05/01实施 1 总则 1.1主题内容 本标准规定了用紫外分光光度法测定水中的硝酸盐氮。 1.2 适用范围 本方法适用于清洁地面水和未受明显污染的地下水中硝酸盐氮的测定,其最低检出浓度为0.08mg/L,测量上限为4mg/L硝酸盐氮。 1.3干扰及消除溶解的有机物、表面活性剂、亚硝酸盐、六价铬、溴化物、碳酸氢盐和碳酸盐等干扰测定,需进行适当的预处理。本法采用絮凝共沉淀和大孔中性吸附树脂进行处理,以去除水样中大部分常见有机物、浊度和Fe3+、Cr6+对测定的干扰。 2 方法原理 利用硝酸根离子在220nm波长处的吸收而定量测定硝酸盐氮。溶解的有机物在220nm处和275nm处均有吸收,而硝酸根离子在275nm处没有吸收。因此,在275nm处作另一次测量,以校正硝酸盐氮值。 3仪器

3.1紫外分光光度计。 3.2离子交换柱(?1.4cm,装树脂高5~8cm)。 3.3常用实验设备。 4 试剂 4.1氢氧化铝悬浮液:溶解125g硫酸铝钾[KAl(SO4)2·12H2O]或硫酸铝铵[NH4Al(SO4)2·12H2O]于1000mL水中,加热至60℃。然后边搅拌边缓缓加入55mL浓氨水。放置约1h后,移至一个大瓶中,用倾泻法反复洗涤沉淀物,直到该溶液不含铵离子为止。最后加300mL纯水成悬浮液。使用前振荡均匀。 4.2硫酸锌溶液:10%(m/V)。 4.3氢氧化钠溶液:C(NaOH)=5mol/L。 4.4大孔型中性树脂:CAD/40或XAD/2型及类似型号树脂。 4.5甲醇。 4.6盐酸溶液:C(HCl)=1mol/L(盐酸系优级纯)。 4.7氨基磺酸(H2NSO3H)溶液:0.8%(m/V),避光保存于冰箱中。 4.8硝酸盐氮标准溶液:C(NO3-N)=100mg/L。 将0.7218g经105~110℃干燥2h的硝酸钾(KNO3)溶于水中,移入1000mL容量瓶,用水稀释至标线,混匀。加2mL氯仿作保存剂,至少可稳定6个月。每毫升此标准溶液含0.100mg硝酸盐氮。 5 步骤 5.1水样预处理: 5.1.1吸附柱制备:新的树脂先用200mL去离子水分两次洗涤,用甲醇(4.5)

磺基水杨酸分光光度法测铁

磺基水杨酸分光光度法测铁 一、目的和要求 1、练习使用移液管、容量瓶 2、掌握用磺基水杨酸显色法测定铁的原理和方法。 3、掌握722型分光光度计的使用方法。 二、实验原理 磺基水杨酸是分光光度法测定铁的有机显色剂之一。磺基水杨酸(简式为H3R)与Fe3+可以形成稳定的配合物,因溶液pH的不同,形成配合物的组成也不同。在 pH=9~11.5 的 NH3.H2O-NH4Cl 溶液中,Fe3+与磺基水杨酸反应生成三磺基水杨酸铁黄色配合物。 + Fe3+ 该配合物很稳定, 试剂用量及溶液酸度略有改变都无影响。Ca2+、 Mg2+、 Al3+等与磺基水杨酸能生成无色配合物, 在显色剂过量时, 不干扰测定。F-、 NO3-、 PO43-等离子对测定无影响。Cu2+ 、Co2+、Ni2+、Cr3+等离子大量存在时干扰测定。由于Fe2+ 在碱性溶液中易被氧化,所以。本法所测定的铁实际上是溶液中铁的总含量。 磺基水杨酸铁配合物在碱性溶液中的最大吸收波长为 420nm, 故在此波长下测量吸光度。 三、实验仪器及试剂 1,15mlFeCl3溶液(0.05mg/L) NH4CL-NH3缓冲溶液) 3,2ml10%磺基水杨酸溶液 4,752型分光光度计 5,50ml容量瓶7个 6,250ml烧杯1个,500ml烧杯1个 7.蒸馏水 8.移液管3个 9.塑料滴管1个 10.50ml量筒1个 11.pH计1个 四、实验步骤 1、进入实验室,将实验要用到的有关仪器从仪器橱中取出,把玻璃器皿按洗涤要求洗涤干净备用。 2、系列标准溶液的配制 在6 只 5Oml 容量瓶中, 用移液管分别加入0.00 、1.00、 2.00、3.00、4.00 、5.00浓度为0.025mg/L的铁盐标准溶液, 各加2ml 2%磺基水杨酸溶液, 滴加pH=9-11.5的NH4CL-NH3缓冲溶液)直到溶液变成黄色。 表1 作工作曲线所配的系列溶液 2,标准曲Array线制作 用分光光度计于420m 波长下, 以试剂空

固定污染源排气中氯气的测 定-甲基橙分光光度法

固定污染源排气中氯气的测定甲基橙分光光度法 HJ/T 30-1999 1.适用范围 1.1 本方法适用于固定污染源有组织排放和无组织排放的氯气测定。1.2 当采集无组织排放样品体积为30L时,方法的检出限为0.03mg/m3,定量测定的浓度范围为 0.086~3.3mg/m3,当采集有组织排气样品体积为5.0L时,方法的检出限为0.2mg/m3,定量测定的浓度范围为 0.52~20mg/m3。 1.3 游离溴有和氯相同的反应而产生正干扰,微量二氧化硫对测定有明显负干扰。 2. 方法原理 含溴化钾、甲基橙的酸性溶液和氯气反应,氯气将溴离子氧化成溴,溴能在酸性溶液中将甲基橙溶液的红色减退,用分光光度法测定其退色的程度来确定氯气的含量。 3. 试剂和材料 除非另有说明,分析过程中均使用符合国家标准的分析纯试剂和蒸馏水。 3.1 浓硫酸:ρ=1.84g/ml。 3.2 甲基橙。 3.3 溴化钾。 3.4 溴酸钾:基准试剂。 3.5 硫酸溶液:1+6。 量取100ml浓硫酸,缓慢地、边倒边搅拌加入到600ml水中 3.6 甲基橙吸收贮备液 称取0.1000 g甲基橙,溶解于100ml 40~50℃的水中,冷却至室温,加无水乙醇20ml,移入1000ml容量瓶中,加水稀释至刻度,混匀。此溶液放置暗处可保存半年。

3.7 甲基橙吸收使用液 用吸管移取甲基橙吸收储备液250ml,置于1000ml容量瓶中,加入500ml 1+6硫酸溶液,再加入5.0g溴化钾,溶解后用水稀释至刻度,混匀。 3.8 溴酸钾标准贮备液:c(l/6KBrO3)1.41×10-1mol/L。 称取1.9627g溴酸钾,用少量水溶解,移入500ml容量瓶中,加水稀释至刻度,混匀。此溴酸钾标准贮备溶液每毫升相当于5.00mg氯。放置暗处,可保存半年。 3.9 溴酸钾标准使用液:c(l/6KBrO3)1.41×10-3mol/L。 用吸管移取溴酸钾标准贮备液10ml,移入1000ml容量瓶中,加水稀释至刻度,混匀。此溴酸钾标准使用液每毫升相当于50.0μg氯。 4. 仪器 4.1 分光光度计:具1cm比色皿。 4.2 采样仪器 4.2.1 有组织排放监测采样仪器 参照GB 16157—1996中9.3有关部分配置采样仪器。 4.2.1.1 采样管 以硬质玻璃、氟树脂或氯乙烯树脂为材质,具有适当尺寸的管料为采样管。 4.2.1.2 取样装置 25ml多孔玻板吸收管。 4.2.1.3 流量计量装置 按GB 16157—1996中9.3.6配置流量计量装置。 4.2.1.4 抽气泵 按GB 16157—1996中9.3.7配置抽气泵。 4.2.1.5 连接管 聚四氟乙烯软管或内衬聚四氟乙烯薄膜的硅橡胶管。 4.2.2 无组织排放监测采样仪器

硫酸根测定

硫酸根测定----EDTA滴定法 本方法适用于循环冷却水和天然水中硫酸根的测定,水样中硫酸根含量大于200mg/L时,可进行适当稀释。 1.原理 水样中加入氯化钡,与硫酸根生成硫酸钡沉淀。过量的离子在氯化镁存在下,以铬黑T为指示剂,用EDTA滴定。 2.试剂 1+1盐酸溶液 0.5%铬黑T乙醇溶液(同总硬度的测定) 氨—氯化铵缓冲溶液(PH=10.3)同总硬度的测定。 0.0125mol/L氯化钡溶液:称取3.054g氯化钡(BaCl2·2H2O)溶于100ml水中,移入1000ml容量瓶中,稀释至刻度。 0.01mol/LEDTA标准溶液。同总硬度的测定。 0.01mol/L氯化镁溶液的配制 称取2.1g氯化镁(MgCl2·6H2O)溶于少量水中,移入1000ml容量瓶中,稀释至刻度。同总硬度的测定 3.仪器 滴定管:酸式25ml。 电炉。 4.分析步骤 4.1 水样的测定 吸取经中速滤纸干过滤的水样50ml于250ml锥形瓶中,加入3滴1+1盐酸溶液,在电炉上加热微沸0.5分钟,再加入10ml 0.0125mol/L氯化钡溶液,微沸10分钟,冷却10分钟后,加入5ml 0.01mol/L氯化镁溶液,10ml氨—氯化铵缓冲溶液,6—10滴镉黑T指示剂,用0.01mol/LEDTA标准溶液滴定,溶液从酒红色至纯蓝色为终点。记录EDTA标准溶液的消耗量V4. 水样中硬度的测定 吸取经中速滤纸干过滤后水样50ml,加10ml氨—氯化铵缓冲溶液,6—10滴镉黑T指示剂,用0.01mol/LEDTA标准溶液滴定至纯蓝色。记录EDTA标

准溶液的消耗量V2. 氯化钡、氯化镁消耗EDTA标准溶液的体积V3。 准确吸取10ml 0.0125mol/L氯化钡溶液,5ml 0.01mol/L氯化镁溶液于250ml 锥形瓶中,加水50ml,再加入10ml氨—氯化铵缓冲溶液,6—10滴镉黑T 指示剂,用0.01mol/LEDTA标准溶液滴定至纯蓝色。 5.分析结果的计算 水样中硫酸根离子的含量X(毫克/升),按下式计算: 96×(V 2﹢V 3 - V 4 )×M 2 X = --------------------- ×1000 V W 式中; M 2 ---EDTA标准溶液的摩尔浓度,mol/L V W---水样体积,毫升 6.允许差 硫酸根含量在100mg/L范围内时,平行测定两结果差不大于4mg/L 7.结果表示 取平行测定两结果的算术平均值,作为水样的硫酸根含量。 8.注意事项 可根据实际水样中的硫酸根含量确定水样的吸取体积。

硫酸根检测方法

MM_FS_CNG_0301 制盐工业通用试验方法硫酸根离子的测定 1.适用范围 本方法适用于制盐工业中工业盐、食用盐(海盐、湖盐、矿盐、精制盐)、氯化钾、工业氯化镁试样中硫酸根含量的测定。 2.重量法 2.1.原理概要 样品溶液调至弱酸性,加入氯化钡溶液生成硫酸钡沉淀,沉淀经过滤、洗涤、烘干、称重,计算硫酸根含量。 2.2.主要试剂和仪器 2.2.1.主要试剂 氯化钡:0.02mol/L溶液; 配制:称取2.40g氯化钡,溶于500mL水中,室温放置24h,使用前过滤; 盐酸:2mol/L溶液; 甲基红:0.2%溶液。 2.2.2.仪器 一般实验室仪器。 2.3.过程简述 吸取一定量样品溶液〔见附录A(补充件)〕,置于400mL烧杯中,加水至150mL,加2滴甲基红指示剂,滴加2mol/L盐酸至溶液恰呈红色,加热至近沸,迅速加入40mL(硫酸根含量>2.5%时加入60mL)0.02mol/L氯化钡热溶液,剧烈搅拌2min,冷却至室温,再加少许氯化钡溶液检查沉淀是否完全,用预先在120℃烘至恒重的4号玻璃坩埚抽滤,先将上层清液倾入坩埚内,用水将杯内沉淀洗涤数次,然后将杯内沉淀全部移入坩埚内,继续用水洗涤沉淀数次,至滤液中不含氯离子(硝酸介质中硝酸银检验)。以少量水冲洗坩埚外壁后,置电烘箱内于120±2℃烘1h后取出。在干燥器中冷却至室温,称重。以后每次烘30min,直至两次称重之差不超过0.0002g视为恒重。 2.4.结果计算 硫酸根含量按式(1)计算。 硫酸根(%)=(G1-G2)×0.4116 ×100 (1) W 式中:G1——玻璃坩埚加硫酸钡质量,g;G2——玻璃坩埚质量,g;W——所取样品质量,g;0.4116——硫酸钡换算为硫酸根的系数。 2.5.允许差 允许差见表1。 表 1 硫酸根,%允许差,% <0.50 0.03 0.50~<1.50 0.04 1.50~3.50 0.05 2.6.分析次数和报告值 同一实验室取双样进行平行测定,其测定值之差超过允许差时应重测,平行测定值之差如不超过允许差取测定值的平均值作为报告值。 3.容量法(EDTA络合滴定法) 3.1.原理概要 氯化钡与样品中硫酸根生成难溶的硫酸钡沉淀,过剩的钡离子用EDTA标准溶液滴定,间接测定硫酸根。 3.2主要试剂和仪器 3.2.1.主要试剂 氧化锌;标准溶液。 称取0.8139g于800℃灼烧恒重的氧化锌,置于150mL烧杯中,用少量水润湿,滴加盐酸(1∶2)至全部溶解,移入500mL

相关文档
最新文档