四则运算和运算定律知识点

四则运算和运算定律知识点
四则运算和运算定律知识点

四则运算和运算定律知识点

一、四则运算的概念和运算顺序

1、加法、减法、乘法和除法统称四则运算。

2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。

4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小-中一大。括号里面的计算顺序遵循以上 1、2、3条的计算顺序。

二、运算定律

1、加法交换律: 两个数相加,交换加数的位置,和不变。字母表示:

a +

b = b + a

2、加法结合律:三个数相加,先把前两个数相加;或者先把后两个数相加,和不变。字母表示:

(a + b) + c = a + (b + c)

3、乘法交换律:两个数相乘,交换两个因数的位置,积不变。字母表示:

a >

b = b X a

4、乘法结合律:三个数相乘,先乘前两个数,或先乘后两个数,积不变。字母表示:

(a xb) Xc = a X b X)

5、乘法分配律:①两个数的和与一个数相乘,可以先把他们与这个数分别相乘,再

相加,得数不变,字母表示:

(a + b) X c = a X: + b X:; a X: + b X: = (a + b) X c ;

②两个数的差与一个数相乘,可以先把他们与这个数分别相乘,再相减,得数不变,字母表示:

(a — b) >C = a >C—b >c; a >C—b >C = (a—b) >C;

6、连减定律:

①一个数连续减去两个数,等于这个数减后两个数的和,得数不变;字母表示:a—b — c = a—(b + c) ; a—(b + c) = a — b — c;

②在三个数的加减法运算中,交换后两个数的位置,得数不变。字母表示:

a—b — c = a—c—b ; a—b + c = a + c— b

7、连除定律:

①一个数连续除以两个数,等于这个数除以后两个数的积,得数不变。字母表示:

a 北弋=a 说

b >t) ; a 说b xc) = a H D充;

②在三个数的乘除法运算中,交换后两个数的位置,得数不变。字母表示:

a H D弋=a 弋H D; a H D X: = a X H D

简便计算例题

一、常见乘法计算:

25 X4 = 100 ,125 >8 = 1000

二、加法交换律简算例题:

50+98+50

四年级下册数学:运算定律 (含答案)

四年级下册数学—运算定律 一、单选题 1.41×25的简便算法是() A. 40×25+1 B. 40+1×25 C. 40×25+25 2.用简便方法计算 25×3×4×5=() A. 1500 B. 630 C. 600 D. 730 3.用简便方法计算() 39×5×2= A. 1000 B. 270 C. 390 D. 370 4.下面的3个算式中,与“12×2+12×3”得数相等的算式是() A. 12×2+12 B. (12+2)×12 C. (2+3)×12 5.下列各式中,错误的是()。 A. 78×85×17=78×(85×17) B. 28×101=28×100+28 C. 125×16×25=125×8+8×25 D. 496-78-22=496-(78+22) 二、判断题 6.(99×125)×8=99×(125×8),这里运用了乘法结合律。() 7.火眼金睛判对错. 28×29+29×2=29×28×2 () 8.125×4×25×8=(125×8)+(4×25) () 9.98×16 =(100-2)×16 =100×16-16 =1600-16 =1584 () 10. 45×32×45×68=45×(32+68)() 三、填空题

11.用简便方法计算 24×25×2=________ 12.计算329+912后,可以用________律交换两个加数的位置进行验算。 13.用简便方法计算. 25×136+264×25=________ 14.用简便方法计算 73×39+27×39=________ 15.用简便方法计算 104×25=________ 四、解答题 16.计算:869+242+758=? 我这样算 ①869+242+758 =1111+758 =1869 我这样算 ②869+242+758 =869+(242+758) =869+1000 =1869

四则运算、运算定律概念总结知识讲解

四则运算、运算定律 概念总结

第一单元:四则运算 1、加、减法各部分间的关系: 两个数合并成一个数的运算,已知两个数的和与其中的一个加数,求叫做加法。另一个加数的运算,叫做减法。 和=加数+加数差=被减数-减数 加数=和-另一个加数(验算)减数=被减数-差(验算) 被减数=减数+差(验算) (★常考:验算:注意:①数位对齐,小数点对齐,②补零,③得数写第一个结果,用最简洁的方式。④细心验算) 2、乘、除法法各部分间的关系: 求几个相同加数的和的简便运已知两个因数的积与其中一个因数,求 算,叫做乘法。另一个因数的运算,叫做除法。 积=因数×因数商=被除数÷除数 因数=积÷另一个因数(验算)除数=被除数÷商(验算) 被除数=商×除数(验算) 3、我们学过的(加、减、乘、除)四种运算统称(四则运算) 4、在没有括号的算式里,如果有只有加减法或者只有乘除法,都要按从左往右 的顺序计算。

5、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。(乘、除谁在前,先算谁) 6、算式里有括号,要先算小括号里面的,再算中括号里面的。 7、一个数加上0,还得原数; 被减数等于减数,差是0; 一个数和0相乘,仍得0; 0不能作除数,可作被除数。(0除以任何不为零的数都得0) 8、在有括号的四则运算中,一定要先算括号里的算式,然后再按先乘除后加减的顺序依次计算。 (常考:列综合算式:①要用原题中的数据,不是自算的,②题目里从上到下先算谁,再算谁,找出运算顺序,③考虑小括号与中括号) 9、租船:坐满最便宜。 假设全部租大船,求出价格。假设全部租小船,求出价格。 多租价格低的,不留空位最省钱。 (常考:景区选方案,细心计算) 第三单元:运算定律 1、加法交换律:a+b=b+a (两个数相加,交换加数的位置,和不变。) 2、加法结合律:(a+b)+c=a+(b+c)

人教版四年级数学下下册运算定律

人教版四年级数学下下册运算定律 第三单元运算定律 教学内容 教材第17~31页的内容。 教材分析 本单元教学内容包括加法运算定律(加法交换律、加法结合律、加法运算定律的运用),乘法运算定律(乘法交换律、乘法结合律、乘法分配律、解决问题策略多样化),简便计算(连减的简便计算)。本单元所学习的五条运算定律,不仅适用于整数的加法与乘法,也适用于有理数的加法与乘法。随着数的范围的进一步扩展,在实数甚至复数的加法与乘法中,它们仍然成立。因此,这五条运算定律在数学中具有重要的地位与作用,被誉为“数学大厦的基石”,对数学教学有着重要的意义与作用。 本单元在编排上有如下特点: 1.将运算定律的知识集中在一起,有利于学生形成比较完整的认知结构。 2.从现实的问题情境中抽象概括出运算定律,便于学生理解与应用。在练习中还安排了一些实际问题,让学生借助解决实际问题,进一步体会与认识运算定律。 3.本单元改变了以往简便计算以介绍算法技巧为主的倾向,着力引导学生将简便计算应用于解决现实生活中的实际问题,关注方法的灵活性,注重解决问题策略的多样化。从而发展学生思维的灵活性,提高学生分析问题、解决问题的能力。 教学目标 1.引导学生探索与理解加法交换律、结合律、乘法交换律、结合律与分配律,能运用运算定律进行一些简便计算。 2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。 3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。 教学建议 1.充分利用学生已有的感性认识,促进学习的迁移。 2.强调形式归纳与意义理解的结合。 3.把握运算定律与简便运算的联系与区别。 4.培养学生的简算意识,提高其计算能力。 课时安排 建议用7课时教学。 教案A 第1课时 教学内容 加法运算定律:教材第17页例1、2及相关内容。 教学目标 1.使学生理解并掌握加法交换律与加法结合律,并能够用字母来表示加法交换律与结合律。

四则运算、运算定律专项练习

四则运算、运算定律专项训练 四则运算 一、口算 36 ÷3= 100 -62= 24 -8 +10 = 75 ×30= 371 -371= 5 +24 -12= 200 ÷40= 84 ÷4= 159+61= 600÷20=78+222= 1000÷8= 17×11=7600÷400=480÷120= 25×17×4= 225-99= 640÷40= 二、比一比,算一算 49 +17 -25 240 ÷40 × 5 300 -50 ×2 49 - (17 +25)240 +40 × 5 300 -50 ×20 ×0 三、把下面几个分步式改写成综合算式. (1)960÷15=64 64-28=36 综合算式___________________. (2)75×24=1800 9000-1800=7200 综合算式___________

(3)810-19=791 791×2=1582 1582+216=1798 综合算式 (4)96×5=480 480+20=500 500÷4=125 综合算式 四、计算下面各题 121 -111 ÷37 (121 -111 ÷37) × 5 280 +650 ÷13 45 ×20 × 3 1000 -(280 +650 ÷13)(95 -19 × 5 )÷74 (120 -103)×50 760 ÷10 ÷38 (270 +180)÷(30 -15)707 -35 ×20 (95 -19 × 5 )÷74 19×96-962÷74

10000-(59+66)×64 5940÷45× (798-616) (270 +180)÷(30 -15)(315×40-364)÷7 12520÷8×(121÷11) 707 -35 ×20 50+160÷40 (58+370)÷(64-45) 120-144÷18+35347+45×2-4160÷52 (58+37)÷(64-9×5)95÷(64-45) 178-145÷5×6+42 420+580-64×21÷28

四则运算和运算定律 知识点整理

四则运算和运算定律知识点整理 四则运算是指加法、减法、乘法、除法的计算法则。 一级运算:加、减。二级运算:乘、除。 运算顺序:先乘除后加减,如果有括号就先算括号内的,然后再算括号外的。先算小括号,然后算中括号、大括号。两级运算,先算高一级后算低一级。即先算乘除后算加减。(同一级运算中,计算顺序是从左到右) 1、如果只有加和减或者只有乘和除,从左往右计算。(同一级计算) 2、如果同时有一级、二级运算,先算二级运算。即先算乘除后算加减。 3、如果有括号,要先算括号里的数,(不管什么级都要先算)。 4、关于括号里的计算:先算小括号,然后算中括号、大括号,括号中也是先算二级,再算一级。 运算定律 1、加法交换律:a+b=b+a 有两个加数相加,交换加数的位置,和不变,这叫做加法交换律 . 2、加法结合律:a+b+c=(a+b)+c=a+(b+c) 三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数 相加,在和第一个数相加,和不变,这叫做加法结合律. 3、减法的性质:a-b-c=a-(b+c) 一个数连续减去两个数,可以用第一个数减轻后面两个数的和,差不变, 这作减法的性质. 4、乘法交换律:a×b=b×a 两个数相乘,交换加数的位置,积不变,这叫做乘法的交换律. 5、乘法结合律:a×b×c=(a×b)×c=a×(b×c) 三个数相乘,先把前两个数相乘,在和第三个数相乘,或者先把后两个数 相乘,再和第一个数相乘,积不变,这叫做乘法的结合律. 6、乘法分配律:(a+b)×c=a×c+b×c 两个数的和与第三个数相乘,等于把这两个数分别与这个数相乘,再把它们的积相加起来,积不变,这叫做乘法分配律. 7、除法的性质:a÷b÷c=a÷(b×c) 一个数连续除以两个数,等于一个数除以两个数的积,商不变,这叫做除 法的性质. 一般情况下,乘法交换律和结合律会同时应用,只有交换后才可以结合. ★★运算顺序:1、加法和减法叫做第一级运算,乘法和除法叫做第二级运算。2、在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。即先乘除后加减。3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。

四年级数学运算定律

四年级数学运算定律 加法和乘法的运算定律是四年级的重点之一,考试之前,我再把所学的运算定律总结一下,希望同学们换上具体的数也能够灵活运用。 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法运算性质:a-b-c=a-(b+c) 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配率:a×(b+c)=a×b+a×c a×(b-c)=a×b-a×c 除法运算性质:a÷b÷c=a÷(b×c) 一、判断题。 1、27+33+67=27+100 () 2、125×16=125×8×2 () 3、134-75+25=134-(75+25)() 4、1250÷(25×5)=1250÷25×5 () 二、选择(把正确答案的序号填入括号内) 1、56+72+28=56+(72+28)运用了() A、加法交换律 B、加法结合律 C、乘法结合律 D、加法交换律和结合律 2、25×(8+4)=() A、25×8×25×4 B、25×8+25×4 C、25×4×8 D、25×8+4 3、3×8×4×5=(3×4)×(8×5)运用了() A、乘法交换律 B、乘法结合律 C、乘法分配律 D、乘法交换律和结合律 4、101×125= () A、100×125+1 B、125×100+125 C、125×100×1 D、100×125×1×125 三、怎样简便就怎样计算 355+260+140+245 102×99 2×125 645-180-24 5 382×101-382 4×60×50×8 35×8+35×6-4×35 四、应用题 雄城商场1—4季度分别售出冰箱269台、67台、331台和233台。雄城商场全年共售出冰箱多少台?

四则运算运算定律专项练习完整版

四则运算运算定律专项 练习 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

四则运算、运算定律专项训练四则运算 一、口算? 36÷3=100- 62=24?- 8?+?10= 75×30=371?- 371=5?+?24?- 12= 200÷40=84÷4=159+61=? 600÷20=?78+222=1000÷8=? 17×11=?7600÷400=?480÷120=? 25×17×4=?225-99=?640÷40=? 二、比一比,算一算? 49+17-25240÷40×5300-50×2 49-(17+25)240+40×5300-50×20×0 三、把下面几个分步式改写成综合算式. (1)960÷15=64?64-28=36综合算式___________________.

(2)75×24=1800?9000-1800=7200综合算式___________(3)810-19=791?791×2=15821582+216=1798综合算式(4)96×5=480480+20=500500÷4=125综合算式 四、计算下面各题? 121-111÷37(121-111÷37)×5 280+650÷1345×20×3 1000-(280+650÷13)(95-19×5)÷74 (120-103)×50760÷10÷38 (270+180)÷(30-15)707-35×20 (95-19×5)÷74?19×96-962÷74? 10000-(59+66)×645940÷45× (798-616) (270+180)÷(30-15)(315×40-364)÷7 12520÷8×(121÷11)707-35×20 50+160÷40?(58+370)÷(64-45) 120-144÷18+35347+45×2-4160÷52? (58+37)÷(64-9×5)95÷(64-45) 178-145÷5×6+42?420+580-64×21÷28? 812-700÷(9+31×11)(136+64)×(65-345÷23)

数学总复习四则运算、运算定律

数学总复习四则运算、运算定律 一、教学内容:四则运算和运算定律 二、教学目标: 1.进一步掌握四则混合运算的运算顺序、加法运算定律和乘 法运算定律,能正确计算三步混合运算试题; 2.进一步掌握小数加减法和加减混合运算,高计算的正确率 和熟练程度; 3.能应用加法运算定律和乘法运算定律进行简便计算; 4.进一步提高学生应用数学知识和方法解决实际问题的能 力。 三、重点和难点: 重点:四则混合运算的运算顺序 难点:应用加法运算定律和乘法运算定律进行简便计算 四、教具准备:小黑板及试题材料 五、教学过程: (一)四则运算:四则运算顺序及运算法则 1、四则运算:加法、减法、乘法和除法统称为四则运算。 2、四则运算法则: a.在没有括号的式子里,只有加减法或只有乘除法,要按从 左往右的顺序依次计算; b.在没有括号的式子里,既有加减又有乘除,要先算乘除,

再算加减; c.在有括号的式子里,要先算括号里的,再算括号外面的。 3、练习:(小黑板1) ○1()、()、()和()统称四则运算。 ○2在没有括号的式子里,只有加减法或只有乘除法,要按()的顺序依次计算。 ○3在没有括号的算式里,既有加、减法又有乘、除法,要先算(),再算()。 ○4如果算式里有括号,要先算()。 ○5计算:(小组比赛的形式,每组做一题。) 12.78—(10—7.25) 45÷5+36×6 4.5—2.83+ 5.76 72×5+240 (二)复习运算定律: 1、先让学生想想,我们迄今为止已经学过了哪些运算定律,然后指名回答,进行全班交流,根据学生的口答,教师整理并板书如下: a+b=b+a(加法交换律) (a+b)+c= a+(b+c) (加法结合律) a X b =b X a (乘法交换律) (a X b) X c= a X(b X c) (乘法结合律) (a+b)X c= a X c + b X c (乘法分配律)

四则运算、运算定律概念总结

第一单元:四则运算 1、加、减法各部分间的关系: 两个数合并成一个数的运算,已知两个数的和与其中的一个加数,求叫做加法。另一个加数的运算,叫做减法。 和=加数+加数差=被减数-减数 加数=和-另一个加数(验算)减数=被减数-差(验算) 被减数=减数+差(验算) (★常考:验算:注意:①数位对齐,小数点对齐,②补零,③得数写第一个结果,用最简洁的方式。④细心验算) 2、乘、除法法各部分间的关系: 求几个相同加数的和的简便运已知两个因数的积与其中一个因数,求算,叫做乘法。另一个因数的运算,叫做除法。 积=因数×因数商=被除数÷除数 因数=积÷另一个因数(验算)除数=被除数÷商(验算) 被除数=商×除数(验算) 3、我们学过的(加、减、乘、除)四种运算统称(四则运算) 4、在没有括号的算式里,如果有只有加减法或者只有乘除法,都要按从左往右 的顺序计算。 5、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。(乘、除谁在前,先算谁) 6、算式里有括号,要先算小括号里面的,再算中括号里面的。 7、一个数加上0,还得原数; 被减数等于减数,差是0; 一个数和0相乘,仍得0; 0不能作除数,可作被除数。(0除以任何不为零的数都得0) 8、在有括号的四则运算中,一定要先算括号里的算式,然后再按先乘除后加减的顺序依次计算。 (常考:列综合算式:①要用原题中的数据,不是自算的,②题目里从上到下先算谁,再算谁,找出运算顺序,③考虑小括号与中括号) 9、租船:坐满最便宜。 假设全部租大船,求出价格。假设全部租小船,求出价格。 多租价格低的,不留空位最省钱。 (常考:景区选方案,细心计算)

四则运算意义和运算定律的复习-精

四则运算意义和运算定律的复习-精 2020-12-12 【关键字】地方、认识、问题、系统、加深、掌握、规律、特点、位置、能力、作用、关系、提高 教学内容:教材第14l页第1~3题。 教学要求: 使学生进一步认识四则运算的意义及其应用,进一步掌握四则运算的定律和一些规律,并能应用这些定律或规律进行简便计算,提高学生的计算能力。 教学过程: 一、揭示课题 今天这节课,我们复习四则混合运算的意义、运算定律、以及简便算法。通过复习,要进一步加深对四则运算意义的理解,系统地掌握加法和乘法的运算定律,认识相互之间的联系和不同点,进一步认识一些运算的规律,并能熟练地应用运算的定律、规律进行一些简便计算,提高学生的计算能力。 二、复习四则运算的意义 1.口算下列各题,并说出各算式所表示的意义。 55+20= 75—55= 75—20=

提问:你能说出怎样的运算叫做加法吗?(出示加法定义)根据这一组算式中的两道减法再说一说,什么叫做减法。(出示减法定义)它与加法有什么关系? 谁再来说一说,什么叫做乘法?(出示乘法定义)根据乘法的意义,它与加法有什么联系吗?什么叫做除法?(出示除法定义)它与乘法有什么关系? 我们已经知道了四则运算的意义,并且从上面的每组题可以看出,减法是加法的逆运算,除法是乘法的逆运算。我们能不能用实际的例子来说明四则运算的意义呢?请看期末复习第1题。 2.四则运算意义的应用。 (1)请同学们先看第(1)题。谁来编一道加法应用题呢?(按照编的题板书) 提问:这道题为什么是加法应用题? 谁能根据编出的加法应用题来编两道减法应用题?(指名学生口头编题) 提问:这两题都是已知加法里的什么数,要求什么数? (2)请同学们再看第(2)题。谁来编一道乘法应用题呢?(按照编的题板书)

人教版四年级下册运算定律练习题

类型一:(注意:一定要括号外的数分别乘括号里的两个数,再把积相加) (40+8)×25125×(8+80)36×(100+50) 24×(2+10)86×(1000-2)15×(40-8) 类型二:(注意:两个积中相同的因数只能写一次) 36×34+36×6675×23+25×2363×43+57×63 93×6+93×4325×113-325×1328×18-8×28 类型三:(提示:把102看作100+2;81看作80+1,再用乘法分配律) 78×10269×10256×101102×99 52×102125×8125×4162×(100+l) 类型四:(提示:把99看作100-1;39看作40-1,再用乘法分配律) 31×9942×9829×99 85×98125×7925×39 类型五:(提示:把83看作83×1,再用乘法分配律) 83+83×9956+56×9999×99+99382×101-382 75×101-75125×81-12591×31-9189×9+89 三、简便计算 1)用加法运算定律简便计算: 547+47+4531078+22+1978355+260+140+24567+1056+944+ 133

2)用乘法运算定律简便计算: 40×24×5125×13×825×8×4×12525×16125×24 25×(20+4)(8+4)×12524×73+26×2445×65+54×65 156×56—56×5699×78+78101×67-6799×32 3)用减法的性质简便计算: 645-180-245478-256-144568-(68-78)987-(287+135) 500-257-34-143698-291-9514+189—21436-164+36-64 4)用除法的性质简便计算: 96÷12÷8408÷17÷6720÷(9×4)570÷(19×2)630÷45÷71080÷30÷9270÷18490÷35 四、怎样简便就怎样计算。 4×60×50×8125×25×3288×225+225×12169×123—23×169 228+(72+189)109+(291—176)216+89+11102×99102×26 2000-368-132382+165+35-8289×99+89382×101-382 36+64-36+64155+256+45-55169×123—23×169219×99 1050÷15÷77200÷24÷3035×8+35×6-4×35672-36

四则运算和简便运算定律

教案过程 一、复习预习 1.换位学习 让学生以“老师的口吻”为老师讲解已学过的运算定律 2.学生与老师交流(运算中怎样简便?):讨论“我的想法对不对?” 二、知识讲解 考点/易错点1 两个数相加,交换加数的位置,和不变。这叫做加法交换律。 考点/易错点2 三个数相加,先把前两个数相加,再加第三个数。或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。 考点/易错点3 乘法运算中交换两个因数的位置,积不变。这叫做乘法交换律。 考点/易错点4 乘法运算中,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。

考点/易错点5 两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。 考点/易错点6 1.要想运用运算定律做好简便运算,要仔细观察算式,如果只有加法,一般用到加法交换和结合律,如果算式里只有乘法,一般用到乘法交换和结合律,如果既有加又有乘,一般用到乘法分配律。当然要注意一些变式。 2.还要观察算式里面的特殊数字,如25和4,125和8,2和5等,有时101可以变成(100+1),想想如何利用好这些特殊数字。 三、例题精析 【例题1】 【题干】357+288+143 【答案】788 【解读】357+288+143 =357+143+288 =500+288 =788 【例题2】 【题干】 138+293+62+107 【答案】600 【解读】138+293+62+107 =(138+62)+(293+107) =200+400 =600 【例题3】 【题干】25×17×4

【答案】1700 【解读】25×17×4 =25×4×17 =100×17 =1700 【例题4】 【题干】(25×125)×(8×4)【答案】100000 【解读】(25×125)×(8×4) =(25×4)×(8×125) =100×1000 =100000 【例题5】 【题干】 25×(40+4) 【答案】1100 【解读】 25×(40+4) = 25×40+25×4 =1000+100 =1100 【例题6】 【题干】 125×64 【答案】8000 【解读】 125×64 =125×(8×8)

四年级数学下册运算定律测试题

四年级数学下册运算定律测试题 全卷100分 答卷时间:60分钟 一.计算题 (共30分) 1.直接写出得数·(共12分) 15×6= 600÷60= 25×8= 38-(8+20)= 81÷9×4= 15-30÷6= 1000÷100= 7×9×0 = 7×25×4= 210÷2÷5= 174+20+80= 56-18-2 = 2.计算下面各题.怎样简便就怎样计算·(共18分) 65+171+29+35 975-57-23 134×8+8×66 102×99 125×17×8 1400÷4÷25 二.填空题 (共34分) 1.下面的算式分别运用了哪些运算定律·(8分) 49×56=56×49 ( ) 13×5×2=13×(5×2) ( ) 17×8+17×2=17×(8+2) ( ) 67+73+27=67+(73+27) ( ) 2.在○里填上合适的运算符号.在横线里填上合适的数·(10分) 69 + 45 = 45 + 得分

25×69×4=69 ×( × ) 926-37-63= -( ○ ) 1600÷50÷2= ○( ○ ) 3×ɑ+ɑ×7=( ○ )○ 3.下面哪个算式是正确的?(正确填写“T ”.错误填写“F ”)(10分) (1)14×99+14=14×(99+1) ( ) (2)13×5×2=13×(5×2) ( ) (3)100-16+14=100-(16+14) ( ) (4)560÷35=560÷7×5 ( ) (5)4×a +a ×9 =(4+9)×a ( ) 4.把相等的式子连线(6分) 三.解决问题 (共36分) 1.用计算器计算2507×64时.发现键“6”坏了·如果还用这个计算器.你会怎样计算?请 写出算式(不用计算得数)·(3分) 2.四年级一班有45名学生.一共做了630面彩旗.平均每个学生做了多少面彩旗?(5分) 3.新出售的大理石方砖如右图·(5分) 125 块这样的方砖可以铺地多少平方分米?合多少平方米? 9分 米

四则运算、运算定律与简便计算

四则运算、运算定律与简便计算 教学内容: 四则运算、运算定律与简便计算 教学目标: 1、通过练习,使学生巩固带小括号四则混合运算式题的运算顺序,并能正确计算带小括号. 2、复习运用加法和乘法的运算定律和一些简算方法进行简便运算。 3、培养学生根据具体情况,选择算法的意识和能力,发展思维的灵活性。 教学过程: 一、口算 2500500 0250 10025 5829 250 1 915 333+1 67+5 1、答下面各题的运算顺序 472873549+7 4728(73549+7) 47(2873549)+7 同桌互说再集体反馈 二、组织练习改错先说说错在哪里,为什么会错?该如何订正? 235+5(20010025) =240(10025) =2404 =960 5(121212+12) =5(0+12) =512 =60 说说运算顺序 4300(22478) (4116)(8964) (375+3116)(8964) 小结:四则运算顺序 三、复习加法、乘法的运算定律 1、引导学生用文字总结并用字母归纳 (教师板书:用字母表示各个运算定律) 2、小数加法和减法 题1、一根绳子长25.2米,先剪去8.8米,再剪去4.2米,还剩多少米? 板书:25.2-8.8-4.2 =25.2-4.2-8.8 =21-8.8 =12.2 2、 25.2-8.8-4.2 =25.2-(8.8+4.2) =25.2-13 =12.2 3、在上学期的学习中,我们学习了乘法交换律、乘法结合律、乘法分配律等运算定律,合

理的运用这些运算定律可以对一些计算进行简便运算。回想一下这些运算定律是怎么说的?能用这些运算定律进行简便计算的题目有什么特点? 简便计算: 575+635+125+265 27×55-27×45 98×25 101×72-72 125×64 (32+32+32+32)×25 67×14+14×32 4、运用减法的运算性质进行简便计算 1)320 - 36 - 64 2) 197 - (22 + 97) 3) 1175 -(545 -125) 4)(520+123)—(80+23) 5、一个数连续除以两个数,可以先把两个数乘起来,再去除被除数。 计算(对比练习) 10000÷125÷8 1000÷125×8 200÷4÷25 200÷4×25 20500÷125÷4 25000÷8÷25 6、商不变性质 6 ÷2=()÷4=36 ÷()=60 ÷() ()÷170=119 ÷17=11900 ÷()=238 ÷() 交流:重点题2中的238 ÷() 1800÷400=4……200,当被除数和除数都缩小10倍时,余数是() 写出与下面商相等的除法算式 3600÷200700÷25

四年级运算定律练习题

运算定律练习题 (1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)38×25×4 42×125×8 25×17×4 (25×125)×(8×4) 49×4×5 38×125×8×3 (125×25)×4 5 ×289×2 (125×12)×8 125×(12×4) (2) 乘法交换律和结合律的变化练习 125×64 125×88 44×25 125×24 25×28(3)加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

357+288+143 158+395+105 129+235+171+165 378+527+73 58+39+42+61 138+293+62+107 (4)乘法分配律:(a+b)×c=a×c+b×c (80+4)×25 (20+4)×25 (125+17)×8 25×(40+4) 15×(20+3) (5)乘法分配律正用的变化练习: 36×3 39×101 125×88 201×24

(6)乘法分配律反用的练习: 34×72+34×28 35×37+65×37 85×82+85×18 25×97+25×3 76×25+25×24 (7)乘法分配律反用的变化练习: 38×29+38 64×199+64 35×68+68+68×64 ☆思考题:(8)其他的一些简便运算。 800÷25 6000÷125 3600÷8÷5

58×101-58 74×99 1、某小学四年级学生组织参观科技馆,男生有204人,女生有196人。如果每40人坐一辆汽车,一共需要多少辆汽车? 2、李叔叔和王叔叔一起加工一批零件,李叔叔每小时加工49个,王叔叔每小时加工51个,两人一起工作了6小时才完成任务。这批零件一共有多少个? (请用一种你认为计算最方便的方法列式计算) 3、学校食堂运来大米和面粉各80袋,大米每袋75千克,面粉每袋25千克,大米和面粉共多少千克?(请用两种方法解答)

四年级数学下册运算定律练习题

运算定律测试题 一、判断题。(5分) 1、27+33+67=27+100 () 2、125×16=125×8×2 () 3、134-75+25=134-(75+25)() 4、先乘前两个数,或者先乘后两个数,积不变,这是乘法结合律。() 5、1250÷(25×5)=1250÷25×5 () 二、选择(把正确答案的序号填入括号内)(8分) 1、56+72+28=56+(72+28)运用了() A、加法交换律 B、加法结合律 C、乘法结合律 D、加法交换律和结合律 2、25×(8+4)=() A、25×8×25×4 B、25×8+25×4 C、25×4×8 D、25×8+4 3、3×8×4×5=(3×4)×(8×5)运用了() A、乘法交换律 B、乘法结合律 C、乘法分配律 D、乘法交换律和结合律 4、101×125= () A、100×125+1 B、125×100+125 C、125×100×1 D、100×125×1×125 5、用2,4,6三个数字可以组成( )个不同的三位数。(每个数中,每个数字只出现一次) A.3 B.6 C.9 6、265×95+265×5=265×(95+5)在计‘算时用了( )。 A.加法结合律B.乘法结合律 C.乘法分配律D.减法性质 7、计算(125+16)×8下面哪种简便方法正确?( ) A.原式=125×8+6 B.原式=125×16×8 C.原式=125×8×16×8 D.原式=125×8+16×8 8、一只蜗牛用4分钟爬行了24米,煦这样的速度,要爬行72米须用几分钟?列式是( )。 A.24×(72÷4) B.24÷(72÷4) C.72×(24÷4) D.72÷(24÷4) 三、怎样简便就怎样计算(66分)。 355+260+140+245 102×99 2×125 645-180-245 125×32 25×46 101×56 99×26 382×101-382 4×60×50×8 35×8+35×6-4×35

(完整版)人教版四年级下册运算定律知识点

第三章运算定律 一、加法运算定律: 1加法交换律两个数相加,交换加数的位置,和不变。a+b = b+a 2、加法结合律:]三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加, 再加上第一个数,和不变。(a+b)+c = a+(b+c) 加法的这两个定律往往结合起来一起使用。如:165+93+35 = 93+(165+35) 3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a--b-c = a-(b+c) 二、乘法运算定律: 1乘法交换律:|两个数相乘,交换因数的位置,积不变。axb = b冷 2、乘法结合律:|三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘, 再乘以第一个数,积不变。(a >b) >c = a)(b >c) 乘法的这两个定律往往结合起来一起使用。如:125X78X8 = 78 (125 X8) 3、乘法分配律两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。 (a+b) X=a X c+b X c (a —b) X = a X c —b X c 乘法分配律的应用: ①类型一: (a + b) X c (a —b) X c =a X c + b X c =a X c—b X c ②类型二: a X c+ b X c a X c —b X c =(a + b) X c =(a —b) X c ③类型三: a X 99 + a a X b —a =a X (99 + 1) =a X (b —1) ④类型四: a X 99 a X 102 =a X (100 —1) =a X (100 + 2) =a X 100—a X =a X 100+ a X 三、简便计算 1 ?连加的简便计算: ①使用加法结合律(把和是整十、整百、整千、的结合在一起) ②个位:1与9, 2与8, 3与7, 4与6, 5与5,结合。 2 ?连减的简便计算: ①连续减去几个数就等于减去这几个数的和。如:106-26-74 = 106-(26+74) ②减去几个数的和就等于连续减去这几个数。如:106-(26+74) = 106-26-74 3?加减混合的简便计算: 第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减) 例如:123+38-23=123-23+38 146-78+54=146+54-78

四则运算运算定律专项练习

四则运算运算定律专项练 习 Prepared on 21 November 2021

四则运算、运算定律专项训练四则运算 一、口算? 36÷3=100- 62=24?- 8?+?10= 75×30=371?- 371=5?+?24?- 12= 200÷40=84÷4=159+61=? 600÷20=?78+222=1000÷8=? 17×11=?7600÷400=?480÷120=? 25×17×4=?225-99=?640÷40=? 二、比一比,算一算? 49+17-25240÷40×5300-50×2 49-(17+25)240+40×5300-50×20×0 三、把下面几个分步式改写成综合算式. (1)960÷15=64?64-28=36综合算式___________________.

(2)75×24=1800?9000-1800=7200综合算式___________(3)810-19=791?791×2=15821582+216=1798综合算式(4)96×5=480480+20=500500÷4=125综合算式 四、计算下面各题? 121-111÷37(121-111÷37)×5 280+650÷1345×20×3 1000-(280+650÷13)(95-19×5)÷74 (120-103)×50760÷10÷38 (270+180)÷(30-15)707-35×20 (95-19×5)÷74?19×96-962÷74? 10000-(59+66)×645940÷45× (798-616) (270+180)÷(30-15)(315×40-364)÷7 12520÷8×(121÷11)707-35×20 50+160÷40?(58+370)÷(64-45) 120-144÷18+35347+45×2-4160÷52? (58+37)÷(64-9×5)95÷(64-45) 178-145÷5×6+42?420+580-64×21÷28? 812-700÷(9+31×11)(136+64)×(65-345÷23)

(完整版)四则运算和运算定律易错题练习

四则运算和运算定律易错题练习 1.把下面算式合并成一个综合算式。 (1)140×4=560 560+120=680 680÷17=40 综合算式: (2)138-48=90 5400÷90=60 40×60=2400 综合算式: (3)735+285=1020 1020÷510=2 150×2=300 综合算式: 2. 3.画出从正面、左面和上面看到的图形。 正面看左面看上面看 4.连一连。正面看左面看上面看 5.有一个由8个相同的正方体摆成的立体图形,从正面和上面看到的形状见下图。请画出该立体图形从左面看到的形状。 从正面看从上面看从左面看 二、简便计算。 56+78+201+322+44 745-(328+245)+128 468+298 556-398 365-135+735-265 595-39-27-24 5×27×20×3 24×13×125 75+25-75+25 68+(132-74) 106×25 99×78

三、解决问题 1.如果a*b=8×(a-3)÷b ,求10*7 2.海尔公司组织32人外出划船。 怎样租船最省钱? 3.四年级两个班共有58人,怎样租车最省钱? 每辆120元 每辆160元 限乘12人 限乘18人 4. 水果店有7筐等重的苹果,如果从每个筐里取出20千克7个筐里剩下的苹果的质量正好等于原来3筐苹果的质量。原来每筐苹果重多少千克? 5.儿童影城原来每天放映5场电影,平均每场可卖920张票。现在每天多放映2场,假设平均每场可卖的票数不变,现在每天能卖多少张票? 6.马虎在计算“800-□÷5”时,先算减法,后算除法,得到结果是40。你能帮他算出这道题的正确的得数吗?写出你的思考过程。 7.某商场开展优惠活动,凡购物满200元可回赠现金50元。妈妈有530元,你认为她最多可以买到多少钱的商品? 8.甲乙两筐水果一共重40千克。从甲筐取6千克放到乙筐后,甲筐的水果比乙筐多2千克。求两筐水果原来各有多少千克? 小船租金:24元/艘 大船租金:30元/艘 小船人数:4人/艘 大船人数:6人/艘

第1课时 四则运算及运算定律(教案)

10总复习 【教学目标】 通过总复习,梳理本学期学生所学知识,查漏补缺,针对重难点章节内容强化训练,加深学生对知识的理解与 掌握,全面达到本学期规定的教学目标。 【重点难点】 1.掌握四则运算顺序,能熟练地进行计算。理解和认识运算定律,会选择正确的方法进行简便计算。 2.理解小数的意义和性质,能正确的进行小数加减法的计算。 3.感知空间与图形。能从不同方向观察物体;认识了解不同类型的三角形,分析其特征特点;知道图形的对称与平移。 4.理解掌握平均数与条形统计图和鸡兔同笼问题。 5.能运用所学知识解决生活中的实际问题。 【教学指导】 1.复习前,根据教材特点、学生特点,制订科学合理的复习计划。做到条理清晰、重难点突出、措施有力、效果显著。 2.引导学生分析个人知识掌握情况,拟定好个人复习安排。注重小组间合作交流,互相探讨,互相监督,共同进步。 3.复习时做到重点问题重点突破。大部分学生存在的问题,班级交流、分析、讨论,强化训练,注重督促。个别问题个别指导。复习工作做到重点突出、步步推进、训练扎实、成效明显。 【课时安排】建议共分4课时: 第1课时四则运算及运算定律…………………………………………………1课时第2课时小数的意义和性质及小数的加减法…………………………………1课时第3课时图形与几何……………………………………………………………1课时第4课时统计与数学广角……………………………………………………....1课时

【知识结构】

第1课时四则运算及运算定律 【教学内容】 教材第111页练习二十五第1~3题。 【教学目标】 1.复习掌握四则混和运算的运算顺序,能正确地进行计算。 2.掌握相关运算定律,能运用运算定律进行简便计算。 【重点难点】 掌握计算顺序和运算定律,能正确地进行计算。 【情景导入】 口算: 2.5+6.2 7.1-6.4 3.6+5.5 9.2-1.7 17×32+68×32 55+47+45 174-95-74 104×55-4×55 3.8+7.1 5.9- 4.6 【复习讲授】 1.复习四则混合运算顺序。 提问:请你说说四则混合运算顺序? 学生复习回顾。 小结:没有括号时先算乘除再算加减,有括号时先算括号里面的。 2.复习运算定律: (1)说说我们学习了哪些运算定律? (2)梳理运算定律: 加法加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)

四则运算和运算定律知识点

四则运算和运算定律知识点 一、四则运算的概念和运算顺序 1、加法、减法、乘法和除法统称四则运算。 2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。 3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。 4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。括号里面的计算顺序遵循以上1、2、3条的计算顺序。 二、运算定律 1、加法交换律:两个数相加,交换加数的位置,和不变。字母表示: a+b=b+a 2、加法结合律:三个数相加,先把前两个数相加;或者先把后两个数相加,和不变。字母表示: (a+b)+c=a+(b+c) 3、乘法交换律:两个数相乘,交换两个因数的位置,积不变。字母表示: a×b=b×a 4、乘法结合律:三个数相乘,先乘前两个数,或先乘后两个数,积不变。字母表示: (a×b)×c=a×(b×c) 5、乘法分配律:①两个数的和与一个数相乘,可以先把他们与这个数分别相乘,再相加,得数不变,字母表示: (a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;

②两个数的差与一个数相乘,可以先把他们与这个数分别相乘,再相减,得数不变,字母表示: (a—b)×c=a×c—b×c;a×c—b×c=(a—b)×c; 6、连减定律: ①一个数连续减去两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c; ②在三个数的加减法运算中,交换后两个数的位置,得数不变。字母表示:a—b—c=a—c—b;a—b+c=a+c—b 7、连除定律: ①一个数连续除以两个数, 等于这个数除以后两个数的积,得数不变。字母表示:a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c; ②在三个数的乘除法运算中,交换后两个数的位置,得数不变。字母表示: a÷b÷c=a÷c÷b;a÷b×c=a×c÷b 简便计算例题 一、常见乘法计算: 25×4=100 ,125×8=1000 二、加法交换律简算例题: 50+98+50 =50+50+98 =100+98 =198

相关文档
最新文档