半导体物理期末总结

半导体物理期末总结
半导体物理期末总结

载流子:晶体中荷载电流(或传导电流)的粒子,如电子和空穴。

空穴:在常温下,由于热激发,使一些价电子获得足够的能量而脱离共价键的束缚,成为自由电子,同时共价键上留下的空位。(价带中不被电子占据的空状态,价带顶附近空穴有效质量>0)

杂质的补偿作用:受主能级低于施主能级,所以施主杂质的电子首先跃迁到N A受主能级后,施主能级上还有N D-N A 个电子,在杂质全部电离的条件下,它们跃迁到导带中成为导电电子,这时,n=N D-N A≈N D,半导体是n型的;同理p型。

等电子陷阱:与基质晶体原子具有同数量价电子的杂质原子,它们替代了格点上的同族原子后,基本上仍是电中性的。由于原子序数不同,这些原子的共价半径和电负性有差别,因而它们能俘获某种载流子而成为带电中心。本征半导体:晶体具有完整的(完美的)晶格结构,无任何杂质和缺陷。

有效质量(物理意义?):电子受到外力+原子核势场和其它电子势场力,引入有效质量可以把加速度和外力直接联系。根据势场的作用由有效质量反映,m n*的正负反应了晶体内部势场的作用。

分布函数:能量为E的一量子态被一个电子占据概率为

杂质电离:当电子从施主能级跃迁到导带时产生导带电子;当电子从价带激发到受主能级时产生价带空穴等。费米能级的意义:当它和温度T、半导体材料的导电类型n、p,杂质的含量以及能量零点选取有关。E F是一个很重要的物理参数,只要知道E F数值,在特定T下,电子在各量子态上的统计分布就完全确定。统计理论表明,热力学上费米能级E F是系统的化学势。费米能级位置直观地标志了电子占据量子态情况。固体物理中处于基态的单个Fermi粒子所具有的最大能量—Fermi粒子所占据的最高能级的能量。费米能级标志了电子填充能级的水平。对一系统而言,E F位置较高,有较多的能量较高的量子态上有电子。

杂质散射和格波散射:(1)杂质电离后是一个带电离子,施主电离后带正电,受主电离后带负电。在电离施主或受主周围形成一个库仑势场,局部地破坏周期性势场,是使载流子散射的附加势场。(2)T定,晶格中原子都各自在其平衡位置附近作微振动。晶格中原子的振动都是由若干不同的基波—格波按照波的叠加原理组合而成,声学波声子往往起着交换动量的作用,光学波交换能量。非弹性散射,主要是长波。

复合中心和陷阱中心:(1)对于有效复合中心,r n ≈r p,电子陷阱:r n>r p;空穴陷阱:r p>r n(2)复合中心和电子陷阱中电子的运动途径不同。复合中心的电子直接落入价带与空穴复合;电子陷阱中的电子要和空穴复合,它必须重新激发到导带,再通过有效复合中心完成和空穴的复合。(3)位于禁带中央附近的深能级是最有效的复合中心对于电子陷阱:E F以上的能级,越接近E F,陷阱效应越

显著。杂质能级最利于陷阱作用的形成。

电阻率与温度的关系:

AB段:温度很低,本征激发可忽略,载流子主要由杂质电离提供,它随温度升高而增加;散射主要由电离杂质决定,迁移率也随温度升高而增大,所以,电阻率随温度升高而下降。BC段:温度继续升高,杂质全部电离,本征激发还不十分显著,载流子基本上不随温度变化,晶格振动散射上升为主要矛盾,迁移率随温度升高而降低,所以,电阻率随温度升高而增大(1分)。C段:温度继续升高,本征激发很快增加,大量本征载流子的产生超过迁移率减小对电阻的影响,杂质半导体的电阻率将随温度的升高而急剧地下降,表现出同本征半导体相似的特征。

PN结的整流特性:单向导电性。肖克莱方程:

表面态:电子被局域在表面附近,这样的电子状态称为表面态。每个表面原子对应禁带中一个表面能级,这些能级组成表面能带。(还要会算)

MIS结构的电场特性,四种状态:

热平衡下,费米能级应保持定值。随着向表面接近,价带顶逐渐移近甚至高过费米能级,价带中空穴浓度随之增加。表面层出现空穴堆积而带正电荷。越接近表面空穴浓度越高,堆积的空穴分布在最靠近表面的薄层内。

越近表面,费米能级离价带顶越远,价带中空穴浓度随之降低。表面处空穴浓度比体内低得多,表面层的负电荷基本上等于电离受主杂质浓度。表面层的这种状态称做耗尽。

表面处电子浓度将超过空穴浓度,形成与原来半导体衬底导电类型(空穴)相反的层---反型层。

施主杂质,受主杂质(举例):(1)施主杂质电离过程:As有5个价电子,其中的四个价电子与周围的四个Ge 原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。(2)受主杂质电离过程:Ga有3个价电子,它与周围的四个Ge原子形成共价键,还缺少一个电子,于是在Ge 晶体的共价键中产生了一个空穴,而Ga原子接受一个电子后所在处形成一个负离子中心,所以,一个Ga原子取代一个Ge原子,其效果是形成一个负电中心和一个空穴,空穴束缚在Ga原子附近,但这种束缚很弱,很小的能量就可使空穴摆脱束缚,成为在晶格中自由运动的导电空穴,而Ga原子形成一个不能移动的负电中心。

迁移率:表示单位场强度下电子的平均漂移速度,表征半导体电迁移能力的重要参数。

功函数(计算):真空电子能级与半导体的费米能级之差称为半导体功函数。影响功函数的因素是掺杂浓度、温度和半导体的电子亲和势。

空间电荷区:pn结形成过程中,多数载流子的相互扩散使达到平衡后(1分),在pn结附近p区一侧出现了由电离受主构成的一个负电荷区(1分),在n区出现由电离施主构成的正电荷区,称为空间电荷(1分)。他们存在的区域称为空间电荷区(1分)。

理想半导体:(1)原子在格点上固定。(2)杂质不存在(工艺流程中引入;人为掺杂;温度的影响等。(3)无缺陷(点缺陷;线缺陷;面缺陷)

扩散长度:非平衡载流子深入样品的平均距离,材料的扩散系数有标准数据,扩散长度测量是测量寿命方法之一。

直接复合、间接复合:(1)电子在导带和价带之间的直接跃迁,引起电子和空穴的直接复合②电子和空穴通过禁带的能级(复合中心)进行复合。

PN结的导通:PN结正偏,势垒区变窄,内建电场减弱,多子扩散大于少子漂移,多子扩散形成较大的正向电流

I,PN结导通。

电导率和迁移率的关系:

PN结的势垒高度和宽度:平衡pn结的空间电荷区两端间的电势差V D称为接触电势差或内建电势差。相应的电子电势能之差qV D称为pn结的势垒高度。

非平衡载流子寿命及意义:非平衡载流子的平均生存时间,(1/τ:单位时间内非平衡载流子的复合概率),寿命标志非平衡载流子浓度减小到

原值1/e经历的时间。

!!!

准费米能级:当外界的影响破坏了热平衡,使半导体处于非平衡状态时,就不再存在统一的费米能级。引入准费米能级,非平衡状态下的载流子浓度用与平衡载流子浓度类似公式表达。

欧姆定律微分形式:

电子浓度和温度关系图的分析P74:

能带产生的原因(允带、禁带、空带、满带、导带和价带):

杂质半导体载流子浓度与温度的关系:

电中性方程:

金属半导体接触的能带:

金半接触的各种情况:

MIS结构绝缘层中的电荷:

影响MIS结构CV特性的因素:金属半导体功函数差和绝缘层中电荷,使得半导体表面在外加偏压为零的情况下并不处于平带状态。功函数差别越大,绝缘层中电荷越靠近半导体,对CV曲线影响越大。

电离能:记住公式

多数载流子:

世上没有一件工作不辛苦,没有一处人事不复杂。不要随意发脾气,谁都不欠你的

相关主题
相关文档
最新文档