人教版数学九年级上册学案圆的概念及垂径定理

人教版数学九年级上册学案圆的概念及垂径定理
人教版数学九年级上册学案圆的概念及垂径定理

圆的概念与垂径定理

第一课时圆的概念

一、知识点梳理

①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做,固定的端点O叫做,线段OA叫做.

②用集合的观点叙述以O为圆心,r为半径的圆,可以说成是到定点O的距离为的所有的点的集合.

③连接圆上任意两点的叫做弦,经过圆心的弦叫做__ __;圆上任意两点间的部分叫做;圆上任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做_ __,小于半圆的弧叫做.

二、同步题型分析

1.以点A为圆心,可以画个圆;以已知线段AB的长为半径可以画_ __个圆;以点A为圆心,AB的长为半径,可以画____个圆.

2.到定点O的距离为5的点的集合是以为圆心,为半径的圆.

3.⊙O的半径为3 cm,则它的弦长d的取值范围是.

4.⊙O中若弦AB等于⊙O的半径,则△AOB的形状是.

5.一点和⊙O上的最近点距离为4 cm,最远点距离为10 cm,则这个圆的半径是__ .

6.如图1,图中有条直径,条非直径的弦,圆中以A为一个端点的优弧有条,劣弧有条.

图1 图2 7.如图2,⊙O中,点A,O,D以及点B,O,C分别在一直线上,图中弦的条数为.8.如图,点A,B,C,D都在⊙O上.在图中画出以这4点为端点的各条弦.这样的弦共有多少条?

9.(1)在图中,画出⊙O的两条直径;

(2)依次连接这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由.

10.如图,CD为⊙O的直径,∠EOD=72°,AE交⊙O于B,且AB=OC,求∠A的度数.

11.如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的中点,若AC=10 cm,求OD的长.

第二课时 垂径定理

一、知识点梳理

1.圆是 图形,任何一条直径所在的直线都是它的对称轴,它也是 ,对称中心为 .

2.垂直于弦的直径平分弦,并且平分弦所对的两条弧,即一条直线如果满足:

①AB 经过圆心O 且与圆交于A ,B 两点;②AB ⊥CD 交CD 于E ,

那么可以推出:③CE =DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.

3.平分弦(非直径)的直径 于弦,并且 弦所对的两条弧.

二、同步题型分析

1.在⊙O 中,直径为10 cm ,圆心O 到AB 的距离为3 cm ,则弦AB 的长为 .

2.在⊙O 中,直径为10 cm ,弦AB 的长为8 cm ,则圆心O 到AB 的距离为 .

3.⊙O 的半径OA =5 cm ,弦AB =8 cm ,点C 是AB 的中点,则OC 的长为 .

4.在直径是20 cm 的⊙O 中,∠AOB 的度数是60°,那么弦AB 的弦心距是 cm .

5.弓形的弦长为6 cm ,弓形的高为2 cm ,则这个弓形所在的圆的半径为 cm .

6.⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 的长的最小值为 ,最大

值为 .

7.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为多少米?

8.AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,若AE =9,BE =1,求CD 的长.

9.如图,线段AB与⊙O交于C,D两点,且OA=OB.求证:AC=BD.

10.如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.求证:AC=BD.

11.已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm,CD=48 cm,求弦AB与CD之间的距离.

人教版九年级数学上册垂径定理

初中数学试卷 垂径定理 一.选择题 ★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8 ★★2.如图2,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5 ★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41 ★★4.如图3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 ★★5.如图4,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A .23cm B .32cm C .42cm D .43cm ★★6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米

★★★8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm ★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( ) A .2 B .8 C .2或8 D .3 二.填空题 ★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 ★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★★5.如图1,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米 O 图 4E D C B A ★★6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm. ★★7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm ★★8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________ ★★9.如图2,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是 ★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图3所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m ★★11.如图4,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是 ★★12.如图5,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm ★★13.如图6,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么 B A P O y x

最新人教版初中九年级上册数学《切线长定理》教案

第3课时切线长定理 【知识与技能】 理解掌握切线长的概念和切线长定理,了解三角形的内切圆和三角形的内心等概念. 【过程与方法】 利用圆的轴对称性帮助探求切线长的特征.结合求证三角形内面积最大的圆的问题,掌握三角形内切圆和内心的概念. 【情感态度】 经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力. 【教学重点】 切线长定理及其应用. 【教学难点】 内切圆、内心的概念及运用. 一、情境导入,初步认识 探究如图,纸上有一⊙O,PA为⊙O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B,回答下列问题:(1)OB是⊙O半径吗?(2)PB是⊙O的切线吗?(3)PA、PB是什么关系?(4)∠APO和∠BPO有何关系? 学生动手实验,观察分析,合作交流后,教师抽取几位学生回答问题. 分析:OB与OA重合,OA是半径,∴OB也是半径.根据折叠前后的角不变,∴∠PBO=∠PAO=90°(即PB⊥OB),PA=PB,∠POA=∠POB;∠APO=∠BPO.而PB 经过半径OB的外端点,∴PB是⊙O的切线.

二、思考探究,获取新知 1.切线长的定义及性质 切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长. 我们知道圆的切线是直线,而切线长是一条线段长,不是直线. 如右图中,PA、PB是⊙O的两条切线,∴OA⊥PA,OB⊥PB.又OA=OB,OP=OP,∴Rt△AOP≌Rt△BOP,∴PA=PB,∠AOP=∠BOP,∠APO=∠BPO. 由此我们得到切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 【教学说明】这个定理要让学生分清题设和结论.题设:过圆外一点作圆的切线.结论:①过圆外的这一点可作该圆的两条切线.②两条切线长相等.③这一点和圆心的连线平分两条切线的夹角. 猜想:在上图中连接AB,则OP与AB有怎样的关系? 分析:∵PA、PB是⊙O的切线,A、B是切点.∴PA=PB,∠OPA=∠OPB,∴OP ⊥AB,且OP平分AB. 2.三角形的内切圆 思考如图是一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢? 【教学说明】引导学生分析作图的关键,假设圆已经作出,圆心应满足什么条件,怎样根据这些条件确定圆心?圆心确定后,如何确定半径?教师引导,学生要互相讨

圆的基本概念与性质

圆的有关概念和性质 一 本讲学习目标 1、理解圆的概念及性质,能利用圆的概念和性质解决有关问题。 2、理解圆周角和圆心角的关系;能运用几何知识解决与圆周角有关的问题。 3、了解垂径定理的条件和结论,能用垂径定理解决有关问题。 二 重点难点考点分析 1、运用性质解决有关问题 2、圆周角的转换和计算问题 3、垂径定理在生活中的运用及其计算 三 知识框架 圆的定义 确定一个圆 不在同一直线上的三点点与圆的位置关系 圆的性质 圆周角定理及其推论 垂径定理及其推论距关系定理及其推论圆心角、弦、弧、弦心对称性 四 概念解析 1、 圆的定义,有两种方式: 错误!未找到引用源。在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,一个端点A 随之旋转说形成的图形叫做圆。固定端点O 叫做圆心,以O 为圆心的圆记作O ,线段OA 叫做半径; 错误!未找到引用源。圆是到定点的距离等于定长的点的集合。注意:圆心确定圆的位置,半径决定圆的大小。 2、 与圆有关的概念: 错误!未找到引用源。弦:连接圆上任意两点的线段叫做弦;如图1所示 线段AB ,BC ,AC 都是弦; 错误!未找到引用源。直径:经过圆心的弦叫做直径;如AC 是O 的直径,直径是圆中最长的弦; 错误!未找到引用源。弧:圆上任意两点之间的部分叫做圆弧,简 称弧,如曲线BC,BAC 都是O 中的弧,分别记作BC 和BAC ; 错误!未找到引用源。半圆:圆中任意一条直径的两个端点分圆成

两条弧,每条弧都叫做半圆,如AC 是半圆; 错误!未找到引用源。劣弧和优弧:像BC 这样小于半圆周的圆弧叫做劣弧,像BAC 这样大于 半圆周的圆弧叫做优弧; 错误!未找到引用源。同心圆:圆心相同,半径不等的圆叫做同心圆; 错误!未找到引用源。弓形:由弦及其说对的弧所组成的图形叫做弓形; 错误!未找到引用源。等圆和等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,能够重合的弧叫做等弧; 错误!未找到引用源。圆心角:定点在圆心的角叫做圆心角如图1中的∠AOB,∠BOC 是圆心角,圆心角的度数:圆心角的读书等于它所对弧的度数;∠ 错误!未找到引用源。 圆周角:定点在圆上,两边都和圆相交的角叫做圆周角;如图1中的∠BAC,∠ACB 都是圆周角。 3、 圆的有关性质 ①圆的对称性 圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条。圆是中心对称图形,圆心是对称中心,优势旋转对称图形,即旋转任意角度和自身重合。 错误!未找到引用源。垂径定理 A. 垂直于弦的直径平分这条弦,且评分弦所对的两条弧; B. 平分弦(不是直径)的直径垂直于弦,并且评分弦所对的两条弧。如图2 所示。 注意 (1)直径CD ,(2)CD ⊥AB,(3)AM=MB,(4)BD AC =BC ,(5)AD =BD .若 上述5个条件中有2个成立,则另外3个业成立。因此,垂径定理也称五二三定理,即推二知三。(以(1),(3)作条件时,应限制AB 不能为直径)。 错误!未找到引用源。弧,弦,圆心角之间的关系 A. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; B. 同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,他们所对应的其余各组量也相等; 错误!未找到引用源。圆周角定理及推论 A.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; B.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。 五 例题讲解 例1. 如图所示,C 是⊙O 上一点,O 是圆心,若80AOB =∠,求B A ∠+∠ 的值. 例1题图 A B C O

圆的性质(垂径定理)

一.选择题(共12小题) 1.(2014?毕节地区)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是() 2.(2014?舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为() 3.(2014?凉山州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为() .cm cm C cm或cm cm或cm 4.(2014?兰州)如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是() =C 5.(2014?北京)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为() 6.(2014?泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是() C 7.(2014?赤峰)如图,AB是⊙O的直径,C,D是⊙O上两点,CD⊥AB.若∠DAB=65°,则∠BOC=() 8.(2014?齐齐哈尔)如图,在⊙O中,OD⊥BC,∠BOD=60°,则∠CAD的度数等于()

9.(2014?宜昌)如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=() 10.(2014?山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为() 11.(2014?长春)如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为() 12.(2014?重庆)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是() 二.解答题(共18小题) 13.(2014?黄石)如图,A、B是圆O上的两点,∠AOB=120°,C是弧AB的中点. (1)求证:AB平分∠OAC; (2)延长OA至P,使得OA=AP,连接PC,若圆O的半径R=1,求PC的长. 14.(2014?佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.

人教版数学九年级切线长定理—知识讲解(基础)

切线长定理—知识讲解(基础) 【学习目标】 1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线的判定定理和性质定理 1.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 要点诠释: 切线的判定方法: (1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线; (2)定理:和圆心的距离等于半径的直线是圆的切线; (3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可). 2.切线的性质定理: 圆的切线垂直于过切点的半径. 要点诠释: 切线的性质: (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)切线垂直于过切点的半径; (4)经过圆心垂直于切线的直线必过切点; (5)经过切点垂直于切线的直线必过圆心. 要点二、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 3.圆外切四边形的性质: 圆外切四边形的两组对边之和相等. 要点三、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 2.三角形的内心:

切线长定理专题

1 《切线长定理》专题 班级 姓名 (一)温故知新: 1.直线和圆有哪几种位置关系?切线的判定定理和性质定理是什么? (二)探究新知: 探究一:如图所示,已知⊙O 及圆外一点P ,过点P 作⊙O 的切线,可以作几条? ☆ 从⊙O 外一点P 可以引⊙O 的 条切线, ☆ 切线长:经过圆外一点作圆的切线,这点与 的线段的长,叫做这点到圆的 。 问题:如图,已知⊙O 及圆外一点P ,PA 、PB 是⊙O 的切线,A 、B 是切点,连接PO ,图中有哪些相等线段,相等的角?为什么? 总结归纳: ☆ 切线长定理:从圆外一点引圆的两条切线,它们的 ,圆心和这一点的连线 两条切线的夹角. 用符号语言表示定理: (三)学以致用: 1.填空:如图,PA 、PB 分别与⊙O 相切于点A 、B , (1)若PB=12,PO=13,则AO=___. (2)若PO=10,AO=6,则PB=___; (3)若PA=4,AO=3,则PO=___; 例 1 如图,PA 、PB 分别与⊙O 相切于点A 、B ,PO PA=4cm,PD=2cm. 求半径OA 的长.⑵如果∠APB=50°,C 是⊙O 上异于A 、B 的任意一点,求∠ACB 的度数? P P

探究二:如图,是一块三角形铁皮,怎样才能从中剪裁一个“最大的圆”? 作法: 总结归纳: ☆三角形的内切圆:与三角形各边都的圆叫做三角形的.内切圆的圆心是的交点,叫做三角形的。内心到的距离相等 1.已知:如图,⊙O是△ABC的内切圆,切点分别为D、E、F,图中共有几对相等线段? ⑴若AD=4,BC=5,CF=2,则△ABC的周长是__;⑵如果∠A=70°,则∠BOC= ; ⑶若AB=4,BC=5,AC=6,求AD,BE,CF的长? 例2 如图,⊙I是Rt△ABC的内切圆,切点分别为D、E、F,已知∠C=90°,AC=3,BC=4,求⊙I的半径? 直线和圆的位置关系习题课 A 2

数学-初三-圆的相关概念与垂径定理

精锐教育1对1辅导讲义 棗互钠探索 1、圆是如何确定的?大小怎么判定? 2、圆中有哪些概念? 3、垂径定理如何应用? *曲需提# 【知识梳理1】圆的确定 定理同圆或等圆中半径相等 1?点与圆的位置关系 圆是到定点(圆心)的距离等于定长(半径)的点的集合。 圆的内部是到圆心的距离小于半径的点的集合。 圆的外部是到圆心的距离大于半径的点的集合。 点P与圆心的距离为d,则点P在直线外二d r ;点P在直线上=d = r ;点P在直线内=d :::r。 【例题精讲】例1?如图,圆0的半径为15,O到直线I的距离0H=9,P、Q、R为I上的三点.PH=9,QH=12,RH=15, 请分别说明点P、Q、R与圆0的位置关系

【试一试】 1?矩形ABCD中,AB= 8, BC=3.5,点P在边AB上,且BP = 3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( ). (A) 点B、C均在圆P夕卜;(B)点B在圆P夕卜、点C在圆P内; (C)点B在圆P内、点C在圆P夕卜;(D)点B、C均在圆P内. 2?如图所示,已知丄ABC ,乙ACB=90, AC=12, AB “3, CD _ AB于点D,以C为圆心,5为半径作圆C ( ) A.点D在圆内,B、A在圆外 B.点D在圆内,点B在圆上,点A在圆外 C.点B、D在圆内,A在圆外 D.点D、B、A都在圆外 2. 过三点的圆 1. 不在同一直线上的三点确定一个圆。 2. 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。 例2?如图,作出AB所在圆的圆心,并补全整个圆.

九年级数学垂径定理

初三数学垂径定理、圆心角、弧、弦、弦心距间的关系知识精讲 一. 本周教学内容: 垂径定理、圆心角、弧、弦、弦心距间的关系 [学习目标] 1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。 2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。(M点是两点重合的一点,代表两层意义) C O A B M D 3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。 4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。 5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。四项“知一推三”,一项相等,其余三项皆相等。源于圆的旋转不变性。即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。 ()()()() 1234 ??? O B' M' A' B M A 6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。 7. 圆心角的度数与弧的度数等,而不是角等于弧。

圆的定义、垂径定理、圆心角、圆周角练习

圆的定义、垂径定理、圆心角、圆周角练习 1.如下图,已知CD是⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数 是50o,则∠C的度数是() A)50o B)40o C)30o D)25o 第1题图第2题图 2.如上图,两正方形彼此相邻,且大正方形内接于半圆,若小正方形的面积为 16cm2,则该半圆的半径为(). A)(45) + cm B) 9 cm C)45cm D)62cm 3.⊙O中,M为的中点,则下列结论正确的是( ) A.AB>2AM B.AB=2AM C.AB<2AM D.AB与2AM的大小不能确定 4.如上图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3), M是第三象限内OB上一点,BMO ∠=120,则⊙C的半径为() A. 6 B. 5 C 3 D. 32 5.如下图,P为⊙O的弦AB上的点,PA=6,PB=2,⊙O的半径为5,则OP=______. 第5题图第6题图第7题图

6.如上图,扇形的半径是cm 2,圆心角是? 40,点C为弧AB的中点,点P在直线OB上,则PC PA+的最小值为cm 7.如图,在半径为5的⊙O中,弦AB=6,点C是优弧AB上一点(不与 A、B重合), 则cos C的值为 . 8.圆的一条弦长等于它的半径,求这条弦所对的圆周角的度数 为: . 9.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°, 求∠C及∠AOC的度数. 10.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD的长. 11.如图,AB为⊙O的弦,C、D为弦AB上两点,且OC=OD ,延长OC、OD分别交⊙O于E、F, 证明:AE=BF.

人教版八年级下册数学圆的有关概念与性质

圆的有关概念与性质 ◆课前热身 1.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误 ..的是() D.OD=DE 2.如图,⊙O的直径AB垂直弦CD于点P,且P是半径OB的中点,CD=6cm,则直径AB的长是() A. B. C. D. 3.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为() A.5 B.4 C.3 D.2 4.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为() A.2 B.3 C.4 D.5 3,则弦CD 5.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm 的长为()

A . 3 cm 2 B .3cm C . D .9cm 【参考答案】 1. D 2. D 3. A 4. A 5. B ◆考点聚焦 1.圆的有关概念,包括圆心、半径、弦、弧等概念,这是本节的重点之一. 2.掌握并灵活运用垂径定理及推论,圆心角、弧、弦、弦心距间的关系定理以及圆周角定理及推论,这也是本书的重点,其中在运用相关定理时正确区分各定理的题设和结论是本节难点. 3.理解并掌握圆内接四边形的相关知识,而圆和三角形、?四边形等结合的题型也是中考热点. ◆备考兵法 “垂径定理”联系着圆的半径(直径)、弦长、圆心和弦心距,通常结合“勾股定理”来寻找三者之间的等量关系,同时其中还蕴含着弓形高(半径与弦心距的差或和)与这三者之间的关系.所以,在求解圆中相关线段的长度时,常引的辅助线方法是过圆心作弦的垂线段,连结半径构造直角三角形,把垂径定理和勾股定理结合起来,有直径时,常常添加辅助线构造直径上的圆周角,由此转化为直角三角形的问题. 常考题型:圆心角、圆周角定理及推论常以选择题或填空题出现;垂径定理和勾股定理结合起来常以计算题出现. ◆考点链接 1. 圆上各点到圆心的距离都等于 . 2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 是 对称图形, 是它的对称中心.

人教版九年级数学讲义垂径定理(含解析)(2020年最新)

第11讲垂径定理 知识定位 讲解用时:3分钟 A、适用范围:人教版初三,基础一般 B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习垂径定 理及其相关推论,着重理解垂径定理及其相关推论在实际问题以及几何图形中的 应用,掌握关于垂径定理部分题型的常见辅助线的做法,能够结合勾股定理进行熟练计算。本节课的难点是垂径定理及其推论在几何图形中的应用,涉及的知识点较多,考查的内容较广,具有一定的综合性。希望同学们认真学习,为后面圆 的其他内容理解奠定良好基础。 知识梳理 讲解用时:15分钟 垂径定理及其推论 (1)垂径定理 如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平 分这条弦所对的弧。 (2)相关推论 ①如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这 条弦,并且平分这条弦所对的弧; ①如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦; ①如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平 分这条弦所对的弧;

①如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心, 并且垂直于这条弦; ①如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线 经过圆心,并且平分这条弦。 总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关 系也成立。

课堂精讲精练 【例题1】 下列判断中,正确的是()。 A.平分一条弦所对的弧的直线必垂直于这条弦 B.不与直径垂直的弦不能被该直径平分 C.互相平分的两条弦必定是圆的两条直径 D.同圆中,相等的弦所对的弧也相等 【答案】C 【解析】本题考查了垂径定理及圆心角、弧、弦、弦心距之间关系的定理 同时平分一条弦所对优弧、劣弧的直线必垂直于这条弦,故A错误; 任意两条直径互相平分,故B错误; 同圆中,相等的弦所对的优弧、劣弧分别相等,故D错误。 讲解用时:3分钟 解题思路:根据垂径定理及圆心角、弧、弦、弦心距之间关系的定理逐项排除。 教学建议:基本概念题,逐项排除。 难度:3 适应场景:当堂例题例题来源:无年份:2018 【练习1】 下列说法正确的个数是()。 ①垂直于弦的直线平分弦;①平分弦的直线垂直于弦;①圆的对称轴是直径;①圆的对称轴有无数条;①在同圆或等圆中,如果两条弦相等,那么这两条弦所对 的优弧和劣弧分别相等。 A.1个B.2个C.3个D.4个 【答案】B 【解析】本题主要考查了垂径定理以及圆的基本性质, ①垂直于弦的直径平分弦;故错误; ①平分弦(不是直径)的直径垂直于弦;故错误;

九年级上学期圆的定义及垂径定理

【圆的认识】第11份 1、弦和直径:连接圆上任意叫做弦,其中经过圆心的弦叫做,是圆中最长的弦。 2、有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧。其中正确的有 3、下列四个命题:①经过任意三点可以作一个圆;②三角形的外心在三角形的内部;③等腰三角形的外心必在底边的中线上;④菱形一定有外接圆,圆心是对角线的交点。其中假命题有 4、若OP的半径为13,圆心P的坐标为(5, 12 ), 则平面直角坐标系的原点O与OP的位置关系是( ) A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定 5、圆上各点到圆心的距离都等于 , 到圆心距离等于半径的点都在 . 6、一个点到定圆上最近点的距离为4,最远点的距离为9,则此圆的半径是__________. 7、如图,AB, CD为⊙O的两条直径,E, F分别为OA, OB的中点,求证:四边形CEDF是平行四边形. 8、⊙0的半径为13cm,圆心O到直线l的距离d=OD=5cm.在直线l上有三点P,Q,R,且PD = 12cm, QD<12cm, RD>12cm,则点P在,点Q在,点R在 . 9、如图,点A,D,G,M在半圆上,四边形ABOC, DEOF,HMNO均为矩形,BC=a,EF=b, NH=C,则a,b,c有什么关系? 10、⊙0的半径为2,点P到圆心的距离OP=m, 且m使关于二的方程2x2-22x+m-1=0有实根,试确定点P 的位置. 11、如图,点P的坐标为(4,0),圆P的半径为5,且圆P与x轴交于点A,B,与y轴交于点 C,D, 试求出点A , B,C,D的坐标.12、下列说法正确的是( ) A.一个点可以确定一条直线 B.两个点可以确定两条直线 C.三个点可以确定一个圆 D.不在同一直线上的三点确定一个圆 13、直角三角形两直角边长分别为3和l,那么它的外接圆的直径是( ) 14、下图是一个圆形轮子的一部分,请你用直尺和圆规把它补完整. 15、_______ 三角形的外心在它的内部,_______三角形的外心在它的外部;直角三角形的外心在 ______________. 16、下列命题正确的个数有( ) ①矩形的四个顶点在同一个圆上;②梯形的四个顶点在同一个圆上; ③菱形的四边中点在同一个圆上;④平行四边形的四边中点在同一个圆上. A. 1个 B. 2个 C. 3个 D. 4个 17、在Rt△ABC中,AB=6 , BC=8,那么这个三角形的外接圆直径是() A. 5 B.10 C.5 或4 D. 10或8 18、已知等腰三角形ABC中,AB=AC,O是ABC ?的外接圆,若O的半径是4,120 BOC ∠=,求AB的长. 19、如图所示,平原上有三个村庄A、B、C,现计划打一口水井p,使水井到三个村庄的距离相等。 (1)在图中画出水井p的位置; (2)若再建一个工厂D,使工厂D到水井的距离等于水井到三个村庄的距离,且工厂D到A、C两个村庄的距离相等,工厂D应建在何处?请画出其位置. .A

数学人教版九年级上册《 切线长定理》

《切线长定理》教案 浠水县望城实验中学万春光 教学目标 1.知识与技能:理解切线长的概念,掌握切线长定理的内容,并会运用切线长定理解决相关的问题. 2.过程与方法:通过复习引导给出切线长定义,经过实验、猜想、证明发现切线长定理。培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想. 3.情感、态度和价值观:通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度. 教学重点 切线长定理及其运用. 教学难点 切线长定理的导出及证明和运用定理解决实际问题. 教学过程 (一)情景引入 由如何求“V ”形支架內篮球的半径而引出切线长. (二)探求新知 活动一:切线长定义

如图,已知⊙O外一点P,过P作⊙O的切线PA,切点为A,则P点与A点之间的线段长度,就是P点到⊙O的切线长. 切线长定义: 经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长. (引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.) 活动二:过圆外一点最多可以引圆的几条线. (演示)过圆外一点最多可以引圆的两条切线. 活动三: 观察:如图,P是⊙O外一点,PA,PB是⊙O的两条切线,则线段PA,PB 都是点P到⊙O的切线长. 1、提出问题:(1)线段PA与PB的长度有什么关系呢. (2)连接PO,则∠OPA与∠OPB的大小有什么关系. 2、观察: 在半透明的纸上画出这个图形,沿着直线将图形对折,图中的PA与PB,∠APO与∠BPO有什么关系? 3、猜想:PA=PB,∠APO=∠BPO 4、证明猜想,形成定理

九年级数学上垂径定理练习题

B F E O D C A 垂径定理综合训练习题 一、垂径定理在证明上的应用 1、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: 弧AC = 弧BD 。 2.如图,CD 为⊙O 的弦,在CD 上截取CE=DF ,连结OE 、OF ,并且它们的延长⊙O 于点A 、 B 。 (1)试判断△OEF 的形状,并说明理由;(2)求证:? AC =? BD 。 3、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。 4、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点, AD ⊥BC 于D ,求证:AD=2 1 BF. 二、垂径定理在计算上的应用(一)求半径,弦长,弦心距 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. A B C D O A B C D O O A E F

变式 2.在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm 2:如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。 (二)、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径。. A C B D O C A D E

圆的垂径定理习题及答案

圆的垂径定理习题 一. 选择题 1. 如 图1,00的直径为10,圆心0到弦AB 的距离0M 的长为3,那么弦AB 的长是( ) 2. 如图,O 0的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段0M 长的最小值为( ) 3. 过O 0内一点M 的最长弦为10cm 最短弦长为8cm 则0M 的长为( ) A* 9cm E, 5cm 4. 如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 0A 0B 在 0点钉在一起,并使 它们保持垂直,在测直径时,把 0点靠在圆周上,读得刻度0E=8个单位,0F=6个单位,则圆的直 位 D. 15个单位 5. 如图,00的直径AB 垂直弦CD 于 P,且P 是半径0B 的中点,6cmCD ,则直径AB 的长是( ) 6. 下列命题中,正确的是( A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 7. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为 A.4 B. 6 C. 7 D. 8 B. 3 C. 4 D. 5 B . 10个单位 C. 1个单 A . 2 12个单位

E & 5米B, 8米C. 7米D,出米D

8.0O 的半径为5cm 弦AB//CD ,且AB=8cm,CD=6cn 则AB 与CD 之间的距离为( ) A . 1 cm B. 7cm C. 3 cm 或 4 cm D. 1cm 或 7cm 9?已知等腰△ ABC 的三个顶点都在半径为5的0 0上,如果底边BC 的长为8,那么BC 边上的高为 ( ) A . 2 B. 8 C. 2 或 8 D. 3 二、填空题 1. _________________________________________________________________________ 已知AB 是O 0的弦,AB= 8cm, OCL AB 与C, 0C=3cm 则O 0的半径为 __________________________ c m 2. ____________________________________________________________________ 在直径为10cm 的圆中,弦 AB 的长为8cm,则它的弦心距为 _______________________________ cm 3. 在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 _____________________ 4. 已知AB 是O 0的弦,AB= 8cm, OC L AB 与C, 0C=3cm 则O O 的半径为 ________________ cm 5. ______________________________________________________________________________ 如图,O 0的直径AB 垂直于弦CD ,垂足为E ,若/C0氐120°, 0E= 3厘米,贝U CD= ___________ 厘 6. _____________________________________________________________ 半径为6cm 的圆中,垂直平分半径 0A 的弦长为 _______________________________________________ c m 7. 过O 0内一点M 的最长的弦长为6cm,最短的弦长为4cm,则0M 勺长等于 cm 8. 已知AB 是O 0的直径,弦CD L AB E 为垂足,CD=8 0E=1则AB= __________ 9. 如图,AB 为O 0的弦,O 0的半径为5, OC L AB 于点D,交O 0于点C,且CD= l ,则弦AB 的长 11. __________________________ 如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于 A 、B 两点,已知P(4, 2)和A(2, 0), 贝卩点B 的坐标是 12. ____________________________________________________________ 如图,AB 是O 0的直径,ODL AC 于点D, BC=6cm 则0D ________________________________ cm 10. 某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB= 16m 半径04 10m 则中间柱 CD 的高度为

新人教版九年级上册数学[切线长定理—知识点整理及重点题型梳理](提高)

新人教版九年级上册初中数学 重难点有效突破 知识点梳理及重点题型巩固练习 切线长定理—知识讲解(提高) 【学习目标】 1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线的判定定理和性质定理 1.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 要点诠释: 切线的判定方法: (1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线; (2)定理:和圆心的距离等于半径的直线是圆的切线; (3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可). 2.切线的性质定理: 圆的切线垂直于过切点的半径. 要点诠释: 切线的性质: (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)切线垂直于过切点的半径; (4)经过圆心垂直于切线的直线必过切点; (5)经过切点垂直于切线的直线必过圆心. 要点二、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 3.圆外切四边形的性质:

圆外切四边形的两组对边之和相等. 要点三、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 2.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径). 【典型例题】 类型一、切线长定理 1.如图,等腰三角形ABC中,6 AC BC ==,8 AB=.以BC为直径作⊙O交AB于点D,交AC 于点G,DF AC ⊥,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线. 【答案与解析】 如图,连结OD、CD,则90 BDC ∠=?. ∴CD AB ⊥. ∵ AC BC =,∴AD BD =. ∴D是AB的中点. ∵O是BC的中点,

九年级数学上垂径定理练习题

B F E O D C A O D C B A A B C D O 垂径定理综合训练习题 一、垂径定理在证明上的应用 1、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: 弧AC = 弧BD 。 2.如图,CD 为⊙O 的弦,在CD 上截取CE=DF ,连结OE 、OF ,并且它们的延长⊙O 于点A 、 B 。 (1)试判断△OEF 的形状,并说明理由;(2)求证:? AC =? BD 。 3、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。 4、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=2 1 BF. 二、垂径定理在计算上的应用(一)求半径,弦长,弦心距 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. 变式2.在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm 2:如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。 (二)、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求: AOB ∠的度数和圆的半径。. 已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、2、 3. 求BAC ∠的度数。 (三)、相交问题 如 图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°, 求CD 的长. (四)平行问题 (南京市)如图2,矩形ABCD 与圆心在AB 上的⊙O 交于点G 、B 、F 、E , GB =8cm ,AG =1cm ,DE =2cm ,则EF = cm . 变式一:圆内两条互相平行的弦AB 、CD ,其中AB =16cm ,CD =12cm ,圆的半径为10,求AB 、CD 间的距离。 2、 如图,圆柱形水管内原有积水的水平面宽 CD=20cm ,水深GF=2cm .若水面上升2cm (EG=2cm ),则此时水面宽AB 为多少? (五)同心圆问题 O A B C D E A C B D O A B C D O C A D E

九年级《圆》垂径定理练习及答案资料

九年级《圆》垂径定理练习及答案

九年级《圆》垂径定理练习 一、选择题 1. 在Rt△ABC,∠C=90°,BC=5,AB=13,D是AB的中点,以C为圆心,BC 为半径作⊙C,则⊙C与点D的位置关系是( ) A. D在圆内 B.D在圆上 C.D 在圆外 D.不能确定 2.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶角的距离相等;④半径相等的两个半圆是等 弧.其中正确的有( ) A.4个 B.3个 C.2个 D.1个 3.下面的四个判断中,正确的一个是( ) A.过圆内的一点的无数条弦中,有最长的弦,没有最短的弦; B.过圆内的一点的无数条弦中,有最短的弦,没有最长的弦; C. 过圆内的一点的无数条弦中,有一条且只有一条最长的弦,也有且只有一条最短的弦; D.过圆内的一点的无数条弦中,既没有最长的弦,也没有最短的弦.

4.下列说法中,正确的有( )①菱形的四个顶点在同一个圆上;②矩形的四个顶点在同一个圆上; ③正方形四条边的中点在同一个圆上;④平行四边形四条边的中点在同一个圆上. A.1个 B.2个 C.3个 D.4个 5.如图所示,在⊙0中,直径MN⊥AB,垂足为C,则下列结论中错误的是( ) A.AC=CB B. C. D. OC=CN 6.过⊙O内一点M的最长的弦长为4 cm,最短的弦长为2 c( ) A.B. C. 8 cm D. 7.如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径等于( ) A.6 cm B. C.8 cm D. 8.如果⊙O中弦AB与直径CD垂直,垂足为E,AE=4, CE=2,那么⊙O的半径等于( )A. 5 B. C.

相关文档
最新文档