冲击试验的若干问题分析

冲击试验的若干问题分析
冲击试验的若干问题分析

冲击试验的若干问题分析

胡荣

首钢迁钢公司,河北迁安(064404)

E-mail:qghr@https://www.360docs.net/doc/7b15606589.html,

摘要:冲击试验是材料性能不可缺少的检验项目。冲击功能够直观反应材料的冲击韧性,而夏比冲击能与温度的关系图可以确定测试钢种的韧性向脆性转变的温度。由于冲击试验数据容易分散,在试验的过程中,冲击试验设备、试样加工及试验过程中的问题会影响试验数据的分散。本文将从这三个方面对冲击试验中若干问题进行简单分析。

关键词:冲击试验,试验设备,试样,试验,问题,分析

冲击试验是材料性能不可缺少的检验项目。目前各国常用的试样为夏比V型缺口冲击试样。冲击的试验原理,自冲击试验机问世以来就一直按能量守恒定律进行设计制造冲击试验机,按摆锤打断试样后势能损失多少计算冲击功。目前,我国常用的冲击试验标准是GB/T229-1994《金属夏比缺口冲击试验方法》。

由于冲击过程持续时间很短,所以在服役中的构件往往会发生无预兆的突然断裂,而造成重大事故,因而研究材料在冲击载荷作用下的力学性能具有重要的现实意义。

冲击试验对材料的组织缺陷很敏感,它能灵敏地反映出材料的宏观缺陷和显微组织的微小变化,因而冲击试验在材料生产上成为用来检验冶炼、热处理及热加工工艺质量的有效方法之一。又由于冲击试验加工简单,试验时间短,所以得以广泛应用。

在工厂做冲击试验的过程中,经常会碰到试验设备、试样加工及试验过程的问题而影响试验结果。本文将在冲击试验过程中碰到的问题作一简单分析。

1. 试验设备

1.1 冲击试验对试验机砧座和支座的要求

1.1.1 支座的两个支撑面应平行,且相差不应超过0.05mm。支座应使试样的轴线与摆锤轴线的平行度在3/1000以内。

1.1.2 砧座两个支撑面应平行,且相差不应超过0.05mm。支座两个支撑面所在平面和砧座两个支撑面所在平面之间的夹角应为90±0.1°。

1.1.3 砧座曲率半径1mm。曲率圆弧应与支撑面平面相切。

1.1.4 砧座之间跨距为40+0.2。[2]

1.1.5 试验前,应该检查砧座上是否沾有铁屑,如果沾有,应该及时清理。当试验机的砧座上粘有铁屑时会造成两种结果:冲击试样不能紧靠砧座;冲击试样不能准确地对中。这两种结果都会使得冲击吸收功偏大。如图1所示。[5]

图1 砧座沾有铁屑导致冲击值偏高

1.1.6 冲击试验机的砧座要经常检查,若磨损的比较严重则会对冲击吸收功产生较严重的影响,使得冲击吸收功偏低。

1.2 冲击试验机摆锤的要求

1.2.1 摆锤势能与标称能量最大允许误差为±1%。[2]

1.2.2 摆杆必须要有足够的刚度,打击时不能产生弹性形变。

1.2.3 摆轴必须有足够的刚度,摆轴是摆锤的旋转支点,如果摆轴的刚度不足,摆轴在产生弹性形变会吸收功。

1.2.4 摆锤自由下垂时,指针指向最大能量,当一次空打后,指针回零。[5]

1.3 冲击试验机冲击刀的要求

1.3.1 刀刃半径一般为2mm与8mm。

1.3.2 试验前应该检查刀刃,检查是否松动,是否被打平。如图2所示刀刃刀具导脚远大于R0.2,属于不合格刀刃。[5]

图2 不合格的冲击刀刃

1.3.3 冲击刀刃不能沾有铁屑。当摆锤刀刃上粘有铁屑时,在冲击时会使摆锤不能准确地打

在试样的正中位置,从而使得冲击吸收功偏高。

2 试样

2.1 冲击试样的表面粗糙度和尺寸精度对冲击功的影响

2.1.1 冲击试样的表面粗糙度要严格按照标准的要求:试样缺口底部应光滑,试样四个纵向

面的表面粗糙度Ra1.6μm,两端面Ra25μm。因为冲击试样的表面粗糙度对冲击功有一定的

影响,但是在通常情况下因为表面粗糙度而产生的影响是可以忽略不计的。而试样缺口处的

表面粗糙度没有达到要求会造成冲击功偏低,不能忽略不计。所以在制备试样的过程中必须

要保证试样缺口处的表面粗糙度。

2.1.2 冲击试样尺寸精度对冲击功德影响取决于尺寸偏差有多大,如果说只是几道的偏差这

对冲击吸收功不会产生大的影响,但是如果偏差过大,而试样缺口处的尺寸是精确的,这样

就使得缺口下面的高度偏大或是偏小,这样就会严重影响冲击吸收功。而缺口处的尺寸精度

对冲击吸收功有着非常严重的影响。若缺口深度偏大,则会造成冲击吸收功偏低;若缺口深

度偏小,则会造成冲击吸收功偏高。但是,缺口尺寸无论是偏大还是偏小对剪切面积的评定

都不会产生影响。

2.2 冲击试验当中,U型和V型缺口的适用情况。

在一般的老标准(80年代)当中,大多要求的是U型缺口;新标准,大多要求的是V

型缺口。

U型缺口试样的缺口较浅,缺口底部的弧度半径较大,较易制作,这种试样应力集中作

用不太强,应力分布状态对试验时试样塑性变形的限制也不太大,所以冲击功和冲击值都较

高,脆性转变温度则较低,范围也较宽。如表1所示夏比U型缺口试样尺寸。

表1 夏比U型缺口试样尺寸

名称尺寸公差

长度55mm ±0.60mm

高度10mm ±0.05mm

宽度:

标准试样小尺寸试样小尺寸试样10mm

7.5mm

5mm

±0.10mm

±0.10mm

±0.10mm

缺口角度/ / 缺口下面的高度 8mm或5mm ±0.05mm

缺口底部半径1mm ±0.07mm 试样两端至缺口对称面的距离27.5mm ±0.30mm 缺口对称面与试样纵轴的角度90?≈±1 ?

试样相邻纵向面间的夹角90?≈±0.5 ?

上世纪70年代末,为适用《钢质海船建造规范》,又颁布了GB2106-1980金属夏比(V

形缺口)冲击试验方法。由于两种试样的缺口深度一样,而缺口底部半径不同,U型为1mm,

V型为0.25mm,因此,V型应力相对集中,当试样受到冲击时,就显得更敏感。如表2所

示夏比V 型缺口试样尺寸。

表2 所示夏比V 型缺口试样尺寸

名 称 尺 寸 公 差

长度 55mm ±0.60mm 高度

10mm ±0.05mm 宽度: 标准试样 小尺寸试样 小尺寸试样 10mm 7.5mm 5mm

±0.10mm ±0.10mm ±0.10mm

缺口角度 45? ±2?

缺口下面的高度 8mm ±0.05mm 缺口底部半径

0.25mm ±0.025mm

试样两端至缺口对称面的距离27.5mm ±0.30mm 缺口对称面与试样纵轴的角度90? ≈±1? 试样相邻纵向面间的夹角 90?

≈±0.5?

其实,冲击试验有多种试验方法,亦有不同的尺寸、不同缺口和不同形状的试样。它们应力集中作用及应力分布状态各不相同,对试验结果的影响有很大的差异,因此不能彼此比较或换算。具体选择何种缺口型式的试样,应由构件(产品)规范和材料标准确定。至于为何新标准多采用V 型试样,除上述原因外,试样加工技术的提高亦是其中之一,现在加工V 型缺口已有专用拉床,加工精度能达到规定要求。

3 试验

3.1 试样温度及温度测量

3.1.1 对于室温冲击试验,试验在室温[1]10℃~35 ℃下进行.如要求严格,在控制室温20 ℃±2℃下进行(国际标准规定23 ±5 )℃℃

3.1.2 对于高温冲击试验,试样加热至规定的试验温度,温度偏差允许±2℃。由于试样从高温炉移出,在室温环境和与支座接触,温度会降低, 按本方法结合打击时间, 需附加过热度(也应考虑过热对材料性能的影响)

3.1.3 对于低温冲击试验,试样冷却至规定温度,允许温度偏±2℃。由于试样从低温移出至室温环境和与支座接触,温度会升高, 按本方法结合打击时间,需附加过冷度。 3.1.4 试样加热或冷却所选用的热源,冷源和介质应安全,无毒,不腐蚀试样。

3.2 试样定位

3.2.1 试样缺口对称面偏离两支座对称面应不大于 0.5mm. 为能达到此要求,一般采用适合试样缺口形状的定位规. 偏离越大,冲击吸收功增加越明显[1].

3.2.2 如采用端头定位,定位杆或定位块,在定位后应退离定位点≥13mm, 以避免试样碰击到定位杆(块).

3.2.3 如在高温试验中采用端头定位,还应考虑试样热膨胀影响,按下式计算修正量[6](包括然膨胀,总偏差在0.5mm 范围内):

()

05.27t t l ?×=?α

式中: 半长度膨账量, 线账系数, 试验温度, 室温

3.3 试验要求

3.3.1 试验应在经校准合格的冲击试验机上进行。[1]

3.3.2 如为模拟指示冲击机,试验前,使摆锤静止处于铅垂状态,检查被动指针是否准确指示最大值。

3.3.3 试验前,空击试验,检查能量指示是否回零。如果不能回零,则能知道摆锤的仰角不在偏差范围之内或者是冲击试验机度盘相对试验机的位置发生偏离。这样能及时对试验机进行调整,保证试验的顺利进行。

3.3.4 试验前,检查支座是否紧固,测量试样跨距是否在 mm 以内(国际标准规定 ),跨距增加冲击吸收功降低。

3.3.5、试验前,检查并清除前次试验留在支座半径区并沾附着的金属屑.粘屑会附加冲吸收击功。

3.3.6 试样必须对中。如果试样不对中,这样就增大了试样对摆锤的冲击阻力,从而就会致使冲击吸收功偏高。如图3所示冲击瞬间试样轨迹[5]

图3 冲击瞬间试样轨迹图

3.3.6 试样从高温或低温环境移出,如为液体介质2s 以内打击试样, 如为气体介质1s 以内打击试样。

3.3.7 如不能满足这样的时间要求,必须在3s ~5s 打击试样,此时必须加过热或过冷度。 3.3.8 转移试样与试样接触的工具的温度应与介质温度相同.一般将转移工具置于试样加热或冷却的环境中。

3.3.9 试样移出后5s 内未被试验,应重新保温后试验。

3.4 试验结果处理

3.4.1 试验结果数据,至少保留2位有效数字。根据冲击试验机的示值辨力,数据末位保留到分辨力为单位。对于数字式,分辨力为末位跳动1个字码; 模拟式,为最小分度值的一半。[3] 3.4.2 数据不做修约。建议平均值数据可以多保留一位。

3.4.3 由于冲击试验机打击能量不足,试样未折断时,在试验数据前加大于符号 “>”。其他情

l ?α

t 0t 5.00

402.00

40

况(指打击能量足够而未被折断情况),注明“未折断”。 [4,6]

3.4.3 不同缺口形状或不同尺寸的试样,试验结果不能直接换算[1](除非已通过试验准确获知换算关系)。

3.4.5 试验后断口显现肉眼可见裂纹(例如淬火裂纹)或缺陷(例如夹渣,缩孔,异金属,分层,气孔等),应注明。

3.4.6 试验时误操作,数据无效;试验时出现卡锤现象[1],数据无效,(数据一般偏大)。

3.5 冲击试验断口评定方法

3.5.1 对于金属夏比冲击断口形貌的测定,目前的国家标准GB/T12778-1991《金属夏比冲击断口测定方法》规定了三种方法:(1) 比较法, (2) 直接测量法, (3)放大测量法. [6]

3.5.2 结合标准规定的方法,通常采用的韧性断面率[1] (纤维断面率)评定方法有5种方法: 3.5.2.1 比较法: 采用将断口与如国际标准或美国ASTM E23标准给定的标准实物断口形貌图比较确定.

3.5.2.2 测量法: 测量断口晶状断裂部分面积的长度和宽度(作近似矩形面积)或上、下底高(作近似梯形面积),计算其面积。

3.5.2.3 放大测量法:

A. 把试样断口拍片放大,利用求积仪测量。

B. 利用低倍显微镜等光学仪器(图象分析技术)测量。

3.5.2.4 用带标尺的方孔卡片法、网格卡片法。

3.5.3 夏比冲击断口形貌的评定,其准确度并不很高.按照英国标准 BS 131-5:1965《结晶度的测定》提示,前述的“比较法”法,对于有经验的操作人员能达到约10%的准确度,而其他几种方法准确性相对高些. 但比较法简单方便。图4所示管线钢L555MB的冲击试样在-20℃的条件下打断的试样断口。

图4 冲击试样断口(L555MB, -20℃)

在做冲击试验的过程中,试验设备、试样及试验过程都会影响试样数据的稳定性。每当我们做一组冲击试验的时候发现试验数据分散比较严重,就应该考虑是哪些方面出现了问题影响了数据的稳定性。以上是我在工作中总结出的一些问题,并作了简单的回答。在此,特别要感谢国家钢铁研究总院测试所对本文提供的帮助。

参考文献

[1]梁兴邦/李久新,GB/T229-1994 金属夏比冲击试验方法,中国标准出版社,北京,1994

[2]郭永祥等,GB/T3808-2002 摆锤式冲击试验机的检验,中国标准出版社,北京,2002

[3]吴传义,GB8170-87 数值修约规则,中国标准出版社,北京,2006

[4] 梁兴邦/李久新,《GB/T229-1994 金属夏比冲击试验方法》实施指南,中国标准出版社,北京,2006

[5]王春华,摆锤式冲击试验机的检定,中实国金国际实验室能力验证研究中心,2007

[6]张庄,YJL006金属韧性试验技术,中实国金国际实验室能力验证研究中心,2007

Analyse some questions about impact test

Hu Rong

Shougang Qian’an Steel&iron Co.,Ltd,Qian’an,Hebei (064404)

Abstract

Impact test is the indispensability test item. The impact power can response the material’s tenacity, and power & temperature chart can confirm the material’s temperature which is changed from tenacity to brittleness. Because the data are very instability. In testing process, the testing equipment, the sample and the testing process can affect the data’s stability. The article will Analyse some questions about impact test.

Keywords:impact test,testing equipment,sample,test,question,analyse

材料的力学性能试验

第一章 材料的力学性能试验 材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。 材料的力学性能试验必须按照国家标准进行。 第一节 拉伸试验 一、实验目的 1.验证胡克定律,测定低碳钢的弹性常数:弹性模量E 。 2.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 3.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 4.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 5.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二、实验设备和仪器 1.万能试验机。 2.引伸仪。 3.游标卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 如图1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分

组成。平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。圆形截面比例试样通常取d l 10=或 d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。定标距试样的l 与A 之间无上述比例关系。过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 (a ) (b ) 图1-1 拉伸试样 (a )圆形截面试样;(b )矩形截面试样 四、实验原理与方法 1.测定低碳钢的弹性常数 实验时,先把试样安装在万能试验机上,再在试样的中部装上引伸仪,并将指针调整到0,用于测量试样中部0l 长度(引伸仪两刀刃间的距离)内的微小变形。开动万能试验机,预加一定的初载荷(可取kN 4),同时读取引伸仪的初读数。 为了验证载荷与变形之间成正比的关系,在弹性范围内(根据A ?P σ求出的最大弹性载荷不超过kN 14)采用等量逐级加载方法,每次递加同样大小的载荷增量F ?(可选kN 2=?F ),在引伸仪上读取相应的变形量。若每次的变形增量大致相等,则说明载荷与变形成正比关系,即验证了胡克定律。弹性模量E 可按下式算出 l A l F E ????=

落锤冲击试验

第一章落锤冲击试验 1适用范围 本指导书适用于管材的抽样检验和作为连续生产时抽样检验的依据。2试验依据 GB /T14152 -2001 热塑性塑料管材耐外冲击性能试验方法时针旋转法(eqv ISO 3127:1994) 3试验原理 以规定质量和尺寸的落锤从规定高度冲击试验样品规定的部位,即可测出该批产品的真实冲击率(整批产品进行试验时,其冲击破坏总数除以冲击总数即为真实冲击率TIR,以百分数表示)。 TIR最大允许值为10% 4试验设备 4.1落锤冲击试验 落锤冲击试验机由试验台、备件箱、电器柜和控制仪表组成。 4.1.1试验台由试件升降机构、落锤提升机构、防二次冲击机构、落锤 导向装置等部分总成。 4.1.1.1试件升降机构:用于安装不同规格的管材试件。 4.1.1.2落锤提升机构由提升架和落锤冲击架两部分组成,落锤冲击

架 可以安装不同质量的落锤,同时使落锤沿导向导轨自由准确的落下, 落锤的规则可以根据试件的外形尺寸进行更换。 4.1.1.3防二次冲击机构使防止落锤冲击反弹后再次下落形成对试件的再次冲击,以保证得到正确的实验结果。 4.1.1.4落锤导向装置保证落锤在铅直方向自由落下。导向管选取用剩磁材料,以保证落锤下落时不受影响,导向管下部开活动门,以便安装落锤。 4.2电器控制柜各按钮功能如下: 4.2.1空气开关:控制系统总电源开合。 4.2.2吸盘旋钮:用于控制吸盘有无吸力。 4.2.3捕捉旋钮:用于控制捕捉机构在落锤第一次冲击试样后对落锤进行捕捉。 4.2.4落锤上升按钮:按动此按钮,吸盘吸附锤体上升至预期位置。 4.2.5落锤下降按钮:落锤冲击试样结束后,按动此按钮,使吸盘下降至规定位置。 4.2.6落锤停止按钮:吸盘在上升或下降过程中按动此按钮,吸盘可随时停止。 4.2.7设置:该设置为双向显示的智能数控仪,用于设置落锤的冲击

冲击电压发生器仿真设计

冲击电压发生器仿真设计 一、设计目的 1.理解冲击电压发生器的工作原理和绝缘冲击试验的内容; 2.掌握冲击电压发生器的设计方法和matlab仿真软件的使用; 3.学习分析冲击电压发生器充电回路的效率及波形参数。 二、设计要求 1.设计一台冲击电压发生器,产生冲击电压波。冲击波形的参数:波前时间为 2.0us,半峰值时间为36us;试品电压等级110kV。 2.参考《高电压试验技术》(清华大学版)。 三、设计任务 1.画出电路设计原理图 选用高效率双边对称充电回路,如图3、4所示 图3 发生器的充电回路 图4 发生器的放电回路

2.确定各元件参数 2.1额定电压的选择: 110kV产品的雷电冲击试验电压如表所示(按GB311.1-1997) 表1 110kV产品的雷电冲击耐受电压 额定雷电冲击(内外绝缘)耐受电压 (峰值)/kV 截断雷电冲击耐受电压(峰 值)/kV 变压器,并联电抗器,互感 器高压电 力电缆 高压电器 母线支柱绝 缘子,穿墙 套管 变压器类设备 的内绝缘 450850450450530 550550450450530上表所示的都是耐受电压。击穿电压和闪络电压都高于试验电压,考虑为研究试验取裕度系数1.3;长期工作时冲击电压发生器会发生绝缘老化,考虑老化系数1.1;假定冲击电压发生器的效率为85%,故冲击电压发生器的标称电压应不低于 U1=550×1.3 ×1.1 /0.85kV=925.3kV 2.2冲击电容的选择: 如不考虑大电力变压器试验和整卷电缆试验和互感器试验,就绝缘子的电容按100pF冲击电压发生器的对地杂散电容和高压引线及球隙等的电容如估计为500pF ,电容分压器的电容估计为600pF,则总的负荷电容为 C2=100+500+600=1200pF 如按冲击电容为负荷电容的10倍来估计,约需冲击电容为 C1=10C2=12000pF 2.3电容量的选择: 从国产脉冲电容器的产品规格中找到MY220-0.1瓷壳高压脉冲电容器比较合适,电容器规格如下表2 表2 型号工作电压试验电压电容外型尺寸重量外壳

材料力学性能实验指导书(材料成型及控制工程专业)

材料力学性能实验指导书(材料成型及控制工程专业) 张学萍 沈阳理工大学 二零一二年三月

目录 实验一硬度实验......................................................................... (3)

前言 《材料力学性能》这门课的实验是该课的重要组成部分,是该理论课的基础,正确地掌握实验的理论和方法,对提高学生的动手能力、分析问题和解决问题的能力有重要意义。 编写本实验指导书,是根据《材料力学性能》教学大纲及教材的有关内容、又根据我院设备、仪器实际情况编写的,这样,与教材的内容相一致,便于安排实验教学。 本实验指导书适用于:材料成型及控制工程专业 编者 2012 年3月

实验一硬度实验 一.实验目的 1.掌握洛氏、布氏硬度的基本原理及测试方法。 2.根据材料的性质正确选择硬度计类型及压入条件。 3.熟悉各种硬度值之间的换算。 二、实验内容 用洛氏硬度计测定试样热处理前后的硬度;用布氏硬度计测定45刚退火后的硬度。 三、概述 硬度试验操作简便,对工件损伤小,可在零件上直接测试,故在生产实践中应用很普遍。 硬度所表征的不是一个确定的物理量,它是衡量材料软硬程度的一种性能指标。硬度值的意义随试验方法而不同。硬度试验基本上可分为压入法和刻划法。对于以压入法进行的硬度试验,其硬度值是表示材料抵抗另一物体压入其表面的能力,洛氏、布氏和维氏硬度都属于压入法硬度试验。 (一)洛氏硬度试验法。 1.洛氏硬度是以压痕的深度来表示 材料的硬度值。图1-1为洛氏硬度试验 原理图。 测试洛氏硬度时,用规定的压头, 先后施加两个负荷:预负荷F0和主负 荷F1。总负荷F= F0+F1。图1-1中, 0-0位置为未加负荷时的压头位置;l-l 位置为施加10kg预负荷后的位置,压 入深度为h1;2-2位置为加上主负荷后 的位置,此时压入深度为h2;3-3位置图1-1 洛氏硬度试验原理 为卸除主负荷后由于弹性变形的恢复而 使压头略微提高的位置,此时压头的实际压入深度为h3。由主负荷引起的残余压入深度h=h3-h1,用此来衡量金属硬度值的大小。若直接用h来表示硬度,则会出现硬的金

金属材料的力学性能测试题.doc

一、填空题(60 分) 1. 金属材料的性能的性能包括和。 2. 力学性能包括、、、、。 3. 圆柱形拉伸试样分为和两种。 4. 低碳钢拉伸试样从开始到断裂要经过、 、、四个阶段。 5. 金属材料的强度指标主要有和。 6. 金属材料的塑性指标主要有和。 7. 硬度测定方法有、、。 8. 夏比摆锤冲击试样有和两种。 9. 载荷的形式一般有载荷、载荷和载荷三种。 10. 钢铁材料的循环基数为,非铁金属循环基数为。 11. 提高金属疲劳强度的方法有和 。 表示用“ C”标尺测定的1000/30 表示用压头直径为 kgf 试验力作用下,保持为。硬度值为。 的硬质合金球,在s时测得的布氏硬度值 14. 金属材料的工艺性能包括、、 、、。

二、判断题(25 分) 1.金属的工艺性能是指金属在各种加工中所表现出的性能。() 2.金属的力学性能是指在力作用下所显示的与弹性和非弹性反 应相关或涉及应力 - 应变关系的性能。() 3.拉伸试验时,试样的伸长量与拉伸力总成正比。() 4. 屈服现象是指拉伸过程中拉伸力达到Fs 时,拉伸力不增加, 变形量却继续增加的现象。() 5. 拉伸试样上标距的伸长量与原始标距长度的百分比,称为断后伸长率,用符号 A 表示。() 6.现有标准圆形截面长试样 A 和短试样 B,经拉伸试验测得δ 10、δ5 均为 25%,表明试样 A 的塑性比试样 B 好。 ( ) 7.常用的硬度试验方法有布氏硬度、洛氏硬度和维氏硬度。() 8.做布氏硬度试验,当试验条件相同时,压痕直径越小,则材料 的硬度越低。() 9.洛氏硬度值是根据压头压入被测材料的的深度来确定的。() 10.洛氏硬度 HRC测量方便,能直接从刻度盘上读数,生产中常 用于测量退火钢、铸铁和有色金属件。() 11.一般来说,硬度高的金属材料耐磨性也好。() 12.韧性是指金属在断裂前吸收变形能量的能力。() 13.金属的使用性能包括力学性能、物理性能和铸造性能。( ) 14.拉伸试验中拉伸力和伸长量的关系曲线称为力一伸长曲线,

落锤冲击试验标准

落锤冲击试验标准 一、产品描述 该机广泛适用于各种塑料管材(如给排水管、排污管、燃气管、通信用管道,如PVC、PE等)的耐冲击韧性的测定。是检测机构、生产单位、建材行业、科研单位理想的测试仪器。本产品已通过欧盟CE 认证。 二、符合标准 符合JB/T9389标准要求的落锤冲击试验机技术条件,并满足GB/T5836.1、GB/T10002.1、GB/T1002.3、GB/T13664、GB/T16800、GB/T6112、GB/T14152、ISO 4422、ISO 3127、BS EN 1411、BS EN 744等标准规定的试验方法的要求。 三、产品特点 1、安全防护装置满足89/392/EEC标准; 2、采用高亮(LED)数码管显示,使用寿命长; 3、冲击高度可在50mm~2000mm范围内任意设定(此高度范围内防二次冲击装置的捕捉率为100%); 4、采用进口伺服控制系统提升装置,提升速度快、试验效率高; 5、提升高度自动校准,校准精度达±2mm范围以内; 6、组合式冲击锤结构,可通过砝码调节冲击锤重; 7、气动防二次冲击捕捉装置,可根据需要调整工作空气压力,提高捕捉装置的可靠性; 8、可装配型组合式V型垫铁设计,使其适应不同管径的管材、厚度

各异的板材试样,选配安全帽专用配件后,可进行安全帽的冲击试验; 9、独特的落管及排气孔设计,使锤体下时落空气阻力影响极小,锤体与落管壁无摩擦,能损小于2%; 10、试样采用双螺杆支撑,支撑平稳,刚性好。 四、技术参数 冲击高度: 50~2000mm 锤体质量: 0.25kg~16kg 大提锤质量: 30kg 大提锤速度: 12m/min 重复定位误差: <±1mm 防二次冲击捕捉率: 100% 锤头曲率半径: 5、10、12.5、30、50mm等(可选) 电源: (220-15% ~220+10%)VAC 50Hz 1.0kW 单相三线 外型尺寸:长×宽×高=(1100×570×3710)mm 五、仪器配置 1.主机一台 2.电控箱一台 3.快速提升装置一套注:0-2m 提升速度用时11 秒 4.锤杆(需方提供执行标准) 5.压紧砝码(需方提供执行标准) 6.砝码(需方提供执行标准) 7.电源线一根

冲击力仿真计算与实验研究

作者简介:蒋东霖(1979—),男,硕士,高级工程师,主要从事机械系统设计和理论研究工作。 冲击力仿真计算与实验研究 摘要:本文应用接触力学理论,应用虚拟平台,对冲击试验机冲击过程进行了仿真模拟和计算,得出了冲击力随时间变化的具体曲线,并和实际的冲击试验数据进行了对比,分析总结了两者的差别。 关键字:接触力学;冲击力;仿真 The simulation and test study of the impact force Abstract: In this paper,according to the contact mechanics theory,application virtual platform,the simulation and calculation which the impact process of material impact testing machine has been done,the specific curve of the impact force changing with time is drawing.analyzed the differences between the simulation data and the actual impact test data Keyword: contact mechanics theory;impact force; computer simulation 1引言 材料的抗冲击性能是材料的重要属性之一,而材料的抗冲击性能要依靠冲击试验测得,冲击试验应用的设备是材料冲击试验机,通过摆锤冲击试样后得出的冲击吸收功和冲击力来衡量材料的抗冲击性能。冲击过程是个非常复杂的过程,本文应用多体动力学理论,应用虚拟平台,对材料冲击试验机冲击过程进行了仿真模拟和计算,得出了冲击力的具体曲线,并和实际的冲击试验进行了对比,分析总结了两者的差别,为更深入的研究打下基础。 2碰撞力模型 根据Hertz contact theory ,采用非线性等效弹簧阻尼模型作为接触力的计算模型。当计算两个构件之间的接触力时,接触力由两个部分组成:一个是由于两个构件之间的相互切入而产生的弹性力;另一个是由相对速度产生的阻尼力。其广义形式可以表示为: e ni i i F K CV δ=+ 其中,ni F 为法向接触力,单位为N 。K (Stiffness )为Hertz 接触刚度,表示接触表面的刚度,单位为N/mm 。i δ(Penetration Depth )—接触点的法向穿透深度,单位为mm 。e (Force Exponent )为碰撞指数,刚度项的贡献因子。C (Damping )为阻尼系数,单位为N ?sec/mm 。通常取刚度值的0.1~1﹪。 i V 为接触点的法向相对速度,i V 是i δ的导数,单位为mm /sec 。接触刚度的表达式为: 0.5*43 K R E = 其中1212R R R R R =+,1R 、2R 为两碰撞物体在碰撞处的曲率半径;2212*12 111E E E υυ--=+ 1υ、2υ分别是两物体的泊松比,1E 、2E 分别是两物体的弹性模量[1]。 3仿真与试验 根据碰撞力的模型,试验中采用冲击刀半径为2.5mm ,采用10*10*55的标准试样,碰

电力系统分析实验报告

五邑大学 电力系统分析理论 实验报告 院系 专业 学号 学生姓名 指导教师

实验一仿真软件的初步认识 一、实验目的: 通过使用PowerWorld电力系统仿真软件,掌握电力系统的结构组成,了解电力系统的主要参数,并且学会了建立一个简单的电力系统模型。学会单线图的快捷菜单、文件菜单、编辑菜单、插入菜单、格式菜单、窗口菜单、仿真控制等菜单的使用。 二、实验内容: (一)熟悉PowerWorld电力系统仿真软件的基本操作 (二)用仿真器建立一个简单的电力系统模型: 1、画一条母线,一台发电机; 2、画一条带负荷的母线,添加负荷; 3、画一条输电线,放置断路器; 4、写上标题和母线、线路注释; 5、样程存盘; 6、对样程进行设定、求解; 7、加入一个新的地区。 三、电力系统模型: 按照实验指导书,利用PowerWorld软件进行建模,模型如下: 四、心得体会: 这一次试验是我第一次接触PWS这个软件,刚开始面对一个完全陌生的软件,我只能听着老师讲解,照着试验说明书,按试验要求,在完成试验的过程中一点一点地了解熟悉这个软件。在这个过程中也遇到了不少问题,比如输电线的画法、断路器的设置、仿真时出现错误的解决办法等等,在试验的最后,通过请教老师同学解决了这些问题,也对这个仿真软件有了一个初步的了解,为以后的学习打了基础。在以后的学习中,我要多点操作才能更好地熟悉这个软件。

实验二电力系统潮流分析入门 一、实验目的 通过对具体样程的分析和计算,掌握电力系统潮流计算的方法;在此基础上对系统的运行方式、运行状态、运行参数进行分析;对偶发性故障进行简单的分析和处理。 二、实验内容 本次实验主要在运行模式下,对样程进行合理的设置并进行电力系统潮流分析。 选择主菜单的Case Information Case Summary项,了解当前样程的概况。包括统计样程中全部的负荷、发电机、并联支路补偿以及损耗;松弛节点的总数。进入运行模式。从主菜单上选择Simulation Control,Start/Restart开始模拟运行。运行时会以动画方式显示潮流的大小和方向,要想对动画显示进行设定,先转换到编辑模式,在主菜单上选择Options,One-Line Display Options,然后在打开的对话框中选中Animated Flows Option选项卡,将Show Animated Flows复选框选中,这样运行时就会有动画显示。也可以在运行模式下,先暂停运行,然后右击要改变的模型的参数即可。 三、电力系统模型

材料力学实验参考

实验一、测定金属材料拉伸时的力学性能 一、实验目的 1、测定低碳钢的屈服极限s σ,强度极限b σ,延伸率δ和面积收缩率ψ。 2、测定铸铁的强度极限b σ。 3、观察拉伸过程中的各种现象,并绘制拉伸图(l F ?-曲线)。 二、仪器设备 1、液压式万能试验机。 2、游标卡尺。 三、实验原理简要 材料的力学性质s σ、b σ、δ和ψ是由拉伸破坏试验来确定的。试验时,利用试验机自动绘出低碳钢拉伸图和铸铁拉伸图。对于低碳材料,确定屈服载荷s F 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。测力回转后所指示的最小载荷即为屈服载荷s F ,继续加载,测得最大载荷b F 。试件在达到最大载荷前,伸长变形在标距范围内均匀分布。从最大载荷开始,产生局部伸长和颈缩。颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至断裂。 铸铁试件在极小变形时,就达到最大载荷,而突然发生断裂。没有流动和颈缩现象,其强度极限远低于碳钢的强度极限。 四、实验过程和步骤 1、用游标卡尺在试件的标距范围内测量三个截面的直径,取其平均值,填入记录表内。取三处中最小值作为计算试件横截面积的直径。 2、 按要求装夹试样(先选其中一根),并保持上下对中。 3、 按要求选择“试验方案”→“新建实验”→“金属圆棒拉伸实验”进行试验,详细操 作要求见万能试验机使用说明。 4、 试样拉断后拆下试样,根据试验机使用说明把试样的l F ?-曲线显示在微机显示屏 上。从低碳钢的l F ?-曲线上读取s F 、b F 值,从铸铁的l F ?-曲线上读取b F 值。 5、 测量低碳钢(铸铁)拉断后的断口最小直径及横截面面积。 6、 根据低碳钢(铸铁)断口的位置选择直接测量或移位方法测量标距段长度1l 。 7、 比较低碳钢和铸铁的断口特征。

电力系统继电保护仿真实验指导书(试用稿)讲解

电力系统继电保护 实验指导书 张艳肖编 适用于12级电气工程及其自动化专业 西安交通大学城市学院二○一五年三月

目录 第一部分MATLAB基础 ................................................................................... - 3 - 1.1 MATLAB简介 .......................................................................................... - 3 - 1.2 MATLAB的基本界面 ........................................................................... - 3 - 1.2.1MATLAB的主窗口 ...................................................................... - 3 - 1.2.2 MATLAB的主窗口 ....................................................................... - 3 - 1.3 SIMULINK仿真工具简介.................................................................... - 4 - 1.3.1SIMULINK的启动 ........................................................................ - 4 - 1.3.2SIMULINK的库浏览器说明........................................................ - 5 - 第二部分仿真实验内容.................................................................................. - 6 - 实验一电力系统故障.................................................................................... - 6 - 实验二电流速断保护.................................................................................... - 9 - 实验三三段式电流保护.............................................................................. - 13 - 实验四线路自动重合闸电流保护.............................................................. - 17 -

材料力学实验报告答案

篇一:材料力学实验报告答案 材料力学实验报告 评分标准拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(p-δl曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度 0.02 mm 三、实验数据(2分) 四、实验结果处理(4分) ?s??b? psa0pba0 =300mpa 左右=420mpa 左右 =20~30%左右=60~75%左右 ?? l1?l0 ?100% l0a0?a1 ?100% a0 ?= 五、回答下列问题(2分,每题0.5分) 1、画出(两种材料)试件破坏后的简图。略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同?为什么?相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。压缩实验报告 一、实验目的(1分) 1. 测定压缩时铸铁的强度极限σb。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。 二、实验设备(1分) 机器型号名称电子万能试验机(0.5分) 测量尺寸的量具名称游标卡尺精度 0.02 mm (0.5分) 三、实验数据(1分)四、实验结果处理(2分) ?b? pb =740mpaa0 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。略 2. 绘出两种材料的压缩曲线。略 3. 为什么在压缩实验时要加球形承垫?

电力电子技术与电力系统分析matlab仿真

电气2013级卓班电力电子技术与电力系统分析 课程实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

兰州交通大学自动化与电气工程学院 2016 年 1 月日

电力电子技术与电力系统分析课程实训报告 1 电力电子技术实训报告 1.1 实训题目 1.1.1电力电子技术实训题目一 一.单相半波整流 参考电力电子技术指导书中实验三负载,建立MATLAB/Simulink环境下三相半波整流电路和三相半波有源逆变电路的仿真模型。仿真参数设置如下: (1)交流电压源的参数设置和以前实验相关的参数一样。 (2)晶闸管的参数设置如下: R=0.001Ω,L =0H,V f=0.8V,R s=500Ω,C s=250e-9F on (3)负载的参数设置 RLC串联环节中的R对应R d,L对应L d,其负载根据类型不同做不同的调整。 (4)完成以下任务: ①仿真绘出电阻性负载(RLC串联负载环节中的R d= Ω,电感L d=0,C=inf,反电动势为0)下α=30°,60°,90°,120°,150°时整流电压U d,负载电流L 和晶闸管两端电压U vt1的波形。 d ②仿真绘出阻感性负载下(负载R d=Ω,电感L d为,反电动势E=0)α=30°,60°,90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形。 ③仿真绘出阻感性反电动势负载下α=90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形,注意反电动势E的极性。 (5)结合仿真结果回答以下问题: ①该三项半波可控整流电路在β=60°,90°时输出的电压有何差异?

材料力学性能实验报告

大连理工大学实验报告 学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___ 指导教师签字:成绩: 实验一金属拉伸实验 Metal Tensile Test 一、实验目的Experiment Objective 1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率 φ的测定方法。 2、掌握金属材料屈服强度σ0.2的测定方法。 3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。 4、简单了解万能实验拉伸机的构造及使用方法。 二、实验概述Experiment Summary 金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。 三、实验用设备The Equipment of Experiment 拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力

实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。液压式万能实验机是最常用的一种实验机。它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。 (一)加载部分The Part of Applied load 这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。其加载方式是液压式的。在机座上装有两根立柱,其上端有大横梁和工作油缸。油缸中的工作活塞支持着小横梁。小横梁和拉杆、工作台组成工作框架,随工作活塞生降。工作台上方装有承压板和弯曲支架,其下方为钳口座,内装夹持拉伸试样用的上夹头。下夹头安装在下钳口座中,下钳口座固定在升降丝杆上。 当电动机带动油泵工作时,通过送油阀手轮打开送油阀,油液便从油箱经油管和进入工作油缸,从而推动活塞连同工作框架一起上升。于是在工作台与大横梁之间就可进行压缩、弯曲等实验,在工作台与下夹头之间就进行拉伸实验。实验完毕后,关闭送油阀、旋转手轮打开回油阀,则工作油缸中的油液便经油管泄回油箱,工作台下降到原始位置。 (二)测力部分The Part of Measuring Force 加载时,油缸中的油液推动工作活塞的力与试样所承受的力随时处于平衡状态。如果用油管和将工作油缸和测力油缸连同,此油压便推动测力活塞,通过连杆框架使摆锤绕支点转动而抬起。同时,摆锤上方的推板便推动水平齿杆,使齿轮带动指针旋转。指针旋转的角度与油压亦即与试样所承受的载荷成正比,因此在测力度盘上便可读出试样受力的量值。 四、试样Sample 拉伸试样,通常加工成圆型或矩形截面试样,其平行长度L0等于5d或10d (前者为长试样,后者为短试样),本实验用短试样,即L0=5d。本实验所用的试样形状尺寸如图1—1所示。 图1-1圆柱形拉伸试样及尺寸

落锤冲击试验标准

落锤冲击试验标准: 符合行业标准JB/T9389落锤式冲击试验机技术条件,满足GB/T6112、GB/T14152、GB/T10002.1、GB/T10002.3、GB/T13664、GB/T16800、ISO4422、ISO3127、BSEN1411、BSEN744的试验方法。 说明:本机试法系以规定重量之钢珠,调整在一定高度,使之自由落下打击试料,视其受损程度判定品质。适用于塑料、陶瓷、压克力、玻璃纤维等材料及试验涂料之坚牢度。 标准:参考JIS测试规范。 型号:BE-TS150 主要技术参数 落球高度:0-150cm(可调) 落球控制方式:直流电磁控制 钢球重量:50、100、200、500、2000g(半球或指定) 使用电源:1∮,220V,2A 机台尺寸:约50×50×210cm 机台重量:约80 kg 落锤试验: 概述 drop-weighttest,又称落重试验。一种冲击试验方法。重锤从不同高度落到试样(片、薄膜、制品)上,求取落下高度与试样破坏率的关系。用破坏率为50%时的落下高度来表示试样的抗冲击能力。

用以测定钢材无塑性转变(NDT)温度的一种特殊冲击试验。主要试验装置为落锤试验机。下部为底座与支架,机架上部配有可调换的不同质量的重锤(图4—37)。在规定尺寸的钢板上方中部按纵向有一条用脆性焊条焊成的焊道,在焊道的中部(也是钢板中央)加工出一道缺口。将制成的试板焊道朝下放置在底座的支架上,松开已升至一定高度的重锤自由落下,冲在钢板上视其是否断裂成两段。对一组试板中的各试板分别冷却到不同温度,每相差5℃的试板做一个落锤冲击试验,直到能断成两段为止。能断成两段时的温度即为该钢材的无塑性转变温度。该温度误差将不超过5℃。 也有的试验方法是固定重锤高度而改变锤质量来进行试验,用求得相应重锤质量来表示结果;或者,两者都改变而用下落重锤的能量来表示结果。应该注意,用能量表示时对不同高度或不同重锤质量的结果是不宜作比较的。落锤试验比摆锤冲击试验更接近实际情况,是一种简便又实用的方法。

夹层玻璃的冲击破坏仿真分析研究

2008年用户年会论文 夹层玻璃的冲击破坏仿真分析研究 臧孟炎1 陈超1 辛崇飞2 (1.华南理工大学 机械与汽车工程学院,广东广州 510641) (2.信义玻璃控股有限公司,广东东莞 523935) [ 摘 要 ] 本文在一特种夹层玻璃铝弹撞击实验的基础上,建立了夹层玻璃及其相关部件的有限元模型, 应用非线性有限元软件LS-DYNA ,对整个铝球撞击过程进行了数值模拟。使用相邻单元节点 固结和破坏评价方法,再现了冲击破坏过程中玻璃碎片的飞散现象;从夹层玻璃破坏过程和 PET 材料的变形状况来看,获得了与实验基本一致的仿真结果。 [ 关键词 ] 夹层玻璃 冲击试验 动态响应 数值模拟 Simulation analysis of impact fracture behavior of laminated glass ZANG Meng-yan 1 CHEN chao 1 XIN Chong-fei 2 (1.South China University of Technology, Guangdong Guangzhou, 510641,China) (2.XINYI Glass Holdings Limited, Guangdong Dongguan, 523935, China) [ Abstract ] Based on impact fracture experiment of a special laminated glass impacted by an aluminum ball, a FEM model of laminated glass and correlative parts is built. The whole impact process is simulated by using nonlinear FEM commercial software LS-DYNA. By evaluating way of *CONSTRAINED_TIED_NODES_FAILURE, splash phenomenon of glass fragment is numerically simulated successfully. It is obvious that the simulation result is almost the same as the experimental results, according to the fracture process of laminated glass and the deformation of PET material. [ Keyword ] laminated glass Impact experiment Dynamic response Numerical simulation 1 前言 夹层玻璃具良好的抗冲击性,抗穿透性,同时保持了良好的透光性。在军工,安保等 领域对特种夹层玻璃需求的不断增加,使夹层玻璃的冲击破坏问题成为近年来国内外一个

电力系统分析仿真实验报告

电力系统分析仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

电力系统分析仿真 实验报告 ****

目录 实验一电力系统分析综合程序PSASP概述 (3) 一、实验目的 (3) 二、PSASP简介 (3) 三、实验内容 (5) 实验二基于PSASP的电力系统潮流计算实验 (9) 一、实验目的 (9) 二、实验内容 (9) 三、实验步骤 (14) 四、实验结果及分析 (15) 1、常规方式 (15) 2、规划方式 (23) 五、实验注意事项 (31) 六、实验报告要求 (31) 实验三一个复杂电力系统的短路计算 (33) 一、实验目的 (33) 二、实验内容 (33) 三、实验步骤 (34) 四、实验结果及分析 (35) 1、三相短路 (35) 2、单相接地短路 (36) 3、两相短路 (36) 4、复杂故障短路 (36) 5、等值阻抗计算 (37) 五、实验注意事项 (38) 六、实验报告要求 (38)

实验五基于PSASP的电力系统暂态稳定计算实验 (39) 一、实验目的 (39) 二、实验内容 (39) 三、实验步骤 (40) 四、实验结果级分析 (40) 1、瞬时故障暂态稳定计算 (40) 2、冲击负荷扰动计算 (44) 五、实验注意事项 (72) 六、实验结果检查 (72)

实验一电力系统分析综合程序PSASP概述 一、实验目的 了解用PSASP进行电力系统各种计算的方法。 二、PSASP简介 1.PSASP是一套功能强大,使用方便的电力系统分析综合程序,是具有我国自主知识产权的大型软件包。 2.PSASP的体系结构: 报表、图形、曲线、 潮流计算短路计 电网基固定用户自定固定 第一层是:公用数据和模型资源库,第二层是应用程序包,第三层是计算结果和分析工具。 3.PSASP的使用方法:(以短路计算为例) 1).输入电网数据,形成电网基础数据库及元件公用参数数据库,(后者含励磁调节器,调速器,PSS等的固定模型),也可使用用户自定义模型UD。在此,可将数据合理组织成若干数据组,以便下一步形成不同的计算方案。

金属材料力学性能实验报告

金属材料力学性能实验报告 姓名:班级:学号:成绩: 实验名称实验一金属材料静拉伸试验 实验设备1)电子拉伸材料试验机一台,型号HY-10080 2)位移传感器一个; 3)刻线机一台; 4)游标卡尺一把; 5)铝合金和20#钢。 试样示意图 图1 圆柱形拉伸标准试样示意图 试样宏观断口示意图 图2 铝合金试样常温拉伸断裂图和断口图 (和试样中轴线大约成45°角的纤维状断口,几乎没有颈缩,可以知道为切应力达到极限,发生韧性断裂)

图3 正火态20#钢常温拉伸断裂图和断口图 (可以明显看出,试样在拉断之后在断口附近产生颈缩。断口处可以看出有三个区域:1.试样中心的纤维区,表面有较大的起伏,有较大的塑性变形;2.放射区,表面较光亮平坦,有较细的放射状条纹;3.剪切唇,轴线成45°角左右的倾斜断口) 原始数据记录 表1 正火态20#钢试样的初始直径测量数据(单位:mm ) 左 中 右 平均值 9.90 10.00 10.00 9.97 9.92 10.00 10.00 10.00 10.00 9.92 左 中 右 平均值 8.70 8.72 8.68 8.69 8.68 8.70 8.70 8.64 8.72 8.70 表2 时效铝合金试样的初始直径测量数据(单位:mm ) 两试样的初始标距为050 L mm 。 表3 铝合金拉断后标距测量数据记录(单位:mm ) AB BC AB+2BC 平均 12.32 23.16 58.64 58.79 24.02 17.46 58.94 测量20#钢拉断后的平均标距为u L =69.53 mm ,断口的直径平均值为u d =6.00 mm 。 测量得到铝合金拉断后的断面直径平均值为7.96mm 。

摆锤式冲击响应谱试验台的仿真研究

2012年6月 强 度 与 环 境 Jun.2012 第39卷第3期 STRUCTURE & ENVIRONMENT ENGINEERING V ol.39, No.3 摆锤式冲击响应谱试验台的仿真研究 王冰 田振强 张巧寿 (北京强度环境研究所,北京 100076) 摘要:摆锤式冲击响应谱试验台是模拟爆炸冲击环境的一种较好手段,它能够模拟拐点频率在300Hz ~2000Hz ,峰值过载高达几千个g 值的冲击谱型。根据该装置的结构和基本原理,本文应用有限元分析软件ANSYS ,LS-DYNA 等对其冲击响应谱产生过程进行了模拟,计算结果与试验数据吻合较好。此方法能够合理有效地模拟该装置的性能曲线,对摆锤式冲击试验台的设计具有指导意义。 关键词:摆锤式冲击试验台;冲击响应谱;数值模拟 中图分类号:TB122 文章标识码:A 文章编号:1006-3919(2012)03-0026-06 Simulation of the pendulum shock response spectra testing machine WANG Bing TIAN Zhenqiang ZHANG Qiaoshou (Beijing Institute of Structure and Environment Engineering, Beijing 100076, China ) Abstract :The pendulum shock response spectra testing equipments play great part in simulating pyroshock environment, which can simulate high g shock wave and the cross frequency ranging from 300Hz to 2000Hz. According to the structure and basic rules, the shock response spectra wave has been simulated with finite method software ANSYS and LS-DYNA. The result reveals a good correlation with the empirical data. This method can simulate the structure’s characteristic wave in a more precise way, which can be a good guide for the design of the pendulum shock testing machine. Key words :pendulum shock testing machine; shock response spectra; simulation 0 引言 从产品的研制、运输、发射到飞行结束,在航天器的生命周期内将经历各种复杂的冲击环境,这些冲击载荷可能对航天器的结构或者性能造成无法修复的损伤。其中,对航天器影响程度较大的就是爆炸冲击环境,它是指航天器及其运载器上的各种火工装置工作时所产生的复杂震荡型冲击[1-3]。爆炸冲击具有持续时间短、加速度幅值高、高频率和宽频带等特点,突变的位移和加速度可能导致航天器结构和仪器、仪表的损害,从而导致航天器无法正常运作。因此, 收稿日期:2011-8-28;修回日期:2012-6-4 作者简介:王冰(1984—),女,工程师,研究方向:力学动态仪器仿真;(100076)北京9200信箱72分 箱. C A M E O 凯模C A E 案例库 w w w .c a m e o .o r g .c n

相关文档
最新文档