仪器分析论文

仪器分析论文
仪器分析论文

仪器分析论文

Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

有机质谱仪的组成及MS的发展与应用

2015/12/6

目录

有机质谱仪的组成及MS的发展与应用

摘要:质谱分析法是化学领域中非常重要的一种分析方法, 是一项测量离子质量和强度

的技术, 通过测定分子质量和相应的离子电荷比以完成待测样品中分子结构的分析。如

今各种色谱与多种模式的质谱的联用技术,集色谱的强大分离能力和质谱的强定性能力

于一体,已经成为分离和分析复杂样品的首选方法。质谱仪器是由真空系统、分析系统

和数据系统组成。在高分辨条件下, 将质谱信号通过计算机运算, 可以获知其元素组成, 因此, 质谱仪还具有元素分析的功能。随着时代的发展, 质谱已成为有机化学、生物化学、环境化学、食品化学、毒物学、药物学、医学、地质、石油化工等领域进行分析和

科学研究的有力手段。

关键词:有机质谱仪;组成;原理;发展与应用

第一章绪论

引言

40年代初世界上第一台商品质潜仪间世以后,质潜仪汗始用十石油成份

分析、放射性同位素的测定和石油精炼过程监控等在第一次世界大战期间,质谱法成为

原子能工业中测定核原料成份有效手段质谱法已从物理扩展到化学、原子能、冶金和真

空等领域[1]。

质谱仪又称质谱计。和不同的仪器。即根据在中能够偏转的原理,按物质、或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪按应用范围分为、和。按分

辨本领分为高分辨、中分辨和低分辨质谱仪。其中,有机质谱仪是应用最广泛的质谱

仪。另外,质谱仪是一个用来分析和鉴定未知化合物,量化已知化合物和解析化合物的结构和分子性质的强大分析工具。质谱技术因具有检测精确度高、分析速度快、所需样品和试剂少的优点,已成为分析化学学科中不可或缺的分析工具之一。

质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。当前,经典多元统计分析方法和现代数据挖掘的工具都被应用于质谱数据分析,发展了两类方法用来鉴别化合物,一种是基于质谱相似性的数据库检索方法;另一种是质谱结构解析(Structure Elucidation)方法;数据库检索方法是基于相似性理论发展起来的,利用各种各样的衡量相似性的准则例如相关系数、共同峰的个数、峰出现的概率等等,通过快速的扫描质谱数据库中大量的数据,利用计算机找到与要鉴别的化合物具有最相似质谱的化合物。然而,当待测化合物的分子量比较大时,分子结构组合呈指数级增长,在数据库中很难找到匹配好的化合物,并且标准质谱数据库的数据只是自然届化合物中很小的一部分,很多化合物的质谱数据在质谱库中找不到,这给质谱数据库搜索方法带来很大的局限性。

质谱

随着电子技术、新材料、新工艺的发展,尤其是计算机技术的日新月异,促进了质谱仪技术的提高,使仪器的性能指标、自动化程度和几何尺寸都达到了新的水平。为适应科技进步和市场需要,用于有机分析的质谱仪正朝着超高分辨高灵敏度质谱仪和小型台式质谱仪两个方向发展。有机质谱仪和其它分析仪器相比较的一个显着特点它可以和其它某些仪器联机(GC/ MS, LC/ MS等), 也可以同其它质谱联机(MS/ MS)[2]。这不仅可以集中二种以上分析方法的长处, 弥补单一分析方法的不足, 还能产生一些新的分析测试功能, 大大拓展了质谱仪的应用范围。

质谱仪种类非常多,工作原理和应用范围也有很大的不同。分别按用途和质量分析器的不同有下图的分类:

气相色谱—质谱((GC-MS)

液相色谱—质谱(LC-MS)

有机质谱基质辅助激光解吸飞行时间质谱

(MALDI-TOFMS)

用同位素质谱仪傅立叶变化质谱仪((FT-MS)

无机质谱

质四级杆质谱仪

量飞行时间质谱仪

分离子阱质谱仪

析傅立叶变换质谱仪

器双聚焦质谱仪

图1-1质谱仪的分类

质谱仪的组成

质谱仪器是由真空系统、分析系统和数据系统组成。分析系统包括:进样装置、离子源、质量分析器和检测器,它的组成由图1-2说明。

离子源

为了获得一个化合物的质谱, 首先应将样品分子变成带电粒子一正离子或负离子, 有多种离子化方法可供选择。离子源就是使中性分子电离成离子的装置。在多数情况下, 离子源还需完成第二个任务, 就是将离子引出、加速和聚焦,使离子束具有一定的几何状况和一定的能量。

质量分析器

质量分析器的作用是使从离子源过来的离子获得质量色散, 也就是说使离子按质荷比值大小进行分离和排列。分离离子的原理与质量分析器的种类有关。

检测器

检测器是由离子收集器、放大器及记录器所构成。常用的有法拉第筒接收器、电子倍增器以及光电倍增管。前者精确度高, 后者因有较高的灵敏度而被普遍采用。

真空系统也是质谱仪器的重要组成部分, 因为它涉及到许多部件的工作原理。例如离子源中发射电子的灯丝(如EI源、c l 源等)在氧气较多的情况下会烧毁, 因而要求灯丝必须在高真空状态下工作。再如高气压会干扰离子源中电子束的正常调节, 还会引起高达数千伏特的离子加速电压放电, 导致损坏电离室和高压供电线路。另外, 高真空还有利于样品的挥发, 减少本底的干扰, 避免在电离室内发生分子一离子反应, 减少图谱的复杂性。生成的离子在运动中也必须有一

定的分子自由程, 否则离子间的相互作用会引起离子偏转而到不了收集器。总之, 在质谱测定过程中, 凡是有样品分子和离子通过以及存在的地方都必须抽成高真空, 压力要求为1 0一4 一1 0 6 P a。真空系统一般包括低真空前级泵(机械泵)、高真空泵(扩散泵和涡轮分子泵较常用)、真空测量仪表和真空阀件、管路等组成, 以获得仪器所需的高真空度。

计算机控制和数据处理系统

计算机是现代质谱仪器不可缺少的一部分, 由接口、计算机、软件构成。它不仅用作数据采集、存储、处理、检索和仪器的自动控制, 而且还拓宽了质谱仪的功能。主要功能有:

①调谐程序: 一般质谱仪都设有自动调谐程序, 可以自动调整仪器的灵敏度、分辨力在最佳状态, 并进行质量数的校正。

②数据采集程序。控制仪器的工作参数, 进行扫描方式选择(正常全扫描、选择离子扫描)和色谱条件控制等。

第二章 MS的发展和应用

产生与发展

早期的质谱研究工作是与元素的同位素测定紧密相关的。同位素这个词于1910年第一次使用。第一台质谱仪也是在这一年诞生的。实际上,早在1886年就有人提出了有关同位素的概念[3]。用磁场偏转法分离带电粒子以测定其质量的研究工作也是在18%年取得了成果。这此研究为后来的质谱学工作提供了一定的基础。1910年,英国剑桥卡文迪许实验室的汤姆逊研制出第一台现代意义上的质谱仪器。这台质谱仪的诞生,标志着科学研究的一个新领域一质谱学的开创。1934年诞生的双聚焦质谱仪是质谱学发展的又一个里程碑。[]在此期间创立的离子光学理论为仪器的研制提供了理论依据。双聚焦仪器大大提高仪器的分辨率,为精确原子量测定奠定了基础。第二次世界大战期间,质谱进入了实际应用领域。首先是美国的原子弹制造计划,需要大量的U235,使质谱进人了军事科学领域。另外石油工业也将质谱用于定性、定量分析。1943年,第一台商用质谱仪出手给一家石油公司。质谱仪从此进人了工农业生产领域。如汽油分析、人工橡胶、真空检漏等工作都应用质谱仪器作为分析、检测工具,并证明为一种准确、快速的手段。50年代是质谱技术飞速发展的一个时代。在质量分析器方面,高分辨双聚焦仪器性能进一步提高,并出现礼了四极滤质器、月永冲飞行时间分析器等。离子化手段业增加。火花离子源和二次离子源业进人实际应用,后来还进行了串联质谱仪研制。特别值得一提的是,气相色谱和质谱联用的成功,从而使得质谱在复杂有机混合物分析方面占有独特的地位。

MS的应用

最近30年质谱学在各个方面都获得了极大的发展。新的离子化方法如场致电离(FI)、场解吸电离F(D)、化学电离(CI),激光离子化、等离子体法等不断出现。复杂的、高性能的商品仪器不断推出,如离子探针质谱仪、磁场型的串联质谱仪、离子回旋共振一傅立叶变换质谱仪等。液相色谱与质谱的联用在近10年来有突破性进展,己进人实用阶段。另一方面,低价位、简易型仪器的推出,对扩大和普及质谱分析的应用起了很大的作用。

质谱的进样技术及特点

进样系统和接口技术将样品导入质谱仪可分为直接进样和通过接口的方式实现。

1. 直接进样在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。对于固体样品,常用进样杆直接导入。将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。

2. 电喷雾接口带有样品的色谱流动相通过一个带有数千伏高压的针尖喷口喷出,生成带电液滴,经干燥气除去溶剂后,带电离子通过毛细管或者小孔直接进入质量分析器。传统的电喷雾接口只适用于流动相流速为1~5μl/min的体系,因此电喷雾接口主要适用于微柱液相色谱。同时由于离子可以带多电荷,使得高分子物质的质荷比落入大多数四极杆或磁质量分析器的分析范围(质荷比小于4000),从而可分析分子量高达几十万道尔顿(Da)的物质。

3. 热喷雾接口存在于挥发性缓冲液流动相(如乙酸铵溶液)中的待测物,由细径管导入离子源,同时加热,溶剂在细径管中除去,待测物进入气相。其中性分子可以通过与气相中的缓冲液离子(如NH4+)反应,以化学电离的方式离子化,再被导入质量分析

器。热喷雾接口适用的液体流量可达2ml/min,并适合于含有大量水的流动相,可用于测定各种极性化合物。由于在溶剂挥发时需要利用较高温度加热,因此待测物有可能受热分解。

4. 离子喷雾接口在电喷雾接口基础上,利用气体辅助进行喷雾,可提高流动相流速达到1ml/min。电喷雾和离子喷雾技术中使用的流动相体系含有的缓冲液必须是挥发性的[4]。

5. 粒子束接口将色谱流出物转化为气溶胶,于脱溶剂室脱去溶剂,得到的中性待测物分子导入离子源,使用电子轰击或者化学电离的方式将其离子化,获得的质谱为经典的电子轰击电离或者化学电离质谱图,其中前者含有丰富的样品分子结构信息。但粒子束接口对样品的极性,热稳定性和分子质量有一定限制,最适用于分子量在1000Da以下的有机小分子测定。

6. 解吸附技术将微柱液相色谱与粒子诱导解吸技术(快原子轰击,液相二次粒子质谱)结合,一般使用的流速在1~10μl/min之间,流动相须加入微量难挥发液体(如甘油)。混合液体通过一根毛细管流到置于离子源中的金属靶上,经溶剂挥发后形成的液膜被高能原子或者离子轰击而离子化。得到的质谱图与快原子轰击或者液相二次离子质谱的质谱图类似,但是本底却大大降低。

质谱的离子化系统及特点

直接离子化技术开发体现了从传统封闭式到敞开式,从块状固体样品到各种固体,再扩大到包括膏体、胶体、液体、气体等各种形态的样品。封闭式的电离技术主要是指经典的质谱离子化技术,包括电喷雾电离(ESI)、大气压化学电离(APCI)、基体辅助激光解吸电离(MALDI)、电子轰击电离以及低真空化学电离(CI)等。这些技术的共同特点是:1封闭式电离分析样品需要封闭在一定的管道位口ESI APC工域者一定的真空环境位口经典的MALDI EI CI中必要的样品预处理分析样品均需经过至少两步的样品预处理阶段,将不同物质形态的样品转化成为分析样品。经过数十年的发展,ESI/APC工技术已经很成熟,而且ESI/ALD工技术还因为实现了生物大分子的质谱分析而获得了2002年的诺贝尔化学奖[5]。

图传统的离子化技术工作流程

表面解吸化学电离技术采用常压电晕放电为基本手段,通过上述的步骤将电场的能量转移到带电的载体中。但是与DESI不同,DAPCI技术有两种工作模式。其一是在无

有机溶剂和无高速雾化气流(Gasless DAPCI)条件下工作,利用空气中的水生成初级离子进行工作,电离效率高,能够在单位时空内产生比DESI更丰富的能嗬载体。这些负载了能量跑荷的载体被电场加速后溅射到二维表面上,直接与裸露在固体体表的待测物发生能嗬传递作用,从而完成了二维表面中待测物分子的离子化过程(图2c久即步骤么在这个工作模式中,DAPC工对各种挥发性物质或者在该固体表面上结合不牢固的物质的灵敏度特别高,但是对于结合牢固的物质位口沉积在纤维上的蛋白质难以获得理想的灵敏度。为了顺利地将这些结合相对牢固的物质从表面上解吸出来进行离子化,可以采用第二种模式,利用电晕放电的方式获得高密度的带电液滴,然后将液滴喷射在固体表面,在动量的作用下沿着表面向前运动,能够将表面上的一些可溶性物质快速溶解在液体中,由于液滴带有大量电荷,溶解后的物质则根据其对电荷的结合能力大小结合不同数目的电荷;与此同时,液滴中的溶剂迅速蒸发,从而形成一些更加微小的液滴和气相离子,完成表面物质电离的过程[6]。在DAPC工的这两个模式中,其显着的区别是宏观上是否使用液体试剂来产生相对较大的带电液滴,而微观上对应的是离子产生过程中是否有表面溶解去溶的过程。此外,相应的二维模型也反映了DESI和DAPC工二者原理上存在的区别,预言了DAPC工具有的独特性能,包括灵敏度高、选择性好,操作方式更加灵活多样,能够在一定条件下分析粉末、胶体等样品,并且对样品和环境无毒无污染。

质谱分析中的特殊技术

1气相色谱-质谱联用技术

GC-MS主要由三部分组成:色谱部分、质谱部分和数据处理系统。色谱部分和一般的色谱仪基本相同,包括有柱箱、汽化室和载气系统,也带有分流/不分流进样系统,程序升温系统、压力、流量自动控制系统等,一般不再有色谱检测器,而是利用质谱仪作为色谱的检测器。在色谱部分,混合样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,则可以将毛细管直接插入质谱仪离子源,因为毛细管载气流量比填充柱小得多,不会破坏质谱仪真空。GC-MS的质谱仪部分可以是磁

式质谱仪、四极质谱仪,也可以是飞行时间质谱仪和离子阱。目前使用最多的是四极质谱仪。离子源主要是EI源和CI源。

2液相色谱-质谱联用技术

LC-MS适用于极性、热不稳定性、难气化和大分子的分离分析,自从20世纪80年末液相色谱-电喷雾质谱((LC-ESIMS)商品化以来,LC-ESIMS己经迅速成为应用范围最广泛的联用技术,应用范围十分广泛,小到无机离子,大至蛋白质、核酸,在各个领域中均得到了应用,特别是在生物学、医药学等生命科学领域,已经成为了不可或缺的分离分析工具。

3质谱-质谱的联用技术

质谱一质谱联用( M S- M S)是二十世纪七十年代后期出现的一种新兴技术。它的基本原理是既用质谱仪做混合物样品的分离器, 又用质谱仪做组分的鉴定器[7]。混合物进

人离子源电离, 再经过质量分析器的质量分离, 离子按质量数的不同而分开, 然后选择需要分析鉴定的离子作为母离子进入碰撞室, 经碰撞活化使其进一步断裂, 产生的子离子再经过第二个分析器分离。可以选定一种离子通过, 也可以采用扫描方式, 使所有不同m/z 的离子通过, 经检测记录即可得到质谱图。如果采用软电离离子源, 得到的母离子多数为分子离子, 即可采用这个方法将各个母离子逐一经过碰撞诱导分解, 得到各自的子离子谱, 这种谱对混合物的组成结构的分析是非常有用的。M s/ M S仪的出现打破了只有G C/ M S或

L C/ M S才能对混合物进行分离鉴定的观念, 而且比它们更有优点。一是灵敏度高, 再就是无噪声干扰, 在G C/ M S 中有来自柱流失、热解、吸附、记忆效应、化学反应等噪声存在,使谱图本底高而且不稳定, 无法扣除。而M s/ M s 因在质谱第一分析器分离以后, 只选择需要鉴定的离子进人碰撞室, 最后又用质谱作为鉴定器, 因而可以避免噪声干扰。

质谱一质谱联用技术极大地提高分析检测的选择性, 特别适合复杂体系中痕量化合物的分析。

第三章讨论

随着快速质谱分析技术的不断发展和改进,这一领域的研究不断深入,应用也更加广泛。目前,复杂基体样品的直接质谱分析已经成为质谱研究的主要方向之一,相关的离子化技术得到蓬勃的发展。近年来已研制出数十种新方法,有很多技术已经显示出巨大的实用价值。有些技术如DESI DART等开展了较为深入的机理研究,对相关的电离过程了解得相对清楚。但是,在整个领域而言,相关的理论研究有待加强。尤其是对于新兴的如LTP, DAPCI等技术,深入的机理研究不但可以更加深刻地了解这些技术之间的区别和联系,更重要的是可以对改进这些技术的分析性能提供理论指导。

参考文献

1.王桂友, 臧斌, 顾昭质谱仪技术发展与应用 2009 (6)124-128

2.陈焕文, 胡斌, 张燮复杂样品质谱分析技术的原理与应用 2010 (38)1069-1088

3.质谱仪器和技术的现状及发展现代科学技术 [j]

4.胡耀铭, 孙久宽有机质谱 2004 41-44

5.王光辉, 唐恢同有机质谱中的离子化学

6.卞则裸有机质谱仪器的现状及发展趋势 1997 2 2-5

7.张玉奎生命科学仪器 36-37

仪器分析在医药的应用

仪器分析在药物分析的应用 班级:12食品姓名:李娜学号:12110217 【摘要】近年来,随着仪器分析在医药领域应用越来越广泛,越来越多的的新技术新方法被应用在医药制造分析方面,本文对医药领域方面的仪器分析应用整理并统一综述。【关键词】仪器分析医药应用制造高效毛细管电泳应用 【正文】 高效毛细管电泳(HPCE)又叫毛细管电泳(CE),是必高压电场为驱动力,以毛细管及其内壁为通道和载体,利用样品各组分之间电泳淌度或分配行为的差异而实现分离的一类液相分离技术。目前已广泛应用于生命科学、生物技术、临床医学、药物学和环境保护等领域。采用HPCE法能数秒至数分钟内可冲洗再生,不易污染,能直接进样水溶性蛋白样品。此外,它呵在185~210nm波长下进行监测,因其避免了高效液相色谱仪(HPLC)在短紫外波长测定时易受到所用溶剂截止波长的干扰,这样就可测定分子中不带生色团的药物,扩大了监测范围[1],这些优点与传统药物分析方法相此更突出了HPCE在这一领域巾的优势地位,使毛细管电泳在体内药物分析领域有着极其广阔的应用前景。 1.概述 1.1 电泳及其发展介绍 电泳是带电粒子在电场力作用下,以不同的速度向电荷相反方向迁移的现象.称之为电泳。由于不同离子所带电荷及性质的不同,迁移速率不同,可实现分离。1937年,蒂塞利乌斯将蛋白质混合液放在两段缓冲溶液之间,两端施以电压进行自由溶液电泳,第一次将人血清提取的蛋白质混合液分离出白蛋白和α、β、γ球蛋白;发现样品的迁移速度和方向由其电荷和淌度决定;第一次的自由溶液电泳;第一台电泳仪;1948年,获诺贝尔化学奖。 1.2 传统电泳和高效毛细管电泳的比较 传统电泳:(纸电泳,凝胶电泳等)操作烦琐,分离效率低,定量困难,无法与其他分析相比。高效毛细管电泳(HPCE):是指离子或带电粒子以毛细管为分离室,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的液相分离分析技术。高效毛细管电泳在技术上采取了两项重要改进:一是采用了0.05mm内径的毛细管;二是采用了高达数千伏的电压。 1.3 HPCE的特点 高灵敏度:常用紫外检测器的检测限可达10-13-10-15mol,激光诱导荧光检测器(LIF)则达10-19-10-21。 高分辨率:每米理论塔板数为几十万,高者可达几百万乃至几千万。

仪器分析心得体会

仪器分析心得体会 篇一:仪器分析的感想 对仪器分析课程的认识和感想 仪器分析是高等学校等有关专业开设的一门基础课,其目的是使学生在大学学习期间掌握有关仪器分析中一些常用方法的基本原理、特点和应用,对于将来参加科学研究或具体实际工作都是很有益的。 仪器分析法是以物理和化学及其信号强度为基础建立起来的一种分析方法,使用比较复杂和特殊的仪器。仪器分析的基本原理源于分析化学。分析仪器的发展与分析化学的发展紧密相关,分析化学经历过三次重大变革,使得仪器分析也逐步升级,从仪器化、电子化、计算机化到智能化、信息化以至仿生化。 常用的仪器分析方法主要包括几类:光学分析法、电化学分析法、色谱分析法、质谱法。这些方法依据的原理不同,具有的性能指标如精密度、灵敏度、检出限、测定下限、线性范围、准确度等,在选择方法时,还要有一些考虑,如对样品结果准确度的要求,还有费用(包括仪器的购置费、运转费)、样品量、分析速度等。使用仪器分析法检测样品,具有效率高、速度快、方便、实用的特点。 仪器分析的应用范围十分广泛。仪器分析与科学四大理论(天体、地球、生命、人类起源和深化)及人类社会面临

的五大危机(资源、粮食、能源、人口、环境)问题的解决密切相关,也与工农业生产及人们日常衣食住行用的质量保证等领域密切相关,仪器分析的发展包括仪器和方法两方面的发展,仪器分析的发展趋势表现在建立原位、在体、实时、在线的动态分析检测方法建立无损以及多参数同时检测方法。现在以实现各种分析法的联用;分析仪器的智能化、自动化和微型化等几个方面。 通过对仪器分析这一课程的学习,对常用仪器的基本原理、特点、使用方法和应用都有了大致的认识和掌握。这门学科的实用性强,应用广泛。它的方法和基本思想如逻辑思维,对以后的科研和日常的工作有巨大的帮助。如果能对仪器分析这门课程有深刻认识,对以后仪器的创新和发展也能尽到一份力。 篇二:《仪器分析》问题学习法总结 《仪器分析》问题学习法心得体会 虽然只有短短的八周学习时间,但在张玲老师的指导学习下,使我对仪器分析这门学科了解颇多。通过学习是我知道仪器分析是我们学化学的必学的一门课程,是化学分析中不可缺少的方法。而且随着科技的发展,仪器分析变得越来越重要,在化学分析中的应用也越来越广泛。因此,我们必须学好仪器分析。就像张玲老师说的那样,大学毕业后我们什么书都可以卖掉,但《仪器分析》这本书一定要留下来。

《仪器分析资料报告》模拟考试精彩试题

《仪器分析》模拟考试试题(1) 一、填空题:(每空1分,共20分) 1.按被作用物质的本质可分为___________光谱和___________光谱。 2.色谱分析中有两相,其中一相称为__________,另一相称为__________,各组分就在两相之间进行分离。 3.在气相色谱分析中用热导池作检测器时,宜采用______作载气,氢火焰离子化检测器进行检测时,宜用_______作载气。 4.在色谱分析中,用两峰间的距离来表示柱子的__________,两峰间距离越______,则柱子的________越好,组分在固液两相上的______性质相差越大。 5.红外光谱图有两种表示方法,一种是________________,另一种是_________________。 6.红外光谱法主要研究振动中有__________变化的化合物,因此,除了___________和___________等外,几乎所有的化合物在红外光区均有吸收。 7.原子发射光谱是由______________________________跃迁产生的,线光谱的形成原因是________________________________。 8.影响有色络合物的摩尔吸收系数的因素是_________________________。 9.多组分分光光度法可用解联立方程的方法求得各组分的含量,这是基于______________。 10.原子吸收光谱是由_________________________________________的跃迁而产生的。 二、选择题:(每小题2分,共40分) ()1. 分子中电子跃迁的能量相当于 A紫外/可见光B近红外光 C微波D无线电波 ()2. 在气相色谱法中,用于定量的参数是 A. 保留时间 B. 相对保留值 C. 半峰宽 D. 峰面积 ()3. 在气相色谱法中,调整保留值实际上反映了哪些部分分子间的相互作用? A. 组分与载气 B. 组分与固定相 C. 组分与组分 D. 载气与固定相 ()4. 在气相色谱中,直接表征组分在固定相中停留时间长短的保留参数是 A. 调整保留时间 B. 死时间

仪器分析答案

《仪器分析》 一、选择题(共30分) 1 准确度、精密度高、系统误差、偶然误差之间的关系是( C ) A准去度高,精密度一定高B精密度高,一定能保证准确度高 C 系统误差小,准确度一般较高 D 偶然误差小,准确度一定高 2 可见光度分析中所用的比色血是用(A)材料制成的。 A玻璃 B 盐片 C 石英 D 有机玻璃 3 测定值的大小决定于( A) A待测物的浓度 B 待测物的性质 C 比色皿的厚度 D 入射光强度 4 指出下列哪种不是紫外-可见分光光度计使用的检测器? ( A ) A 热电偶 B 光电倍增管 C 光电池 D 光电管 5 指出下列哪种因素对朗伯-比尔定律不产生偏差?( D ) A溶质的离解作用 B 杂散光进入检测器 C 溶液的折射指数增加 D 改变吸收光程长度 6 某化合物的浓度为1.0×10-5mol/L,在λMAX=380nm时, 有透射比为50%,用1.0cm吸收池,则在该波长处的摩尔吸收系数为/[L/(mol.cm)] ( D ) A 5.0 ×104 B 2.5 ×104 C 1.5 ×104 D 3.0 ×104 7 膜电位产生的原因是( B )。 A电子得失 B 离子的交换和扩散 C 吸附作用 D 电离作用 8 为使pH玻璃电极对氢离子响应灵敏,pH玻璃电极在使用前应在( )浸泡24 小时以上。A自来水中 B 稀碱中 C 纯水中 D 标准缓冲溶液中 9 控制电位库伦分析的先决条件是(A) A 100%电流效率 B 100%滴定效率 C 控制电极电位 D 控制电流密度 10 下列关于荧光光谱的叙述哪个是错误的( C ) A荧光光谱的形状与激发光的波长无关 B 荧光光谱和激发光谱一般是对称镜像关系 C 荧光光谱是分子的吸收光谱 D 荧光激发光谱和紫外吸收光谱重合 11 荧光分光光度计常用的光源是( C ) A空心阴极灯 B 氙灯 C 氘灯 D 硅碳棒 12 无火焰原子吸收谱线宽度主要决定于(A) A多普勒变宽 B 洛伦茨变宽 C 共振变宽D自然变宽 13 原子吸收的定量方法标准加入法,消除了下列哪种干扰?( D ) A背景吸收 B 电离干扰 C 光谱干扰 D 物理干扰 14 测定工作曲线时,工作曲线截距为负值原因可能是( D ) A参比池比样品池透光率大 B 参比池与样品池吸光度相等 C 参比池比样品池吸光度小D参比池比样品池吸光度大 15 在极谱分析中与被分析物质浓度呈正比例的电流时(A) A极限扩散电流 B 迁移电流 C 残留电流 D 极限电流 16 双波长分光光度计的输出信号是(B )

仪器分析课程论文

毛细管电泳综述 摘要:自 1988 年第一台商品化的毛细管电泳仪问世,距今已有二十多年的时光。在这期间,毛细管电泳(CE)技术无论在理论还是应用方面,都得到了飞速的发展。今天,CE 技术已逐渐成熟,在分析化学、生物化学、环境化学、材料化学、临床化学、有机化学、天然产物化学和药物化学等领域有着广泛的应用。CE 技术作为一种强有力的分离分析手段,已成功地应用于小分子、大分子、中性化合物和荷电化合物的分离。检测器是毛细管电泳仪器的关键部件,本文主要对毛细管电泳的检测器进行讨论,介绍一下我们自制的电导检测器。关键词:毛细管电泳,检测器 第一章前言 电泳是指带电粒子在电场作用下向电性相反的方向迁移的现象,据此对某些化学或生物化学组分进行分离的技术称为电泳技术。毛细管电泳(CE)又称高效毛细管电泳(HPCE),是指以毛细管为分离室,以高压电场为驱动力的一类新型现代电泳技术,它于 80 年代中后期迅速发展,其原理是在高压电场和毛细管分离通道中,依据试样中各组分电泳淌度和分配行为上的差异而实现分离的一类分析技术。与经典电泳相比,毛细管电泳法克服了由于焦耳热引起的谱带宽和柱效较低的缺点。毛细管电泳引入高的电场强度,改善了分离质量,具有分离效率高、速度快和灵敏度高等特点,而且所需样品少、成本低,更为重要的是,它又是一种自动化的仪器分析方法。毛细管电泳法与高效液相色谱一样同是液相分离技术,在很大程度上两者互为补充,但无论从效率、速度、用量和成本来说,毛细管电泳法都显示了它独特的优势。毛细管电泳分离技术与传统的平板电泳和现代液相色谱分离技术相比具有很多优点:1.高效(105-107理论塔板数/米);2.快速(几十秒至几十分钟); 3.分离模式多,选择自由度大; 4.分析对象广,从无机离子到整个细胞; 5.高速自动化; 6.样品需量小,无环境污染,运行成本低,如:毛细管电泳可通过改变操作模式和缓冲液成分,根据不同的分子性质(如大小、电荷数、疏水性等)对极广泛的物质进行有效分离,而高效液相色谱法要用价格昂贵的色谱柱和溶剂。可见,毛细管电泳法具有仪器简单、分离模式多样化、应用范围广、分析速度快、分离效率高、灵敏度高、分析成本低、环境污染小等优点。 CE的研究可追溯到60 年代,1967 年由Stellen Hjerten 撰写的一篇论文,他使用3 mm 内径的石英毛细管,进行自由溶液区带电泳(CZE)[1],由于意识到焦耳热会引起严重的峰展宽,他使用旋转毛细管的方法减小温度梯度的影响。1974 年,Virtanen 通过实验比较,认为使用细内径毛细管是降低焦耳热效应、提高分离效率的主要方法[2]。1979 年,Mikkers 采用200 μm 内径的聚四氟乙烯管和电导检测器分离了16 种有机离子,获得了105 plates/m 的高柱效[3],这是毛细管电泳发展中第一个突破性成就。第二个突破性成就是Jorgenson 等人于1981 年完成的[4],他们采用内径为75 μm 的石英毛细管和荧光检测器,配以30 kV 的高电压,获得了 4 × 105 plates/m 的柱效,使传统电泳技术发生了根本变革,迅速发展成为可与气相色谱(GC)和高效液相色谱(HPLC)相媲美的新颖的分离和分析技术——高效毛细管电泳(HPCE)。1983 年Hjerten 开展了很多开创性的工作,把传统的聚丙烯酰胺凝胶电泳移植到毛细管中,创建了毛细管凝聚电泳(CGE)[5];1984 年Terabe 在毛

仪器分析论文

各分析仪器特点及在环境监测中的应用 一、绪论 本文总结了本学期仪器分析实验中涉及的三大类共八种仪器和方法,内容包括其在定性、定量分析方面的特点,适用及不适用的分析样品类型,必需的样品预处理,以及在环境监测中的应用。 二、光分析法 光分析法是基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法。光分析法在研究物质组成、结构表征、表面分析等方面具有其他方法不可取代的地位 1、原子吸收分光光度法-原子吸收分光光度计 原子吸收光谱法是基于测量待测元素的基态原子对其特征谱线的吸收程度而建立起来的分析方法。 其原理为,样品特定元素由基态原子吸收特定能量的光,恰好使得核外电子激发从而形成原子吸收光谱。从仪器结构而言,空心阴极灯提供特定能量的光辐射,特定能量的光只能由待测元素提供,其他元素无法取代。所以空心阴极由待测元素金属或合金制成,保证实现峰值吸收。原子化器提供基态原子,基态原子吸收特定光形成吸收光谱。整个过程中没有像紫外与红外那样形成一个范围很宽的吸收谱带,由于宽度很窄习惯上称之为谱线。故通常不用于物质的定性分析,而是用于物质的定量分析。 该仪器主要适用于分析金属元素,对于难熔金属和大多数非金属元素测定困难,因为需要将被测元素金属制成阴极。 主要优点有检出限低,精密度和准确度高,灵敏度高,选择性好,需样量少,测定元素多,分析速度快。缺陷除了之前提到的非金属元素测定困难,还有就是测定不同元素需要换用不同的灯。 存在的干扰主要分为四类:物理、化学、电离以及光谱干扰。物理干扰的消除方法是配制与待测溶液组成相似的标准溶液或采用标准加入法,化学干扰的消除方法是加入释放剂及保护剂,电离干扰消除法为加入消电离剂,光谱干扰中的背景吸收可采用空白校正法、氘灯校正法等方法进行消除。 原子吸收光谱法加测汞和氢化物发生器等附件,测定灵敏度可比石墨炉更高,汞、砷、硒、碲、铋、锑、锗锡、铅的测定范围可提高1~2个数量级。原子吸收光谱法已广泛用于测定水、飘尘、土壤、粮食以及各种生物样品中的重金属元素。 2、紫外-可见光吸收光谱分析法-紫外-可见分光光度计 紫外-可见吸收光谱法属于分子吸收分光光度法,基于物质分子对光的选择性吸收。 主要用于无机化合物、有机化合物的定量分析以及配合物的组成和稳定常数

仪器分析 试题库

复习题库 绪论 1、仪器分析法: ()2、以下哪些方法不属于电化学分析法。 A、荧光光谱法 B、电位法 C、库仑分析法 D、电解分析法()3、以下哪些方法不属于光学分析法。 A、荧光光谱法 B、电位法 C、紫外-可见吸收光谱法 D、原子吸收法()4、以下哪些方法不属于色谱分析法。 A、荧光广谱法 B、气相色谱法 C、液相色谱法 D、纸色谱法 5、简述玻璃器皿的洗涤方法和洗涤干净的标志。 6、简述分析天平的使用方法和注意事项。 第一章电位分析法 1、电化学分析法: 2、电位分析法: 3、参比电极:

4、指示电极: 5、pH实用定义: ()6、以下哪些方法不属于电化学分析法。 A、荧光光谱法 B、电位法 C、库仑分析法 D、电解分析法 ()7、在电位分析法,作为指示电极,其电极电位应与测量离子的活度。 A、符合能斯特方程式 B、成正比 C、与被测离子活度的对数成正比 D、无关 ()8、饱和甘汞电极的外玻璃管中装的是。 A、0.1mol/L KCl溶液 B、1mol/L KCl溶液 C、饱和KCl溶液 D、纯水 ()9、关于pH 玻璃电极膜电位的产生原因,下列说法正确的是。 A、氢离子在玻璃表面还原而传递电子 B、钠离子在玻璃膜中移动 C、氢离子穿透玻璃膜而使膜内外氢离子产生浓度差 D、氢离子在玻璃膜表面进行离子交换和扩散的结果

()10、下列不是直接电位法中常用的pH标准缓冲溶液。A、pH=4.02 B、pH=6.86 C、pH=7.00 D、pH=9.18 ()11、实验室常用的pH=6.86(25℃)的标准缓冲溶液为。 A、0.1 mol/L 乙酸钠+ 0.1 mol/L 乙酸 B、0.025 mol/L 邻苯二甲酸氢钾 C、0.1 mol/L 氢氧化钠 D、0.025 mol/L 磷酸二氢钾和磷酸氢二钠()12、pH复合电极的参比电极是。 A、饱和甘汞电极 B、银-氯化银电极 C、铂电极 D、银电极 ()13、经常不用的pH复合电极在使用前应活化。 A、20min B、30min C、12h D、8h ()14、pH复合电极在使用前应用下列哪种溶液活化。 A、纯水 B、饱和KCl 溶液 C、0.1mol/L KCl 溶液 D、0.1mol/LHCl溶液 ()15、已知待测水样的pH大约为5左右,定位溶液最好选。 A、pH4 和pH7 B、pH2 和pH7 C、pH7 和pH9 D、pH4 和pH9

仪器分析论文

仪器分析总结 本学期我们开的仪器分析是化学学科的一个重要分支,它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析。仪器分析方法所包括的分析方法很多,目前有数十种之多。每一种分析方法所依据的原理不同,所测量的物理量不同,操作过程及应用情况也不同。 仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。仪器分析的分析对象一般是半微量(0.01-0.1g)、微量(0.1-10mg)、超微量(<0.1mg)组分的分析,灵敏度高;仪器分析大致可以分为:电化学分析法、核磁共振波谱法、原子发射光谱法、气相色谱法、原子吸收光谱法、高效液相色谱法、紫外-可见光谱法、质谱分析法、红外光谱法、其它仪器分析法等,这学期我们学的主要是气相色谱法、原子光谱法、高效液相色谱法、紫外-可见光谱法、红外光谱法、分子发光分析法、紫外可见分光光度法。 紫外--可见分光光度法是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。操作简单、准确度高、重现性好。波长长(频率小)的光线能量小,波长短(频率大)的光线能量大。分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。适用于低含量组分

测定,还可以进行多组分混合物的分析。利用催化反应可大大提高该法的灵敏度。 红外光谱法又称“红外分光光度分析法”。简称“IR”,分子吸收光谱的一种。是利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。被测物质的分子在红外线照射下,只吸收与其分子振动、转动频率相一致的红外光谱。对红外光谱进行剖析,可对物质进行定性分析。化合物分子中存在着许多原子团,各原子团被激发后,都会产生特征振动,其振动频率也必然反映在红外吸收光谱上。据此可鉴定化合物中各种原子团,也可进行定量分析。红外吸收光谱法主要用于鉴定有机化合物的组成,确定化学基因及定量分析,已用于无机化合物。 分子发光分析法是某些物质的分子吸收一定能量后,电子从基态跃迁到激发态,以光辐射的形式从激发态回到基态,这种现象称为分子发光,在此基础上建立起来的分析方法为分子发光分析法。此种方法对某些元素具有较高的灵敏度和选择性。 原子光谱法根据与电磁辐射作用的物质是以气态原子还是以分子(或离子团)形式存在,可将光谱法分为原子光谱法和分子光谱法两类。原子光谱法是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。属于这类分析方法的有原子发射光谱法(AES)、原子吸收光谱法(AAS)、原子荧光光谱法(AFS)以及X射线荧光光谱法(XFS,这是应对欧盟RoHS指令最主要的仪器)等。原子光谱法可以分为以下三类:(1)原子发射光谱分析(AES),它是利用原子

仪器分析答案

仪器分析 1.灵敏度和检出限 其定义为流动相中样品组分在检测器上产生两倍基线噪声信号时相当的浓度或质量流量。 方法检出限不但与仪器噪音有关,而且还决定于方法全部流程的各个环节,如取样,分离富集,测定条件优化等,即分析者、环境、样品性质等对检出限也均有影响,实际工作中应说明获得检出限的具体条件。 2.谱线自吸 在发射光谱中,谱线的辐射可以想象它是从弧焰中心轴辐射出来的,它将穿过整个弧层,然后向四周空间发射。弧焰具有一顶的厚度,其中心的温度最高,边缘处温度较低。边缘部分的蒸汽原子,一般比中心原子处于较低的能级,因而当辐射通过这段路程时,将为其自身的原子所吸收,而使谱线中心减弱,这种现象称为谱线的自吸。 谱线自蚀 原子发射光谱的激发光源都有一定的体积,在光源中,粒子密度与温度在各部位分布并不均匀,中心部位的温度高,边缘部位温度低。元素的原子或离子从光源中心部位辐射被光源边缘处于较低温度状态的同类原子吸收,使发射光谱强度减弱,这种现象称为谱线的自吸。谱线的自吸不仅影响谱线强度,而且影响谱线形状.一般当元素含量高,原子密度增大时,产生自吸。当原子密度增大到一定程度时,自吸现象严重,谱线的峰值强度完全被吸收,这种现象称为谱线的自蚀。在元素光谱表中,用r表示自吸线,用R表示自蚀线。 3.分配系数和分配比 分配系数的含义:用有机溶剂从水相中萃取溶质A时,如果溶质A在两相中存在的型体相同,

平衡时溶质在有机相的活度与水相的活度之比称为分配系数,用KD表示。萃取体系和温度恒定,KD 为一常数。 在稀溶液中可以用浓度代替活度 分配比的含义:将溶质在有机相中的各种存在形式的总浓度CO和在水相中的各种存在形式的总浓度CW之比,称为分配比.用D表示: 当溶质在两相中以相同的单一形式存在,且溶液较稀,KD=D。如:CCl4——水萃取体系萃取I2 在复杂体系中KD 和D不相等。分配系数与萃取体系和温度有关,而分配比除与萃取体系和温度有关外,还与酸度、溶质的浓度等因素有关。 1.下列哪一个不是仪器分析方法的主要评价指标( ) 主要:灵敏度和检测限 检出限和灵敏度、定量限、精密度、准确度、适用性 2.波长大于1mm,能量小于10-3 eV(电子伏特)的电磁波普,称为( 无线电波) 3.在紫外-可见光度分析中极性溶剂会使被测物吸收峰(C位移) A 消失 B 精细结构更明显 C 位移 D 分裂 5.双光束分光光度计与单光束分光光度计相比,其突出优点是( ) 1、双光束分光光度计以两束光一束通过样品、另一束通过参考溶液的方式来分析样品的分光光度计。这种方式可以克服光源不稳定性、某些杂质干扰因素等影响,还可以检测样品随时间的变化等; 2、单光束分光光度计是由一束经过单色器的光,轮流通过参比溶液和样品溶液,以进行光强度测量。这种分光光度计的特点是:结构简单价格便宜主要适于做定量分析; 缺点是:测量结果受电源的波动影响较大,容易给定量结果带来较大误差,此外,这种仪器操作麻烦,不适于做定性分析 6.若在一个1m 长的色谱柱上测得两组分的分离度为0.68,若要使它们完全分离,则柱长(m) 至少应为( ) 柱长至少为4.87m 。 公式:R1/R2=(L1/L2的开平方)或表示为L1/L2=(R1/R2)*(R1/R2)。 已知:L1=1m ,R1=0.68 ,R2=1.5 , 则L2=(R2/R1)*(R2/R1)*L1=(1.5/0.68)*(1.5/0.68)*1=4.87(m)。

现代生物学仪器分析

现代生物学仪器分析在生命科学研究中的应用 生命科学的发展与生物学仪器分析技术的进步密切相关,比如X射线晶体衍射对DNA双螺旋结构的发现起着至关重要的作用,而DNA双螺旋结构的发现奠定了现代分子生物学的基石,使微观世界的大门为我们敞开,让我们得以一窥微观领域的奇妙景象。一代测序技术的问世使人类得以提前完成人类基因组计划,第二代,第三代测序技术的出现,不仅大大降低了测序成本,还大幅提高了测序速度,并且保证了高准确性,为现代生物学的研究提供了强有力的帮助。诞生于上个世纪八十年代的生物质谱技术,为功能基因组,蛋白质组的研究奠定了基础。随着科学技术的发展,更精确,更快速,选择性更高,灵敏度更高的分析仪器以及新的技术和新的方法会不断的涌现出来,从而加速生命科学研究的不断发展。 现代生物学仪器分析中有“四大谱”和“三大法”。生物分子的结构分析最有效的方法就是“四大谱”:紫外-可见光谱、红外光谱、核磁共振波谱和质谱。而生物大分子结构测定的最重要和应用最广泛的“三大法”分为X射线晶体衍射分析、核磁共振波谱分析和冷冻电镜。 紫外可见吸收光谱是通过研究溶液中生物分子对紫外和可见光谱区辐射能的吸收情况对生物分子进行定性、定量和结构分析的方法。通常我们所说的紫外光谱其波长范围主要是为200~800nm。由于不同物质的分子其组成和结构不同,它们所具有的特征能级也不同,其能级差不同,而各物质只能吸收与它们分子内部能级差相当的光辐射,所以不同物质对不同波长光的吸收具有选择性。紫外可见吸收光谱应用广泛,不仅可进行定量分析,还可利用吸收峰的特性进行定性分析和简单的结构分析。近年来,随着生命科学领域的发展,紫外可见吸收光谱在生命科学领域应用的越来越广泛。比如利用紫外-可见吸收光谱对生物样品的定性分析,鉴定生物样品的种类、纯度等;还可以利用紫外-可见吸收光谱测定生物样品的浓度(蛋白质,核酸等) 红外—拉曼光谱在生命科学领域应用十分广泛,因为拉曼样品用量很少,不需要对生物样品进行固定、脱水、包埋、切片、染色、标记等繁琐的前处理程序,不仅操作简单,而且不会损伤样品从而能够获得样品最真实的信息。另外,生物大分子多是处在水溶液中,研究它们在水溶液中的结构对于了解生物大分子的结构和性能的关系非常重要。由于水的红外吸收很强,因此用红外光谱研究生物体系有很大局限性,而水的拉曼散射很弱,干扰小,而且单细

仪器分析第五版习题及答案

仪器分析第五版习题及答案 第一章引言 1-2 1,主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析使用物质的物理或物理化学特性进行分析。(2)化学分析不需要特殊的仪器和设备;仪器分析需要特殊的仪器和设备;(3)化学分析只能用于成分的定量或定性分析;仪器分析也可用于部件的结构分析。 (3)化学分析灵敏度低、选择性差,但测量精度高,适用于主要成分的分析。该仪器灵敏度高,选择性好,但测量精度稍差。适用于痕量、痕量和超痕量成分的分析。 2,共同点:两者都是成分测量的手段,都是分析化学的成分。1-5 分析仪器与仪器分析的区别:分析仪器是一种用于仪器分析的技术设备和装置;仪器分析是利用仪器和设备进行成分分析的技术手段。分析仪器和仪器分析的关系:仪器分析需要分析仪器来达到测量的目的,而分析仪器是仪器分析工具仪器分析和分析仪器的发展相互促进。1-7 ,因为仪器分析直接测量物质的各种物理信号,而不是它们的浓度或质量数,并且信号和浓度或质量数之间的关系仅在一定范围内是确定的,并且这种关系还受到仪器、方法和样品基质等的影响。因此,为了对组分进行定量分析,消除仪器、方法和样品基体对测量的影响,必须建立特定测量条件下信号与浓度或质量数的关系,即必须进行定量分析和校正。第二章光谱分析导论

2-1 光谱仪的总体组成包括:光源、单色仪、样品引入系统、探测器、信号处理和输出装置每个组件的主要功能是: 光源:提供能量使被测组件吸收,包括激发到高能态;单色仪:将合成光分解成单色光,收集特定波长的光进入样品或探测器;样品引入系统:样品以适当的方式引入光路,可以作为样品容器;检测器:将光信号转换成可量化的输出信号信号处理和输出设备:放大、转换、数学处理、滤除噪声,然后以适当的方式输出2-2: 单色仪由入射狭缝、透镜、单色仪、聚焦透镜和出射狭缝组成。每个组件的主要功能是:入口狭缝:从光源或样品池收集合成光;透镜:将入射狭缝收集的合成光分解成平行光;单色元件:将合成光分散成单色光(即按波长排列的光)的聚焦透镜:将单色元件分散的相同波长的光成像在单色仪的出射曲面上;出射狭缝:收集色散后特定波长的光入射样品或探测器2-3 棱镜的分光原理是光的折射因为不同波长的光在同一介质中具有不同的折射率,所以不同波长的光可以相应地分离光栅的分裂原理是光衍射和干涉的综合作用。不同波长的光被光栅衍射后具有不同的衍射角,从而分离出不同波长的光。 2-7 ,因为对于一阶光谱(n=1),光栅的分辨率为 R = nN = N =光栅宽度x光栅刻痕密度= 720 x 5 = 3600 ,并且因为

仪器分析技能总结与综合

分析技能总结与综合 本学期我们学仪器分析课程的同时做了本课程的实验。理论可以指导实验,通过实验可以验证和发展理论。对于大多数同学来说,将来并不从事分析仪器制造或者仪器分析研究,而是将仪器分析作为科学实验的手段,利用它来获取所需要的 信息。 仪器分析实验的目的是让学生以分析仪器为工具,亲自动手去获得需要的信息,是学生走向未来社会独立进行科学实践的预演。本次实验课程收获很多。 仪器分析是以测量物质的某些物理和化学性质的参数来确定其化学组成,含量或结构的分析方法。在最终测量过程中,利用物质的这些性质获得定性,定量,结构以及解决实际问题的信息。 仪器分析的分类 一,电化学分析法建立在溶液电化学性质基础上的一类分析方法,包括电位分析法,库仑分析法,电重量分析法,伏安法和极谱分析法以及电导分析法。 二,色谱法利用混合物中各组分不同的物理和化学性质来达到分离的目的。分离后的组分可进行定性和定量分析,有时分离和测定同时进行,有时先分离后测定。包括气相色谱法和液相色谱法等。 色谱的定性分析-确定各色谱峰所代表的化合物。 各种物质在一定的色谱条件下均有确定的保留值,故保留值可作为一种定性指标(目前各种色谱定性方法的依据)。不同物质在同一色谱条件下,可能具有相似或相同的保留值,即保留值并非专属。仅根据保留值对一个完全未知的样品定性是困难的。如果在了解样品的来源、性质、分析目的的基础上,对样品组成作初步的判断,再结合下列的方法则可确定色谱峰所代表的化合物。 色谱定性和定量分析 利用保留值定性(最常用、最简单)

1.利用纯物质定性相同条件下,通过对比试样中具有与纯物质相同保留值的色谱峰,确定试样中是否含有该物质。该法不适用于不同仪器上获得的数据之间的对比。 2.利用加入法定性作出未知样品的色谱图,然后在未知样品加入某已知物,又得到一个色谱图。峰高增加的组分即可能为这种已知物。 色谱图的意义 ①根据色谱峰的个数,可以判断样品中所含组分的最少个数是样品中所含组分的最少个数; ②色谱峰的保留值,色谱定性分析的依据; ③色谱峰下的面积或峰高,色谱定量分析的依据; ④色谱峰的保留值及其区域宽度,评价色谱柱分离效能的依据; ⑤色谱峰两峰之间的距离,评价固定相(或流动相)选择是否合适的依据。 三,光学分析法建立在物质与电磁辐射互相作用基础上的一类分析法,包括原子发射光谱法,原子吸收光谱法,紫外—可见吸收光谱法,红外吸收光谱法,核磁共振谱法,分光和荧光光度法和X射线衍射法等。 我们本学期一共做了十二个分析试验,分别是一下十二个 (1)核磁共振波谱法研究乙酰丙酮的互变异构现象 核磁共振属于光学分析法。核磁共振波谱是以电磁波作用于磁场中的原子核时,原子核产生自旋跃迁所得的吸收波谱。由于各原子核所处的化学环境不同,使不同的有机化合物呈现不同的核磁共振谱,因此可以用核磁共振谱法测定和确证有机化合物的结构,检验化合物的纯度和进行混合物的分析。 为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。当外加射频场的频率与原子核自旋进动的频率相同的时候,即入射光子的频率与Larmor频率γ相符时,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。 核磁共振的条件之一是外磁场中存在着具有磁矩的原子核。本实验是利用核磁

气相色谱论文

学院:化学化工学院 专业:应用化学 年级: 2013级 姓名:周玉佳 论文(设计)题目:气相色谱 指导教师:曹俊涛职称:讲师成绩: 2015 年 6 月 15 日

目录 摘要 ........................................................................................................ 错误!未定义书签。关键词 ...................................................................................................... 错误!未定义书签。Abstract ................................................................................................... 错误!未定义书签。Keywords................................................................................................. 错误!未定义书签。引言 ...................................................................................................... 错误!未定义书签。 1 气相色谱法的起源 (1) 2气相色谱法的发展 .............................................................................. 错误!未定义书签。 3 气相色谱的普遍应用 .......................................................................... 错误!未定义书签。 3.1 气相色谱石油石化工业分析应用 (2) 3.2 气相色谱在农药残留检测方面的应用 (2) 3.3 气相色谱在药物和临床分析中的应用 (3) 4 结语 (3) 参考文献 (3)

中学中仪器分析归纳

仪器分析在高中教学设置思考 象山中学唐朝军 摘要:仪器分析作为分析化学重要分支之一,在与化学相关的各行各业中具有重要的作用。本文结合我国高中化学的课标和高中教材,对仪器分析作以归纳和总结,并关注新课程的化学改革中仪器分析教学问题和未来的新动向。 关键词:现代分析测试技术仪器分析新课程改革 现代分析测试技术的发展水平是国家科技水平和综合国力的重要标志之一。科学研究离不开现代分析测试技术的发展,同样,科学仪器的发展体现国家科技水平和综合国力。化学是一门以实验为基础的学科,实验贯穿于整个学习过程。仪器分析作为实验化学的一部分,与实验化学有着密不可分的关系,但又有着与高中其它实验部分与众不同的特点。仪器分析在化工、制药、食品分析、环境监测以及生命科学等领域有着广泛的应用,在有关专业教学中占有重要地位,是高等院校化学专业和化学相关专业必修的基础课程之一。笔者搜索1994年至今的化学教育发现大学中讨论仪器分析的有56篇。但从中学角度讨论仪器分析的论文却没有。本文结合仪器化学的特点,浅析我国高中的课标、教材和中学阶段的仪器分析的教学。 一、仪器分析简介 仪器分析是通过测量表征物质的某些物理或物理化学性质的参数来确定其化学组成、含量或结构的分析方法[1]。这类方法常常是测量热、声、光、电、磁等物理量而得到分析结果,而测量这些物理量,一般要使用比较特殊或复杂的仪器设备,故称为“仪器分析”。仪器分析不仅用于物质的定量和定性分析,还可用于状态分析、价态、结构,微区和薄层分析,微量及超痕量分析等,是分析化学发展的方向,广泛应用于制药、食品分析、环境监测以及生命科学等领域[2]。 根据仪器的物理学原理现代的仪器分为质谱分析法、光分析学、电化学学、色谱分析法和热分析法等及其联用(见表一)。中学阶段主要是让学生了解红外吸收光谱、核磁共振氢谱、紫外可见分光光度计和质谱法四种仪器分析,这四种方法也是目前仪器分析中的重要内 表一:常见的仪器分析方法分类

仪器分析结课论文

仪器分析论文

核磁共振(NMR )的应用 具有磁距的原子核在高强度磁场作用下,可吸收适宜频率的电磁辐射,由低能态跃迁到高能态的现象。如1H、3H、13C、15N、19F、31P等原子核,都具有非零自旋而有磁距,能显示此现象。不同分子中原子核的化学环境不同,将会有不同的共振频率,产生不同的共振谱。记录这种波谱即可判断该原子在分子中所处的位置及相对数目,可以分析各种有机和无机物的分子结构,用于进行定量分析及分子量的测定。可以直接研究溶液和活细胞中分子量较小(20 kDa以下)的蛋白质、核酸以及其他分子的结构,而不损伤细胞。 核磁共振适合于液体、固体。如今的高分辨技术,还将核磁用于了半固体及微量样品的研究。核磁谱图已经从过去的一维谱图(1D)发展到如今的二维(2D)、三维(3D)甚至四维(4D)谱图,陈旧的实验方法被放弃,新的实验方法迅速发展,它们将分子结构和分子间的关系表现得更加清晰。 在世界的许多大学、研究机构和企业集团,都可以听到核磁共振这个名词,包括我们在日常生活中熟悉的大集团。而且它在化工、石油、橡胶、建材、食品、冶金、地质、国防、环保、纺织及其它工业部门用途日益广泛。 微型磁共振成像系统 BRUKER 公司获得R&D100 奖的mq 系列minispec核磁共振分析仪是理想的TD-NMR 谱仪(TD, Time Decay,时间衰减的NMR 谱仪),长时间的稳定性以及优异的测试重复性保证了仪器用于产品质量控制/过程控制的可靠性,mq 系列核磁共振分析仪还可用于研究、开发。Bruker的mq系列核磁共振分析仪广泛用于食品如油脂厂、巧克力厂、饼干厂,石化如聚丙烯装置、聚乙烯装置、聚苯乙烯装置、ABS装置、SBS装置等,化工如牙膏厂、有机氟产品等的产品质量的检验检测。 BRUKER 公司是最早生产minispec NMR 用于QA/QC 的家,一支强有力的集研究、生产、应用、技术支持的队伍以及遍及世界各地的售后服务体系,这些因素保证BRUKER 公司的产品处于世界领先、用 户最多、售后及应用支持最完善。 测定固体脂肪含量(SFC):

仪器分析实验论文色谱

仪器分析实验论文 高效液相色谱测定麦麸中阿魏酸含量 姓名:马旋瑞 专业班级:食品质量与安全2010级1班 学号:20105859

阿魏酸(Ferulic Acid)化学名称3-甲氧基-4-羟基肉桂酸,产品类别“医药原料和中间体”,化学式C10H10O4,外观淡黄色结晶粉末,是桂皮酸(又称肉桂酸,3苯基2丙烯酸,分子结构)的衍生物之一。阿魏酸(阿魏酸钠)具有抗血小板聚集,抑制血小板5-羟色胺释放,抑制血小板血栓素a2(txa2)的生成,增强前列腺素活性,镇痛,缓解血管痉挛等作用。是生产用于治疗心脑血管疾病及白细胞减少等症药品的基本原料。如心血康、利脉胶囊、太太口服液等等,它同时在人体中可起到健美和保护皮肤的作用。 1、材料与方法 1.1 材料与试剂 甲醇为色谱纯,水为超纯水,冰醋酸,乙醇以及盐酸为分析纯等,13、92ppm阿魏酸标准液 1.2 仪器与设备 LC-10A高效液相色谱仪(LUNA(2)型手动进样器),C18色谱柱 1.3 样品处理 称取10g烘干至恒重的小麦籽粒用粉碎机粉碎后,浸入100m L蒸馏水中加淀粉酶0.2g。在55 ℃下,用4%NaOH调PH=8.0,于恒温水浴锅水浴1 h(每10min 定期振荡)。再用胃蛋白酶0.1g在37℃下,用6mol/LHcl溶液调PH=2,于恒温气浴摇床中再次振荡搅拌1 h,。之后再用四层纱布过滤,取滤渣于105℃下烘干2 h灭酶,得干沉淀,再次称重(记录实际称量质量)。干沉淀用体积比2:1的碱醇(质量分数4%的NaOH,无水乙醇)溶液按料液比1:12(w/v)浸润,在40℃下加入0.3g无水Na2SO3超声0.5 h。用6mol/L Hcl溶液调PH=2.6000rpm/min离心15min,去残渣。上清液于50℃旋转蒸发出其中的乙醇。将余液用流动相定容至50mL,摇匀,用0.45um微孔滤膜滤过即可。 1.4 HPLC测定 用精密注射器分别吸取2.5,5.0,7.5,10.0,15.0 uL进样。 得到如下图的结果: 色谱柱luna(2)c18 标准品浓度16.16ug/mL 进样体积(uL) 保留时间(min) 进样量(ug) 峰面积 2.5 9.765 40.4 242719.7 5.0 9.665 80.8 543902.3 7.5 8.898 121.2 810254.9 10.0 9.473 161.6 543902.3 15.0 9.44 242.4 1057961

上海大学 2015仪器分析

上海大学2015-2016 学年秋季学期研究生课程考试 小论文 课程名称:高等仪器分析课程编号:11S009002 论文题目:TEM在core-shell介孔分子筛合成方面的应用 研究生姓名: 黄乐学号: 15722175 论文评语: 成绩: 任课教师: 张剑秋 评阅日期:

TEM在core-shell介孔分子筛合成方面的应用 黄乐 (上海大学环境与化学工程学院,上海200444) 摘要:介孔分子筛也称作介孔沸石,这种材料在催化,吸附和高新技术先进功能材料等方面有着重大应用,其中在催化方面的应用更加为人们所熟知。Core-shell结构的沸石是在普通的沸石表面包裹上一层鸡蛋壳一样的壳状物质,而且在沸石核心与壳之间一般会有一个空腔,这样就能更大的增加吸附催能力,提高催化效率,使之有更广泛的应用。关于这种沸石,由于是涉及纳米级的检测,所以当表征它时,一般会用到XRD,SEM,TEM和氮气吸附脱附仪等等一些仪器。其中,需要了解沸石的内部形态结构,晶格,网格时,一般会使用SEM来观察,分辨率要求更高时,就会选用TEM来观察其形貌结构。当需要了解沸石的细微结构,以及尺寸较小时的沸石,高分辨率透射电镜是一种研究局部和缺陷结构的有力工具。 关键词:TEM;Core-shell;介孔分子筛;形貌 Application of TEM in synthesis of core-shell mesoporous zeolite Huang Le (School of Environmental and chemical engineering, Shanghai University, Shanghai 200444, China) Abstract: Mesoporous molecular sieves are also known as mesoporous zeolites, which have important applications in catalysis, adsorption, and advanced functional materials, and applications of mesoporous zeolites are well known in catalysis. The Core-shell structure of the zeolite is a kind of zeolite covered a layer of egg shell on the surface , and there is a cavity between the core and the shell, which can increase the adsorption catalytic ability and improve the catalytic efficiency, so that it can be used more widely. About this kind of zeolite, because it is involved in the detection of nano scale, so when it needs characterization , in general, XRD, SEM, TEM , nitrogen adsorption desorption instrument and some of the instruments will be used. In addition,we requires a understanding of the internal structure of the zeolite, the lattice, the grid, and in general it will use SEM to observe,when needing higher resolution requirements,TEM will be chosen to observe its morphology structure. When it is necessary to understand the fine structure and the size of the zeolite, the high resolution transmission electron microscopy is a powerful tool to study the local and the structure of the defects. Key words: TEM;Core-shell;Mesoporous molecular sieves;Morphology 1 前言 多孔分子筛材料,由于其空旷的骨架,巨大的比表面积以及规整可调的孔结构,在催化、吸附、分离等领域已经得到了非常广泛的应用,同时也为人类创造了巨大的经济效益。[1]由于在石油加工过程中,传统的微孔分子筛由于孔径较小,重油分子不能进入孔道,从而限制了催化反应的进行,而有序的介孔材料提供了介孔的孔道结构,这更加有利于重油的催化转化。但是,目前受到无定型孔壁组成的限制,其水热稳定性、酸性稳定性和强度还较差,未能达到工业应用要求。功能性设计是促进材料科学领域不断发展的驱动力。Core-shell复合材料是一类将具有不同功能或孔道结构的不同组分在不同空间上均匀、可控分布的功能性材料。 Core-shell即核-壳纳米复合材料,核-壳纳米复合材料是以一个尺寸在微米至纳米级的颗粒为核,在其

相关文档
最新文档