冲击响应谱分析原理以及合成与振动控制

冲击响应谱分析原理以及合成与振动控制
冲击响应谱分析原理以及合成与振动控制

冲击响应谱(SRS)是一个瞬态加速度脉冲可能对结构造成破坏的图示。它绘制了一组单自由度(SDOF)弹簧的峰值加速度响应,就像在刚性无质量的基础上一样,质量阻尼器系统都经历相同的基本激励。每个SDOF系统具有不同的固有频率;它们都有相同的粘滞阻尼因子。频谱的结果是在固有频率(水平方向)上绘制峰值加速度(垂直)得出的。一个SRS是由一个冲击波产生,使用以下过程: 指定SRS的阻尼比(5%是最常见的)、使用数字滤波器模拟频率单自由度、fn和阻尼ξ。应用瞬态作为输入,计算响应加速度波形。保留在脉冲持续时间和之后的峰值正负响应。选择其中一个极值,并将其绘制成fn的频谱振幅。对每个(对数间隔)fn重复这些步骤。

由此产生的峰值加速度与弹簧-质量阻尼系统固有频率的曲线称为冲击响应谱,简称SRS。一个SDOF机械系统由以下组件组成:

①质量,米

②弹簧,K

③阻尼器,C

Fn,固有频率和临界阻尼因子,ξ,描述一个应用系统,可以从上面的参数计算。对于小于或等于0.05的小阻尼比,频率响应的峰值发生在fn的邻近区域,其中

Q为质量因子,等于1/(2ξ)。

任何瞬态波形都可以作为SRS呈现,但这种关系不是唯一的;许多不同的瞬态波形可以产生相同的SRS。SRS不包含所有关于瞬态波形的信息,因为它只跟踪峰值瞬时加速度。

不同的阻尼比为相同的冲击波形产生不同的SRS。零阻尼会产生最大的响应,而高阻尼则会产生较平的SRS。阻尼比与质量因子Q有关,在正弦振动的情况下也可以被认为是传递率。阻尼比为5%(ξ=0.05)时,Q值为10。如果没有指定阻尼因子(或Q),则SRS图是不完整的。

★SRS箱的频率间隔

一个SRS由多个在对数频率范围内均匀分布的箱组成。频率分布可以由两个数字来定义:一个参考频率和期望的分数倍频间隔,如1/1、1/3或1/6。(倍频程是频率的两倍)例如,250hz和500hz的频率相差一个倍频程, 1 kHz和2 kHz的频率也是一样。

比例带宽显示对于分析各种自然系统,如人类对噪声和振动的反应,是非常有用的。许多机械系统表现出的特征非常适合以比例带宽分析。

为了获得更好的频率分辨率,频率范围可以以倍频程的一部分划分比例间隔。例如,有1/3倍频间隔,每个倍频程有3个SDOF滤波器。一般来说,对于1/N个分数倍频程,每个倍频程有N个带通滤波器。这里1/N称为分数倍

频数,参考频率是最低期望频率fc1。根据参考频率和分数倍频数,确定了整个频率范围的频率分布。

★在SRS中测量信号

Spider SRS测试可用的测量量为:每个通道的时间流(原始数据)、捕获的时间信号和每个通道的三个SRS。

时间流:与Spider上的任何其他模式相同。时间流支持查看和记录。它是观察输入信号是否在有效范围内的一个非常有用的工具。记录的正弦波也可以用于后处理。

块时间信号:这些是用于SRS分析的捕获的块信号。采集模式将控制块时间信号的采集方式。

SRS:将计算每个时间块信号的冲击响应谱。频谱的工程单位由输入通道指定的传感器单位确定。通常表示为三种谱类型:最大正谱;最大负谱和极大值谱最大正谱:这是由于瞬态输入而产生的最大正响应,而不涉及输入的持续时间。

最大负谱:这是由于瞬态输入而引起的最大负响应,而不涉及输入的持续时间。

极大值谱:这是正和负谱的绝对值的极限。它是最常用的SRS数据类型。log-log 极大值谱是显示SRS普遍接受的格式。

★SRS分析参数和合成参数

所有的SRS分析测试参数都可以在测试设置->分析参数中找到。FFT分析参数的定义与其他FFT测试相同。SRS参数包括:

参考频率:定义SRS谱的参考频率。SRS类型包括最大值、正最大值和负最大值。分数倍频数从1/1、1/3、1/6、1/12、1/24、1/48中选择。低频:定义SRS谱的最低频率边界。高频:定义SRS谱的最高频率边界。阻尼比(%):定义阻尼比为百分比。Q(质量因子)是一个无量纲参数,它描述了激振器或共振器的阻尼情况,或等效地描述共振器相对于中心频率的带宽。小波窗类型是由正弦、半窗、指数和矩形所提供的窗函数。合成:有四种可用的合成,包括高冲击、最小加速度、用户定义的持续时间和Mil-Std810-F标准。

★小知识

冲击响应谱分采集分析和控制两个部分。采集分析功能方面晶钻仪器提供两种款式的仪器供用户选择,一种是手持式频谱分析仪CoCo-80X,另外一种是动态数据采集分析仪Spider-80X模块。SRS控制功能用户可选择Spider-80X

或振动台控制仪Spider-81控制振动台。

杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,专注于振动控制、数据采集、模态分析、动态信号分析、故障诊断、综合环境测试领域,产品包括手持一体化动态信号分析仪、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统,解决方案包括NVH测试、新能源电池测试、结构模态分析、故障诊断监测、机械性能测试、转子动力学测试、疲劳可靠性测试、综合环境测试。更多详情请拨打联系电话或登录杭州锐达数字技术有限公司咨询。

地震响应的反应谱法与时程分析比较 (1)

发电厂房墙体地震响应的反应谱法与时程分析比较 1问题描述 发电厂房墙体的基本模型如图1所示: 图1 发电厂墙体几何模型 基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。要求详细的ansys反应谱法命令流与手算验证过程。以时程法结果进行比较。分析不同阻尼值(0.02,0.05,0.10)的影响。 RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g) 频率谱值(g) 33 0.1 9 0.261 2.5 0.313 0.25 0.047 与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt 2数值分析框图思路与理论简介 2.1理论简介 该问题主要牵涉到结构动力分析当中的时程分析和谱分析。时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。 2.2 分析框架: 时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。 谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。 3有限元模型与荷载说明 3.1 有限元模型 考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。然后,采用solid45

振型分解反应谱法matlab

%本程序采用振型分解反应谱法计算框架结构水平地震力 %采用KN.M单位 %运行本程序之前请运行CYGD1.M和CYGD2.M求解框架水平侧移刚度%本程序未考虑扭转耦联振动,只能用于平面框架计算。求解所有振型。%结构地震影响系数按高规3.3.8选取 %地震作用和作用效应按高规3.3.10计算 clear %清理WORKSPACE k0=[263770 %各层框架侧移刚度 263770 263770 263770 123582]; m0=[1.904 %各层质量,重力荷载代表值/g 2.677 2.677 2.677 2.677]*1.0e 3./9.8; n1= 0.21712; %单榀框架地震力分配系数 Tg=0.35; %特征周期(按规范选取) s=0.05; %阻尼比(按规范选取) r=0.9; %衰减系数(按规范选取)

y1=0.02; %阻尼比调整系数1(按规范选取) y2=1; %阻尼比调整系数2(按规范选取) amax=0.08; %水平地震最大影响系数(按规范选取) zjxu=0.7 %周期折减系数(按规范选取) cn=length(m0) %计算楼层数 l=diag(ones(cn)); m=diag(m0); %计算质量矩阵 ik=matrixju(k0,cn); %计算刚度矩阵 [x,d]=eig(ik,m) %求解特征值和特征向量 d=diag(sqrt(d)) %求解结构圆频率 T=zjxu*2*pi./d %求解结构特征周期并作折减,折减系数0.7 for i=1:cn; [dl(i),j]=min(d); xgd(:,i)=x(:,j); d(j)=max(d)+1; end w=dl; %输出结构自振频率 x=xgd; for j=1:cn; %求解结构振型参与系数和各质点的水平相对位移x x(:,j)=x(:,j)/x(cn,j); zhcan(j)=(x(:,j))'*m*l/((x(:,j))'*m*x(:,j));

反馈控制

反馈控制 摘要:反馈控制是控制论中的灵魂,在我们的现实生活中,反馈控制的应用也是无处不在的。小到日常生活用品,大到人的思想、行为、我们赖以生存的环境都处在反馈控制体系中。关键词:反馈控制日常生活物极必反、盛极必衰自身与反馈 一、基本概念 反馈泛指发出的事物返回发出的起始点并产生影响,指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程,即将输出量通过恰当的检测装置返回到输入端并与输入量进行比较的过程。反馈可分为负反馈和正反馈。前者使输出起到与输入相反的作用,使系统输出与系统目标的误差减小,系统趋于稳定;后者使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。对负反馈的研究是控制论的核心问题。 任何控制系统都是由施控和受控两个子系统所构成。由于干扰信息的作用,受控系统的输出状态往往会偏离目标,由此形成的偏差信息恰是反馈控制的依据。反馈控制原理描述为:施控系统把依据偏差信息调整后的输入信息转换为控制信息,控制信息作用于受控系统后产生的结果通过反馈通道被返送到原输入端,并对信息的再输入产生影响,从而减少或消除系统偏差,使受控系统的运行状态维持在一个给定(或容许)的偏差范围内,以此提高受控系统运行过程中的稳定性,实现受控系统的行为、活动、功能和结果的理想化。其中,施控系统施加控制作用,接收反馈信息;而受控系统接受控制作用,提供反馈信息。从施控系统到受控系统是传递信息的正向通道,反过来为反向通道,它们一起构成了闭环反馈控制系统。 在控制系统中我们的首要任务是保证系统的稳定性,这恰恰是反馈系统在起作用;在现实生活中,我们更是要求我们的社会能达到一种稳定和谐的局面,因此,“反馈”在我们的生活中起到的作用是我们不能忽视的。 二、反馈在日常生活中的应用 冰箱是现在家家户户都能使用到的电器之一,而我们所学到的反馈原理在这普通的生活用品中就能体现出来。我们使用冰箱制冷,由于外界温度较高,冰箱向外界释放热量,冰箱内温度会朝着我们制定的度数降低,而外壳温度会越来越高,一段时间后,当冰箱内的温 度达到所设置的度数后,冰箱会进行自动调节,让温度不再进一步地降低。这便是反馈调节。还有洗衣机,这也是我们现代人不可或缺的生活用品,我们在家里使用洗衣机时会设置一个注水量,启动机器后,水开始注入机桶,在未达到注水量前,机器会产生动力驱动水位上升,然而水位上升至设置量后,反馈调节便开始了,洗衣机停止注水工作。只要用一双发现在眼睛去看生活,我们所学习到的书本知识在现实生活中的应用无处不在。 三、自身与反馈 在反馈控制中,我们遇到的调节活动输出的反馈信息与原输入信息的关系常常分为两种:一种是反馈信息与原输出信息相同,另一种则是在二者之间存在一种相反的作用,而后者实际上是一种负反馈现象。在我们的生活中,常常会出现一些实际结果与我们预期的结果大相径庭的事,比如我们现在找工作。有的同学很优秀,成绩很好,还是学生干部,在学校的时候年年都能评优秀,在找工作的时候这些学生理所当然的很占优势,可是有的时候结果

振型分解反应谱法求位移例题3.2.2

3.2.2(忽略剪重比验算) 解:(1)由∑∑===n i ji i n i ji i m m 121φφγ 得: 363.1024.33027.45118667.027334.027118667.027334.0272221==?+?+??+?+?= γ 428.0988.41991.17118)666.0(27)667.0(27118)666.0(27)667.0(272 222-=-=?+-?+-??+-?+-?=γ 063.0817.702568.44118)035.3(27)019.4(27118)035.3(27)019.4(272223==?+-?+??+-?+?= γ (2)查表3-2,3-3得35.0=g T ,16.0max =α,则 123.016.0467.035.09.0max 9.011=???? ??=???? ??=ααT T g 16.0max 2==αα

16.0max 3==αα (3)由ji j j i ji G F φγα=得 第一振型各质点水平地震作用为: kN F 16.148334.0363.1123.08.927011=????= kN F 88.295667.0363.1123.08.927012=????= kN F 73.2951363.1123.08.918013=????= 第二振型各质点水平地震作用为: kN F 86.120)667.0()428.0(16.08.927021=-?-???= kN F 68.120)666.0()428.0(16.08.927022=-?-???= kN F 80.1201)428.0(16.08.918023-=?-???= 第三振型各质点水平地震作用为: kN F 19.107019.4063.016.08.927031=????= kN F 95.80)035.3(063.016.08.927032-=-????= kN F 78.171063.016.08.918033=????= (4)由各振型水平地震作用产生的底部剪力为: kN F F F V 77.73973.29588.29516.14813121111=++=++= kN F F F V 74.12080.12068.12086.12023222121=-+=++= kN F F F V 02.4478.1795.8019.10733323131=+-=++= (5)振型组合求最大底部剪力: kN V V j j 85.75002.4474.12077.73922231211=++==∑= (6)由各振型水平地震作用产生的结构顶层位移为:

冲击响应谱校准技术的研究

冲击响应谱校准技术的研究 厉巍 陈永久 朱永晓 (贵州航天计量测试技术研究所,贵州 贵阳550009) 摘要:冲击响应谱试验已经成为大多数航天产品必做的力学环境试验项目之一,传统的冲击试验缺乏对冲击环境模拟的真实性,本文介绍了冲击响应谱的原理和冲击响应谱试验设备;用labVIEW 为平台,编写了冲击响应谱校准软件,为冲击响应谱试验机的校准与数据分析提供了通用性较好的校准分析方法,并基于PXI 系统设计了冲击响应谱校准装置。 关键词:航天产品LabVIEW 冲击响应谱 校准 PXI 系统 0引言 冲击响应谱试验机是用于完成冲击响应谱试验的环境试验设备,冲击响应谱是对产品实施抗冲击设计的分析基础,也是生产中冲击环境模拟试验的基本参数,在航空、航天重点型号科研生产及有关重大科技专项中,冲击响应谱试验已经成为必做的环境试验之一。产品在实际应用过程中受力情况复杂,其中,冲击激励会使设备激起强迫振动和固有频率响应,使产品性能和结构强度受到不同程度的损害甚至失效。航空、航天、电子等行业产品在生产、运输等过程中存在着各种冲击,而这对产品的质量和可靠性有着很大的负面影响。为了解决这一问题,在此基础上产生并发展起了冲击试验。近年来,随着对环境试验的认识不断提高,对冲击环境的模拟也提出了更高的要求,冲击响应谱试验也来越被关注。 1 冲击响应谱原理 冲击信号与一般的振动信号在许多方面具有不同的特性,工程中研究冲击信号的目的并不是研究冲击波形本身,而是更加注重冲击作用于系统的效果,或者说是研究冲击运动对系统的损伤势。不论用冲击的时间历程还是用频谱都难以描述冲击的损伤势,因此必须使用能够衡量冲击效果的冲击响应谱。 冲击响应谱系指一单自由度质量弹簧阻尼系统,当公共基础受到冲击激励时产生的响应峰值作为单自由度系统固有频率的函数绘出的图,其物理模型如图1所示。 图1 冲击响应谱的物理模型 数学模型可归结为如下微分方程的解: 式中,u x -=δ;

振型分解反应谱法

结构设计系列之振型分解反应谱法 苏义

前言 我国规范对于常规结构设计有两个方法:底部剪力法和振型分解反应谱法。其中,底部剪力法视多质点体系为等效单质点体系,且其地震作用沿高度呈倒三角形分布,当结构层数较高或体系较复杂时,其计算假再用,因部剪时,其计算假定不再适用,因此规范规定底部剪力法仅适用于高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的结构。因此,一般结构均采用振型分解反应谱法。

振型分解反应谱法的基本步骤: 通过体系的模态分析,求出多自由度体系的振型通过体系的模态分析求出多自由度体系的振型向量、参与系数等等;然后把每个振型看作单自由度体系,求出其在规定反应谱的地震加速度作用下产生的地震效应;最后把所有振型的地震效应式进行叠,得到体系震应应按一定方式进行叠加,就会得到体系地震效应的解。 注意 注意: 振型分解反应谱法只适用于弹性分析,对于弹塑性体系,由于力与位移不再具有对应关系,性体系,由于力与位移不再具有一一对应关系, 该法不再适用。

目录 一模态分析二 反应谱分析 三 振型组合方法 四 方向组合方法

一、模态分析 模态分析也被称作振型叠加法动力分析,是线性体系地震分析中最常用且最有效的方法。它最主要的 优势在于其计算一组正交向量之后,可以将大型 整体平衡方程组缩减为相对数量较少的解耦二阶平解阶微分方程,这样就明显减少了用于数值求解这些 方程的计算时间。模态分析为结构相关静力分析 提供相关结构性能,包括结构静力地震作用分析 和静力风荷载分析。 模态分析是其它动力分析的基础,包括反应谱分析和时程分析。

反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形。更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静 力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK= αG 其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。 目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。不过,它主要适合用于规则结构。对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析。但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法。反应谱分为加速度反应谱、速度反应谱和位移反应谱。基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。 加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段。峰值出现的时间与对应的结构周期和场地特征周期有关。一般来说结构自振周期的延长,地震作用将减小。当结构自振周期接近场地特征周期时,地震作用最大。 反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。 振型组合方法有SRSS法,CQC法。 1.SRSS法 SRSS法是平方和平方根法,这种方法假定所有最大模态值在统计上都是相互独立的,通过求各参与阵型的平方和平方根来进行组合。该法不考虑各振型间的藕联作用,实际上结构模态都是相互关联的,不可避免的存在藕联效应,对那些相邻周期几乎相等的结构,或者不规则结构不适用此法。《抗规》GB50011-2010规定的SRSS法为如下所示:

冲击响应谱

冲击响应谱 1简介 冲击响应谱通常简称“冲击谱”,它是工程中广泛应用的一个重要概念。国家电工委员会(IEC)、国家标准化组织(ISO)所属的技术委员会以及我国的国家标准,都已经把冲击谱作为规定冲击环境的方法之一。因此,冲击谱是对设备实施抗冲击设计的分析基础,也是控制产品冲击环境模拟实验的基本参数。 2冲击谱详解 所谓冲击谱,是将冲击源施加于一系列线性、单自由度质量-弹簧系统时,将各单自由度系统的响应运动中的最大响应值,作为对应于系统固有频率的函数而绘制的曲线,即称为冲击谱。由定义可知,冲击谱是单自由度系统受冲击作用后所产生的响应运动在频域中的特性描述。它不同于冲击源的傅里叶频谱,其区别在于:傅里叶频谱仅仅研究冲击源本身在频域中的能量分布属性,只是冲击源函数在频域中的展开,它不涉及任何一个要研究的机械系统的响应。虽然冲击频谱与傅里叶频谱两者都是频率的函数,但有着明显的区别。 换言之,冲击谱是一系列固有频率不同的单自由度线性系统受同一冲击激励响应的总结果。产品受冲击作用,其冲击响应的最大值意味着产品出现最大应力,即试验样品有最大的变形。因此,冲击响应的最大加速度Amax与产品受冲击作用造成的损伤及故障产生的原因直接相关,由此引出了最大冲击响应谱。 3最大冲击响应谱又可以作如下细分 1.正初始冲击响应谱(+I)是指激励脉冲持续时间内,一系列被激励单自由度系统与激励脉冲同方向上出现的最大响应值。Amax(+I)与相应系统的固有频率fn的关系曲线。 2.正残余冲击响应谱(+R)是指激励脉冲持续时间结束后,一系列被激单自由度系统与激励脉冲同方向上出现的最大响应值Amax(+R)与相应系统的固有频率fn的关系曲线。 3.负初始冲击响应谱(-I)是指激励脉冲持续时间内,一系列被激励单自由度系统与激励脉冲反方向上出现的最大值Amax(-I)与相应的系统固有频率fn的关系曲线。 4.负残余冲击响应谱(-R)是指激励脉冲持续时间结束后,一系列被激单自由度系统与激励脉冲反方向上出现的最大值Amax(-R)与相应的系统固有频率fn的关系曲线。 冲击响应谱反映的是环境特性,根据分析冲击响应谱,可以为设计产品的抗冲击能力提供依据。要获取冲击响应谱,首先要采集环境冲击的时域信号,然后再通过软件进行分析,获取冲击响应谱。国内外都有相应的系统可以完成这个工作。比如国内的INTEST(英泰斯特),提供了冲击加速度时域采集、频域分析、冲击响应谱分析等多种功能,还可以在软件中生成标准脉冲的、归一化后的冲击响应谱,为工程应用提供最直接的解决方案。 4冲击响应谱技术参数 冲击响应谱试验机是用来衡量冲击运动对电工电子产品作用力的大小,考核试品在冲击环境下功能的适应性和结构完好性。 产品特点: 摆锤式结构。 plc控制预设能量自动冲击无二次冲击。 冲击能量无级可调。 计算机测量同时采集时域、频域冲击波形 结合式程序调节器,低频能量调节方便。

振型分解反应谱法知识讲解

振型分解反应谱法

振型分解反应谱法 振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。 适用条件 (1)高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。(此为底部剪力法的适用范围) (2)除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。 (3)特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算。 刚重比 刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数 刚重比=Di*Hi/Gi Di-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高

Gi-第i楼层重力荷载设计值 刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法。同样,对刚重比的调整也可能影响周期比。特别是当结构的周期比接近规范限值时,应采用加强结构外围刚度的方法规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。见高规5.4.1和5.4.2及相应的条文说明。刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的失稳倒塌。见高规5.4.4及相应的条文说明。刚重比不满足规范下限要求,说明结构的刚度相对于重力荷载过小。但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。 长细比 长细比=计算长度/回转半径。 所以很显然,减小计算长度或者加大回转半径即可。 这里需要注意的是,计算长度并非实际长度,而是实际长度乘以长度系数,长度系数则与柱子两端的约束刚度有关。说白了就是

状态反馈控制.

本科毕业论文(设计)题目状态反馈控制 学院计算机与信息科学学院专业自动化(控制方向)年级2009级 学号222009321042049 姓名王昌洪 指导老师何强 成绩

2013 年4 月18 日 状态反馈控制 王昌洪 西南大学计算机与信息科学学院,重庆400715 摘要:现代控制理论的特色为状态反馈控制,状态反馈控制经过近几十年的发展演变,在 现实控制系统中应用越来越是广泛,由于系统的内部特性可以由状态变量全面的反应出来,因而相对于输出反馈控制,状态反馈更加的有利于改善系统的控制性能。但是,在实际的系统中,状态变量由于其难于直接测量,所以进行状态反馈总是很难实现。本论文将论述状态反馈基本原理,并通过举例说明状态反馈控制的优越性,同时将对状态反馈控制进行Matlab仿真,使系统满足提出的设计要求。 关键词:状态反馈;极点配置;Matlab仿真;时域指标 State Feedback Control Wang changhong Southwest university school of computer and information science, chongqing, 400715 Abstract:Modern control theory, the characteristics for the state feedback control, state feedback control through decades of development and evolution, in the real control system is applied more and more widely, because the internal characteristics of the system can be fully reflected by the state variables,So relative to the output feedback control, state feedback are more favorable to improve the control performance. However, in practical systems, the state variable because of its difficult to measure directly, so the state feedback is always difficult to achieve.This paper will describe the state feedback principle, and illustrates the superiority of the state feedback control, at the same time, the state feedback control for Matlab simulation, the system meets the requirements of the design. Key words:State feedback;Pole assignment;Matlab simulation;Time domain index

SAP2000之反应谱分析

反应谱分析:基本概念 地震作用本质上是一种地面运动荷载,虽然其发生的过程总体上很短暂,但是作用的大小是随时间变化的,目前结构分析的发展水平允许我们基于振型叠加法或其它方法在地震作用的整个过程中对结构的响应进行完整计算,这就是我们所常说的结构的时程分析。但是这种分析方法往往需要更复杂的计算工作,并且所进行的分析往往需要更详尽并有针对性的场地信息,这一点并不是所有实际工程都能够提供的,另外,时程分析会输出地震作用整个过程每一时刻的结构位移及内力响应,对于这些信息的统计需要大量的工作量,并且难以形成直接指导结构设计的信息。因此虽然时程分析是更为真实的结构动力分析,但是满足大部分结构规范要求和工程师需求的仍然是地震作用的反应谱分析。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力方法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后再使用静力方法进行结构分析。时程分析的不足恰好是反应谱分析方法的优点,光滑设计反应谱是地震运动的平均值,它仅包括计算每个振型中的位移和构件力的最大值,因此不需要对于多条地震波的复杂计算。并且结构反应谱分析所给出的结构响应信息可以很方便的应用于结构设计,避免了对于整个时间范围内结构响应的处理。

反应谱分析:振型组合的基本理论与方法SAP2000对于反应谱分析振型组合分析,给出了CQC法、SRSS法、ABS法、GMC法、10Pct法和Dbl Sum法等六种组合方法。我国2002新的规范规定考虑结构藕联效应的情况,可以采用SRSS和CQC两种组合方法。 1. ABS法 ABS法是绝对值相加法。这种方法的假设条件是所有振型的最大模态值都发生在相同的时间点上,通过求它们的绝对值和的方法来对振型进行组合。实际上同一时刻基本上不可能所有模态均发生最大值,因此,这一组合方法是用于计算结构中的位移或内力峰值的最保守方法。 2. SRSS法

反馈控制理论

反馈控制理论B 项目作业 (第2周) 完成人: 完成时间:

1.安装Multisim软件,建立工作目录。借阅参考书或下载资料,列出资料目录;综述 Multisim是什么,能做什么。 解: 资料目录:NI_Circuit_Design_Suite_14_0_1_汉化破解版;NI_Circuit_Design_Suite_14_0_1.exe; Chinese-simplified;NI License Activator 1.2。 (1)Multisim是以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 (2)使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 2.设计电路仿真方案,利用5个电阻元件验证KVL。 解: 根据KVL关系得,串联的元件我们视它为一条支路在一条支路中电流处处相等,结点电电流之和为0,一个回路中各处电压之和为0.电路设计及其结果如图2所示 图2 五电阻构成电路 由图中结果可得:结点1处电流之和I1+I2+I3=0,得出结论:结点处电流之和为0。同样,在回路1中,

各支路电压U4+U5+U6=0,得出结论:回路中各处电压之和为0。KVL定律成立。 3.在Multisim中用三极管元件构建一个如图所示的分压偏置共射极放大电路, [1] 计算其直流工作点Q相关各参数和交流增益; 解: 通过对静态工作点得计算得出下图3-11的结果 图3-11 静态工作点的计算过程 计算结果及计算过程如图3-11所示。 该电路的最小信号模型及其交流电压增益计算如图3-12所示 图3-12 交流信号最小模型 [2] 设置电压信号源10mV,频率1kHz,用虚拟示波器测试其输入输出关系,描述示波 器所示曲线的特征【注:包括从虚拟示波器上读出的频率、幅值、形状特征等】解: 通过对相关数值的设定以及相关器件值的设定,得出图3-2所示的测量结果

振型分解反应谱法和底部剪力法

振型分解反应谱法可以考虑多阶振型互相耦合的作用,尤其是扭转振型的耦联,如果只是单阶振型,则振型分解反应谱法和底部剪力法应该是一致的。 所以底部剪力法一般用在低层的、简单的、规则的、对称的结构中,如砌体结构住宅楼或者多层框架(新规范要求加上楼梯就又麻烦了)之类。 此外,振型分解反应谱法计算出来的地震剪力都是绝对值,没有方向,在这一点上,底部剪力法算出不同方向地震作用所引起的剪力的方向,比较有物理意义。 振型分解反应谱法: 也称规范法,适用于大量的工程计算,该法有侧刚及总刚两种计算方法,分别对应侧刚模型及总刚模型,其主要区别是侧刚模型采用刚性楼板假定的简化刚度矩阵模型。总刚模型是采用弹性楼板假定的真实结构模型转化成的刚度矩阵模型。振型分解反应谱法先计算结构的自振振型,选取若干个振型分别计算各个振型的水平地震作用,将各振型水平地震作用于结构上,求其结构内力,最后将各振型的内力进行组合,得到地震作用下的结构内力和变形。其基本原理就是用“规范”反应谱,先求得各振型的对应的“最大”地震力,组合后得到结构的组合地震作用。这里面有一个求“广义特征值”而得出结构前几阶振型和频率的重要步骤,在这个过程中程序按力学和数学的法则进行繁多的中间计算,而不输出中间资料,仅将结果值告知设计人。 底部剪力法: 底部剪力法(拟静力法)(Equivalent Base Shear Method) 根据地震反应谱理论,以工程结构底部的总地震剪力与等效单质点的水平地震作用相等,来确定结构总地震作用的方法。 一种用静力学方法近似解决动力学问题的简易方法,它发展较早,迄今仍然被广泛使用。其基本思想是在静力计算的基础上,将地震作用简化为一个惯性力系附加在研究对象上,其核心是设计地震加速度的确定问题。该方法能在有限程度上反映荷载的动力特性,但不能反映各种材料自身的动力特性以及结构物之间的动力响应,更不能反映结构物之间的动力耦合关系。但是,拟静力法的优点也很突出,它物理概念清晰,与全面考虑结构物动力相互作用的分析方法相比,计算方法较为简单,计算工作量很小、参数易于确定,并积累了丰富的使用经验,易于设计工程师所接受。但是,应该严格限定拟静力法的使用范围:它不能用于地震时土体刚度有明显降低或者产生液化的场合,而且只适用于设计加速度较小、动力相互作用不甚突出的结构抗震设计。

midas反应谱分析

反应谱分析 北京迈达斯技术有限公司

目录 简要 (1) 设定操作环境及定义材料和截面 (2) 定义材料 (2) 定义截面 (3) 建立结构模型 (4) 主梁及横向联系梁模型 (4) 输入横向联系梁 (5) 输入桥墩 (5) 刚性连接 (7) 建立桥墩和系梁 (9) 输入边界条件 (10) 输入支座的边界条件 (10) 刚性连接 (11) 输入横向联系梁的梁端刚域 (12) 输入桥台的边界条件 (13) 输入二期恒载 (14) 输入质量 (15) 输入反应谱数据 (17) 输入反应谱函数 (17) 输入反应谱荷载工况 (18) 运行结构分析 (19) 查看结果 (20) 荷载组合 (20) 查看振型形状和频率 (21) 查看桥墩的支座反力 (24)

简要 本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。 例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。桥台部分由于刚度很大,不另外建立模型只输入边界条件;基 础部分假设完全固定,也只按边界条件来定义。 下面是桥梁的一些基本数据。 跨 径:45 m + 50 m + 45 m = 140 m 桥 宽:11.4 m 主梁形式:钢箱梁 钢 材:GB(S) Grade3(主梁) 混 凝 土:GB_Civil(RC) 30(桥墩) 图1. 桥梁剖面图[单位: mm]

设定操作环境及定义材料和截面 开新文件(新项目),以‘Response.mcb’为名保存(保存)。 文件 / 新项目t 文件 / 保存( Response ) 将单位体系设定为kN(力), m(长度)。 工具 / 单位体系 长度>m ; 力>kN ? 定义材料 分别输入主梁和桥墩的材料数据。 模型 / 材料和截面特性 / 材料 材料号(1); 类型>S钢材 规范>GB(S); 数据库>Grade3 ? 材料号(2); 类型>混凝土 规范>GB-Civil(RC) ; 数据库>30 ? 图2. 定义材料

反馈控制电路

反馈控制电路 一、自动增益控制(AGC) 1、AGC电路的作用与组成 (1) 作用 当输入信号变化时,保证输出信号幅度基本恒定。包括: ①能够产生一个随输入信号大小而变化的控制电压,即AGC电压(±UAGC); ②利用AGC电压去控制某些级的增益,实现AGC。 (2) 组成——具有AGC电路的接收机框图 2、AGC电压的产生 (1) 平均值式AGC电路 中频信号电压经检波后,除得到所需音频信号之外,还得到一个平

均直流分量。音频信号由RL2两端取出。平均直流分量(反映了输入信号的幅度)从C3两端取出,经低通后,作为AGC电压,加到中放管上去控制中放的增益。

(2) 延迟式AGC电路 V1、R7和C4组成AGC检波电路,运放A为直流放大器,UREF为延迟电平。当输入信号较小时,AGC不起作用。当输入信号较大时,AGC将起作用。可见,该AGC电路具有延迟功能

3、实现AGC的方法 (1) 改变发射极电流IE 正向AGC 反向AGC (2) 改变放大器负载 由于放大器的增益与负载密切相关,因此通过改变负载就可以控制放大器的增益 。 (3) 改变放大器的负反馈深度 通过控制负反馈的深度来控制放大器的增益。

6.2 自动频率控制(AFC) 1、AFC的工作原理 2、组成 3、工作原理 4、AFC的应用:调幅接收机中的AFC系统 具有AFC电路的调频发射机一、AFC——电路组成

作用:自动控制振荡器频率稳定 组成:鉴相器、低通滤波器和压控振荡器 标准频率fr;输出频率fo;误差电压uD(t) ;直流控制电压 uC(t)。 二、AFC——工作原理 压控振荡器的输出频率fo与标准频率fr在鉴频器中进行比较,当fo=fr时,鉴频器无输出,压控振荡器不受影响;当fo≠fr时,鉴频器即有误差电压输出,其大小正比于(fo-fr),经低通滤波器滤除交流成分后,输出的直流控制电压uc(t),加到压控振荡器上,迫使压控振荡器的振荡频率fo与fr接近,而后在新的振荡频率基础上,再经历上述同样的过程,使误差频率进一步减小,如此循环下去,最后fo和fr的误差减小到某一最小值△f时,自动微调过程停止,环路

振型分解反应谱法《抗规》7.2.4

【2012年下午31-33题·二级】 某16层办公楼采用钢筋混凝土框架-剪力墙结构体系,层高均为4m ,平面对称,结构布置均匀规则,质量和侧向刚度沿高度分布均匀,抗震设防烈度为8度,设计基本地震加速度为0.2g ,设计地震分组为第二组,建筑场地类别为Ⅲ类。考虑折减后的结构自振周期为T 1=1.2s 。各楼层的重力荷载代表值G i =14000kN ,结构的第一振型如图所示。采用振型分解反应谱法计算地震作用。 提示:∑==16 1 21495.5i i X ;∑==16 1 194.7i i X ;∑=72.361i 1H X i 31、试问,第一振型时的基底剪力标准值10V (kN )最接近下列何项数值? (A ) 10000 (B ) 13000 (C ) 14000 (D ) 15000 【考点分析】 《抗规》5.2.2条1款① 结构j 振型i i ji j j ji G X F γα= 1α:第1振型自振周期的地震影响系数 表5.1.4-1 水平地震影响系数最大值m ax α 注:括号中的数值分别用于设计基本地震加速度为0.15g 和0.30g 的地区。

j γ:第j ∑∑=== n i i ji n i i ji G X G X 121 j γ∑=n n i i i G X 11( ② 结构1振型1层的水平地震作用标准值:1111F 结构1振型2层的水平地震作用标准值:1212X F 结构1振型3层的水平地震作用标准值:1313X F 以此类推: 结构1振型16层的水平地震作用标准值:116116X F ③ 第1振型的基底剪力标准值 =++++=16 1 11111613121110i i X G F F F F V γα 【解答】 1α:8度(0.2g )查表5.1.4-1 16.0max =α 场地类别为Ⅲ类,设计地震分组为第二组 查表5.1.4-2 s 55.0g =T 2.750.5555T 1.2T 55.0g 1g =?===<<T 图5.1.5 0793.016.00.12.155.09 .0max 21g =???? ??=??? ? ??=αηαγ T T G i =14000kN (每层的重力荷载代表值都相同) 445.1495 .594 .71 2 1111 211 11== = = ∑∑∑∑====n i i n i i n i i i n i i i X X G X G X γ kN X G F F F F V i i 66.1273794.714000445.10793.016 1 11111613121110=???==++++=∑γα

振型分解反应谱法

振型分解反应谱法 振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。 适用条件 (1)高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。(此为底部剪力法的适用范围) (2)除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。 (3)特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算。 刚重比 刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数 刚重比=Di*Hi/Gi Di-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值 Hi-第i楼层层高 Gi-第i楼层重力荷载设计值 刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构

侧移刚度的变化,从而影响到刚重比。因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法。同样,对刚重比的调整也可能影响周期比。特别是当结构的周期比接近规范限值时,应采用加强结构外围刚度的方法 规范上限主要用于确定重力荷载在水平作用位移效应引起的二 阶效应是否可以忽略不计。见高规5.4.1和5.4.2及相应的条文说明。刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的失稳倒塌。见高规5.4.4及相应的条文说明。刚重比不满足规范下限要求,说明结构的刚度相对于重力荷载过小。但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。 长细比 长细比=计算长度/回转半径。 所以很显然,减小计算长度或者加大回转半径即可。 这里需要注意的是,计算长度并非实际长度,而是实际长度乘以长度系数,长度系数则与柱子两端的约束刚度有关。说白了就是要看与柱相连的梁或者基础是否给力,如果这些构件的刚度越高,那么长度系数就越小,柱子的计算长度也就越短。 具体公式你可以去看钢结构规范,我记得长度系数的具体算法是附录

底部剪力法--反应谱法--时程分析法概念及分析

底部剪力法/反应谱法/时程分析法一些有用的概念 从传统的观点来看,底部剪力法,反应谱法和时程分析法是三大最常用的结构地震响应分析方法。那么正确的认识它们的一些关键概念,对于建筑结构的抗震设计具有非常重要的意义。HiStruct在此简单的总结一些,全当抛砖引玉。 1. 底部剪力法 高规规定:高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的高层建筑结构,可采用底部剪力法。底部剪力法适用于基本振型主导的规则和高宽比很小的结构,此时结构的高阶振型对于结构剪力的影响有限,而对于倾覆弯矩则几乎没有什么影响,因此采用简化的方式也可满足工程设计精度的要求。底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2. 反应谱方法 高规规定:高层建筑结构宜采用振型分解反应谱法。对质量和刚度不对称、不均匀的结构以及高度超过100m的高层建筑结构应采用考虑扭转耦联振动影响的振型分解反应谱法。反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而

言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS 是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构反应起重要作用的振型所对应的频率密集的结果(高振型的影响较大,或者考虑扭转振型的条件下),CQC是精确的。这是因为对于建筑工程上常用的阻尼而言,振型相关系数(见高规3.3.11-6)在很窄的范围内才有显著的数值。 3.反应谱分析的精确性 对于采用平均意义上的光滑反应谱进行分析而言,其峰值估计与相应的时程分析的平均值相比误差很小,一般只有百分之几,因此可以很好的满足工程精度的要求,正是在这个平均(普遍性)意义上,我们认为反应谱分析方法是精确的。但是对于单个锯齿形的反应谱而言,其分析结果与单个波的时程分析,误差可以达到10-30%之间,因此在个别(特殊性)意义上而言,反应谱分析结果是有误差的,因此,规范规定对于复杂的或者高层建筑需要采用时程分析进行补充计算和验证。 4.反应谱分析与时程分析对于高阶振型计算的不同之处 一般反应谱的高频段是采用平台段来表达的,实际上对于高阶振型反应不显著的结构而言,反应谱适用性很好,也足够准确。但是对于高柔结构而言,一般高阶振型的影响比较显著,采用时程分析的时候,

相关文档
最新文档