多元函数微分法及其应用总结

多元函数微分法及其应用总结
多元函数微分法及其应用总结

第九章 多元函数微分法及其应用总结

多元函数的概念

对应规则、定义域、

值域、图形

二重极限()()()00,,lim

,x y x y f x y →的定义、与()0lim x x f x →的区别

极限的计算(P61、

P62、P63(6))

二元函数的连续性

()()()()0000,,lim ,,x y x y f x y f x y →=

二元函数

(),f x y 在区域D

连续

在有界闭区域上的连续函

(),f x y 的性质 有界性、有最值、

介值性

多元初等函数

多元初等函数在其定

义域内就是连续函数

多元函数的偏导数

(),z f x y =在点()00,x y 处对x ,y 的偏导数()00,x f x y ,()00,y f x y 的定义

例如,计算

()()00000,,lim x f x x y f x x y x ?→+?--??

(),z f x y =在点()00,x y 处对x ,y 的偏导数()00,x f x y ,()00,y f x y 的几何解释

(),z f x y =对x ,y 的偏导数(),x f x y ,(),y f x y 的定义

算法练习(P69、1,4)

多元函数的高阶偏导数(P69、6(1),7,8)

多元函数的全微分

(),z f x y =,

()(),,x y dz f x y dx f x y dy =+推广到更多元的函数

算法练习(P75、

1(1),2,3)

多元复合函数的求导法则

树形法则(P82、

1,3,8,10)

隐函数求导法则

若(),0F x y =,则x y F dy dx F =-

若(),,0F x y z =,

则x z F z x F ?=-?,y z F z y F ?=-?

算法练习(P89、1,3(补

充计算dz))

多元函数求极值

算法练习(P118、

2,5,7,P116、例7)

曲面

(),z f x y =或者 (),,0F x y z =在点()000,,x y z 的切平面方程、法线方程 算法练习(P99、例6,

例7,P100、8,9)

曲线()x x t =,()y y t =,()z z t =或

者()y y x =,

()z z x =在点()000,,x y z 处的切线方程、法平面方程

算法练习(P94、例

4,P100、4)

例如,求曲线x t =,2

2y t =,3z t =的点,满足条件:该点切向量平行于平面1x y z ++=。

解:由于切向量为()2

1,4,3t t ,垂直于()1,1,1,所以

()()2

1433110t t t t ++=++=

13t =-或者1t =-,所求的点为

0121,,3927M ??-- ???,()11,2,1M --。

例如,求一函数(),z f x y =使之满足条件

(),1

xx f x y =,()0,1f y =,()0,x f y y =。

解:由(),1xx f x y =得

(),x f x y x ay b =++,

由()0,x f y y =得1a =,0b =, (),x f x y x y =+,

()21,2

f x y x xy cy d =+++, 由()0,1f y =得0c =,1d =, 从而 ()2

1,12f x y x xy =++。

(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分 一、选择题 1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x x u x y =??=则=??=2x y y u [A ] A. 2 1 - B. 21 C. -1 D. 1 2.函数62622++-+=y x y x z [ D ] A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值 3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 4. 设u=2 x +22y +32 z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 =??l u [ D ] A. 635 B.635- C.335 D. 3 3 5- 5. 函数xy y x z 333-+= [ B ] A. 在点(0, 0)处取极大值 B. 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dx dy = [ B ] A. y cos 1ε+ B. y cos 11ε- C. y cos 1ε- D. y cos 11 ε+ 8. 函数y x xy z 2050++ = (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值 9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

一元函数微分学典型例题

一元函数微分学典型例题 1. 有关左右极限题 求极限??? ?????+++→x x sin e e lim x x x 41 012 ● 根据左右极限求极限, ● 极限x x e lim 1 →, x x sin lim x 0 →,x tan lim x 2 π→,x cot lim x 0→,x cot arc lim x 0→,x arctan lim x 1 0→都不存在, ● A )x (f lim A )x (f lim )x (f lim x x x =?==∞ →-∞ →+∞ → ● 【 1 】 2. 利用两个重要极限公式求1∞ 型极限 x sin x ) x (lim 20 31+→ ● 0→)x (?,e )) x (lim() x (=+??1 1 ● A )x (f lim =0→)x (?,A )x (f ) x (e ])) x (lim[(=+??11 ● 【 6e 】 3. 等价无穷小量及利用等价代换求极限 当0x + → (A) 1- (B) ln (C) 1. (D) 1-. ● 等价无穷小定义:如果1=α β lim ,则称β与α失等价无穷小,记为α∽β, ● 0→x 时,(1)n x x a x a x x x x x x x x x e x x x x x n x x ≈ -+≈-≈-+≈-≈---+≈-≈+≈≈≈≈111112 1 16111112 3 ln )(cos sin )ln(arctan tan sin αα

● 当0→)x (?时,)x (sin ?∽)x (?,11-+n )x (?∽ n ) x (?∽∽ ● 【 B 】 4. 利用单调有界准则求极限 设数列{}n x 满足n n x sin x ,x =<<+110π。证明:极限n n x lim ∞→存在,计算1 1n x n n n x x lim ??? ? ??+∞→ ● 利用单调有界准则球数列或者函数极限的步骤:1。证明数列或函数单调;2。证明 数列或函数是有界;3。等式取极限求出极限。 ● 定理单调有界数列必有极限还可以叙述为单调递减有下界数列必有极限,或单调递 增有上界数列必有极限。 ● 61 1 2 -→=?? ? ??e x x sin lim x x ● 【 0;6 1- e 】 5. 判断函数连续与否以及利用函数的连续性解题 设函数f (x )在x =0处连续,下列命题错误的是: (A) 若0()lim x f x x →存在,则f (0)=0. (B) 若0()() lim x f x f x x →+-存在,则f (0)=0. (C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()() lim x f x f x x →-- 存在,则(0)f '存 在 【 】 ● 若()()00 x f x f lim x x =→,则称函数()x f 在点0x 处连续。 ● 左连续右连续则连续。 ● 分段函数的分段点不一定是函数的间断点。 ● 判断函数在某点是否连续的步骤:求函数在该点的极限;求函数在该点的函数值;判断 二者是否相等,相等则连续,否则间断。 6.导数的定义式相关题目 设函数 ()x f 在 x=0某领域内有一阶连续导数,且 ()()0 000≠'≠f ,f 。若 ()()()02f h bf h af -+在0→h 时是比h 高阶的无穷小,试确定a, b. ● 函数在某一点导数的定义: ()()()x x f x x f lim x y lim x f x x ??????000 00-+=='→→ ()()()()()0 0000 00 x x x f x f lim h x f h x f lim x f x x h --=-+='→→

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

数学考研:一元函数微分学的知识点和常考题型

数学考研:一元函数微分学的知识点和常考题型 【大纲内容】 导数和微分的概念 导数的几何意义和物理意义(数三经济意义) 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数(数三不要求)的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分、曲率的概念、曲率圆与曲率半径(数三不要求) 【大纲要求】 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义(数三经济意义),会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3.了解高阶导数的概念,会求简单函数的高阶导数。 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数(数三不要求)以及反函数的导数。

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理(数三了解),了解并会用柯西(Cauchy)中值定理。 6.掌握用洛必达法则求未定式极限的方法。 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。(数三不要求) 【常考题型】 1.导数概念; 2.求给定函数的导数或微分(包括高阶导数)隐函数和由参数方程确定的函数求导; 3.函数的单调性和极值; 4.曲线的凹凸性与拐点; 5.利用微分中值定理证明有关命题和不等式或讨论方程在给定区间内的根的个数; 6.利用洛必达法则求极限; 7.几何、物理、经济等方面的最大值、最小值应用题。解这类问题,主要是确定目标函数和约束条件,判定所讨论区间。

多元函数微分法word版

§5.3 多元函数微分法 一、复合函数微分法――链式法则 模型1. ()()()z f u v u u x y v v x y ==,,,,=, z z u z z z u z x u x x y u y y νννν??????????=?+?=?+???????????; 模型2. ()()u f x y z x y =,,,z=z , x z y z u z f f x x u z f f y y ???''=+????? ???''=+???? 模型3. ()()()u f x y z y y x z x ===,,,,z ()()x y z du f f y x f z x dx '''''=++ 模型4. ()()()w f u v u u x y z v v x y z ===,,,,,,, u v u v u v w u v f f x x x w u v f f y y y w u v f f z z z ????''=+????? ????''=+? ????????''=+????? 还有其他模型可以类似处理。 【例1】 设()u f x y z =,,有连续的一阶偏导数,又函数()y y x =及()z z x =分别由 下列两式确定2xy e xy -=和0sin x z x t e dt t -= ?,求du dx 。 解 根据模型3. x y z du dy dz f f f dx dx dx '''=++

由2xy e xy -=两边对x 求导,得0xy dy dy e y x y x dx dx ???? +-+= ??????? 解出 dy y dx x =-(分子和分母消去公因子()1xy e -) 由0 sin x z x t e dt t -= ? 两边对x 求导,得()()sin 1x x z dz e x z dx -??=- ?-?? 解出 ()() 1sin x e x z dz dx x z -=- - 所以 ()()1sin x e x z du f y f f dx x x y x z z ??-???=-+-?? ??-??? 【98】设1 ()()z f xy y x y x ?=++,f ,?具有二阶连续导数,则 2________z x y ?=??。 答案:()()()yf xy x y y x y ??'''''++++ 注:①混合偏导数在连续的条件下与求导次序无关; ②此题中f 和?均为一元函数。 【05】设函数(,)()()()d x y x y u x y x y x y t t ??ψ+-=++-+? ,其中函数?具有二阶导数,ψ 具有一阶导数,则必有( ) (A )2222u u x y ??=-??;(B )2222u u x y ??=??;(C )222u u x y y ??=???;(D )222 u u x y x ??=??? 答案:B 全微分形式不变性 例:利用全微分形式不变性求sin u z e v =,u xy =,v x y =+的偏导数。 【06】设函数()f u 在(0,)+∞内具有二阶导数,且z f =满足等式 2222 0z z x y ??+=??

一元函数微分学综合练习题 (1)

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

多元函数微分法

第十章 多元函数微分学 一、学习要点 1.关于二元函数 会求二元函数的定义域和相应的函数值。求二元函数定义域及函数值的方法与一元函数的方法相似。 2.关于二元函数微分 (1)熟练掌握一阶、二阶偏导数的计算方法和复合函数、隐函数一阶偏导数的计算方法,尤其是形如z=f (x 2-y 2 ,e xy )等的复合函数的偏导数。能熟练地求全微分。 偏导数的定义、计算公式基本与一元函数导数公式相同。求偏导数时,对一个变量求导时,将另一变量视为常数。如求函数32ln z y x u ++=的偏导数 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) 复合函数求偏导数是难点。一般用链式法则,即z=f (u ,v),u=u(x ,y),v=v(x ,y),有 y v v z y u u z y z x v v z x u u z x z ????????????????????+=+= 具体情况有两种: (一)全部函数关系都给出:这时可按前边方法求偏导数,如求二元函数 )ln(2v u z +=,xy e v y x u =+=,22. 的偏导数y z x z ????,,可以把u ,v 代入z 中,再求偏导数,即 z=ln(x 2+y 2+e 2xy ),求偏导数有 xy xy e y x ye x x z 222222+++=?? xy xy e y x xe y y z 222222+++=?? (二)部分函数关系没有给出:此时只有用链式法则。如求函数z=f(xy ,x 2+y 3),

的一阶偏导数,则不能用如上方法求解.正确求法是记u=xy ,v=x 2+y 3,用链式法则 x v f y u f x v v z x u u z x z 2??????????????+=+=,23y v f x u f y z ??????+= 上例也可以用链式法则,有 xy xy xe v u v y v u y z ye v u v x v u x z 2222221,221+++=+++=???? 求隐函数的偏导数,是复合函数求偏导数的应用,方法仍然同一元隐函数的求导. 如求函数32ln z y x u ++=的偏导数. 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) (2)知道函数连续、可微、偏导数存在的关系。 3.关于偏导数的几何应用 掌握求曲线的切线与法平面,曲面的切平面与法线的方法. (1)设空间曲线方程为x =x (t),y =y (t),z = z (t),在t=t 0处的切线方向为 ))(),(),((000t z t y t x l '''=ρ,则在t 0处曲线的 切线方程为 )()()()()()(000000t z t z z t y t y y t x t x x '-='-='- 法平面方程为 )())(()())(()())((000000t z t z z t y t y y t x t x x '-+'-+'-=0 (2)曲面F (x ,y ,z)=0(或z=f (x ,y)),在曲面上的点P(x 0,y 0,z 0)处的法方向为)}1,,{(},,{),,(),,(000000z y x y x z y x z y x f f F F F n -'''''=或ρ,则在点(x 0,y 0,z 0)处的 切平面方程为 0)()()(000=-'+-'+-'z z F y y F x x F z y x 法线方程为 z y x F z z F y y F x x ' -='-='-000

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

§8.5复合函数微分法

§8.5多元复合函数微分法 复习:一元复合函数的求导法则 设)]([x f y ?=是由)(u f y =和)(x u ?=复合而成,则)()(x u f dx du du dy dx dy ?'?'=?=。 8.5.1全导数 定理1 若函数)(x u ?=及)(x v ψ=都在点x 可导,函数)v ,u (f z =在对应点)v ,u ( 处可微,则复合函数)](),([x x f z ψ?=在点x 可导,且 x d v d v z x d u d u z dx z d ? ??+???=(全导数公式)。 ① 证明:给x 以增量x ?,则u 、v 得相应的增量u ?、v ?, 从而)v ,u (f z =有全增量) ,() ,(v u f v v u u f z -?+?+=?, ∵)v ,u (f z =在)v ,u (处可微, ∴)(ρ+???+???= ?o v v z u u z z ,其中22)()(v u ?+?=ρ。 ∵)(x u ?=、)(x v ψ=都在点x 可导, ∴)(x u ?=、)(x v ψ=都在点x 必连续, 即当0→?x 时,0→?u ,0→?v ,从而0lim 0 =ρ→?x 。 ∵ x o x v v z x u u z x z ?ρ+????+????=??)(, 而x o o x x ?ρ?ρρ=ρρ→?→?)(lim )(lim 00])()([lim )(lim 220 0x v x u o x x ??+??±?ρρ=→?→? 0])()([022=+±?=dx dv dx du , ∴ x o x v v z x u u z x z x x x x ?ρ+????+????=??→?→?→?→?) (lim )(lim )(lim lim 0000, 即 x d v d v z x d u d u z dx z d ? ??+???=。

最新多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用 (A) 1.填空题 (1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ???2,x y z ???2 ,则在D 上, x y z y x z ???=???22。 (2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。 (3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。 2.求下列函数的定义域 (1)y x z -=;(2)2 2 arccos y x z u += 3.求下列各极限 (1)x xy y x sin lim 00→→; (2)11lim 0 0-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ???23及2 3y x z ???。 5.求下列函数的偏导数 (1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。 6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数 dt dz 。 7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dt du 。 8.曲线?? ???=+= 4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程122 2222=++c z b y a x 所确定的函数z 的偏导数。 10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

第九章多元函数微分法及其应用教案

第九章多元函数微分法及其应用 【教学目标与要求】 1、理解多元函数的概念和二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。 【教学重点】 1、二元函数的极限与连续性; 2、函数的偏导数和全微分; 3、方向导数与梯度的概念及其计算; 4、多元复合函数偏导数; 5、隐函数的偏导数;多元函数极值和条件极值的求法; 6、曲线的切线和法平面及曲面的切平面和法线; 【教学难点】 1、二元函数的极限与连续性的概念; 2、全微分形式的不变性; 3、复合函数偏导数的求法; 4、二元函数的二阶泰勒公式; 5、隐函数(包括由方程组确定的隐函数)的偏导数; 6、拉格郎日乘数法,多元函数的最大值和最小值。 【教学课时分配】 (18学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课§5 第6次课§6 第7次课§7 第8次课§8 第9次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞∞或00型,) ()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

多元函数微分法及其应用

第九章多元函数微分法及其应用 一、基本要求及重点、难点 1. 基本要求 (1)理解二元函数的概念,了解多元函数的概念。 (2)了解二元函数的极限、连续性概念,有界闭域上连续函数的性质。 (3)理解偏导数和全微分的概念,熟练掌握偏导数的计算,了解全微分存在的必要条件 和充分条件。 (4)了解方向导数与梯度的概念及其计算方法。 (5)掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数。 (6)会求隐函数(包括由方程组确定的隐函数)的偏导数(主要是一阶)。 (7)了解曲线的切线和法平面及曲面的切平面与法线、并会求出它们的方程。 (8)理解多元函数极值和条件极值的概念,会求二元函数的极值。了解求条件极值的拉 格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题。 2. 重点及难点 (1)重点:多元函数概念,偏导数与全微分概念,偏导数计算,微分在几何上的应用,多元函数的极值的计算。 (2)难点:二重极限的定义与计算,多元函数连续;偏导数存在与可微之间的关系;复合函数的高阶偏导数;方向导数、偏导数、梯度之间的关系。。 二、内容概述 多元函数微分学是一元函数微分学的推广,因此两者之间有许多相似之处,但是要特别注意它们之间的一些本质差别。 1.多元函数的极限和连续 (1)基本概念 1)点集和区域。 2)多元函数的定义、定义域。 3)二元函数的极限、连续。 (2)基本定理 1)多元初等函数在其定义域内是连续的。 2)多元连续函数在有界闭区域上一定有最大值M、最小值m;且必取到最大值 M和最小值m之间的任何值。 2.多元函数微分法 (1)基本概念

偏导数、全微分、高阶偏导数的定义。 (2) 计算方法 1) 偏导数:),(y x f z =在),(00y x 处对x 的偏导数 x x x z =??,就是一元函数 ),(0y x f z = 在0x x =处的导数;对y 的偏导数 x x x z =??(同理)。 2) `全微分:),(y x f z =的全微分dy y z dx x z dz ??+??= 3) 复合函数求导法则:画出函数到自变量的路经,然后利用链式迭加法则:即同 条路经的偏导数相乘,不同路经的偏导数相加,求出所要的偏导数。 A. 设),(v u f z =,)(),(t v t u ψ?==,则全导数dt dv v z dt du u z dt dz ??+ ??=。 B. 设),(v u f z =,),(),,(y x v y x u ψ?== 则: x v v z x u u z x z ????+ ????=??,y v v z y u u z y z ????+????=??。 4) 隐函数求导法则: A. 设函数)(x f y =由隐函数0),(=y x F 确定,则 y x F F dx dy -=。 B. 设函数),(y x f z =由隐函数0),,(=z y x F 确定,则 z x F F dx dz -=,z y F F dy dz - =。 C. 设函数)(),(x g z x f y ==由隐函数方程组?? ?==0 ),,(0 ),,(z y x G z y x F 确定,从 ???? ?='+'+='+'+0)()(0 )()(x g G x f G G x g F x f F F z y x z y x ,求出导数)(),(x g x f ''。 (3) 多元函数连续、可导、可微的关系 (4) 基本定理

《高等数学》(上)一元函数微分学复习题

《高等数学》(上)“一元函数微分学”复习题 1.设x x f +=1)(ln ,求)(x f '. 2.设函数)(x f 二阶可导,且0)0(=f ,1)0(='f ,2)0(=''f ,求20)(lim x x x f x -→. 3.设)(x f 在2=x 处连续,且22)(lim 2=-→x x f x ,求)2(f '. 4.若)(sin x f y =,求dy . 5.若函数)(x f 可导,)(sin 2x f y =则 dx dy 为多少? 6.设函数)1ln()(2x x f -=,求)(x f ''. 7.求等边曲线x y 1=在点2) ,2 1(的切线方程. 8.设函数???≥+<=0 ),1ln(0,sin )(x x x x x f ,求)0(-'f 、)0(+'f ,并判断)0(f '是否存在. 9.确定常数a ,b 使函数? ??>-≤+=0,0,13sin )(x b ae x x x f x 在0=x 处可导. 10.求曲线???==t y t x sin 2cos 在3π=t 处的切线方程和法线方程. 11.求由方程0=-+e xy e y 所确定的隐函数的微分dy . 12.设函数x x x y ?? ? ??+=1,求其导数y '. 13.设曲线的参数方程为?????==-t t e y e x 23,求22dx y d . 14.求由方程12 2=-y x 所确立的隐函数)(x y y =的二阶导数22dx y d . 15.设函数)(x f y =由方程4ln 2y x xy =+确定,求() 1,1dx dy . 16.求椭圆442 2=+y x 在点()2,0处的二阶导数22dx y d . 17.设()3,1是曲线2 3bx ax y +=的拐点,求b a ,.

考研数学一元函数微分学复习指导

考研数学一元函数微分学复习指导 来源:文都教育 一元函数微分学在微积分中占有极重要的位置,导数和微分是微分学两个基本概念,是研究函数局部性态的基础,微分中值定理建立了函数和导数之间的关系。为了便于大家复习,文都考研数学教研室老师帮大家梳理了本章的知识点和常考题型。 【大纲内容】 导数和微分的概念 导数的几何意义和物理意义(数三经济意义) 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数(数三不要求)的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分、曲率的概念、曲率圆与曲率半径(数三不要求) 【大纲要求】

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义(数三经济意义),会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数(数三不要求)以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理(数三了解),了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间(),a b 内,设函数 () f x 具有二阶导数。当 () ''0 f x> 时, () f x 的图形是凹的;当 () ''0 f x< 时, () f x 的图形是凸的),会求函数图形的拐点以及水平、 铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.(数三不要求) 【常考题型】 1.导数概念; 2.求给定函数的导数或微分(包括高阶导数)隐函数和由参数方程确定的函数求导; 3.函数的单调性和极值; 4.曲线的凹凸性与拐点; 5.利用微分中值定理证明有关命题和不等式或讨论方程在给定区间内的根的个数; 6.利用洛必达法则求极限; 7.几何、物理、经济等方面的最大值、最小值应用题。解这类问题,主要是确定目标函数和约束条件,判定所讨论区间。

相关文档
最新文档