《对数函数及其性质》典型例题

《对数函数及其性质》典型例题
《对数函数及其性质》典型例题

拓展延伸

应用点一 求对数型函数的定义域

【例1】求下列函数的定义域:

(1)y =log 3(3x -9);(2)y =ln (x -2);

(3)y =log (2x -1)(5x -4).

思路分析:求对数型函数的定义域,除了考虑一般的函数有意义的条件外,还要使对数的底数大于零且不等于1,真数大于零.

解:(1)由3x -9>0,得x >3,即定义域为(3,+∞).

(2)由ln(x -2)≥0,得x -2≥1,

所以x ≥3,即定义域为[3,+∞).

(3)解不等式组????? 5x -4>0,2x -1>0,

2x -1≠1,得x >45

且x ≠1, 所以函数y =log (2x -1)(5x -4)的定义域为(45

,1)∪(1,+∞).

求下列函数的定义域:

(1)

y ;

(2)y =x -4lg (2x -3)

. 应用点二 对数函数的图象

【例2】作函数y =|log 2(x +1)|+2的图象.

思路分析:含有绝对值的函数的图象是一种对称变换,一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象,在f (x )≥0时与y =f (x )的图象相同,而在f (x )<0时与y =f (x )的图象关于x 轴对称.

解:先作基本函数的图象,然后作适当的图形变换,分步骤完成.

第一步:作y =log 2x 的图象(如图2.2.2-2①);

第二步:将y =log 2x 的图象向左平移1个单位长度,得y =log 2(x +1)的图象(如图

2.2.2-2②);

第三步:将y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得y =|log 2(x +1)|

的图象(如图2.2.2-2③);

第四步:将y =|log 2(x +1)|的图象向上平移2个单位长度,便得到所求函数的图象(如图

2.2.2-2④).

图2.2.2-2

如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( ).

A .0<a <b <1

B .0<b <a <1

C .a >b >1

D .b >a >1

若0<a <1,且函数f (x )=|log a x |,则下列各式中成立的是( ).

A .f (2)>f (13)>f (14

) B .f (14)>f (2)>f (13

) C .f (13)>f (2)>f (14

) D .f (14)>f (13

)>f (2) 应用点三 比较对数值的大小

【例3】比较下列各组值的大小:

(1)1

24log 5与126log 7

;(2)12log 3与15log 3;(3)13log 0.3与log 20.8. 思路分析:充分利用函数的图象和性质(如单调性)来比较两数的大小.

图2.2.2-3

解:(1)函数y =12

log x 在区间(0,+∞)上递减,

又45<67,∴124log 5>12

6log 7. (2)借助y =12log x 及y =15

log x 的图象,如图2.2.2-3所示.

在(1,+∞)上,前者在后者的下方, ∴1125

log 3log 3<.

(3)由对数函数性质知,13

log 0.30>,log 20.8<0, ∴13

log 0.3>log 20.8.

log 43,log 34,log 433443

3log 4的大小顺序为( ). A .4

33log 4

>log 43>log 34 B .log 34>log 43>4

3

3log 4 C .log 34>4

33log 4

>log 43 D .log 433443

3log 4>log 34>log 43 应用点四 解对数不等式

【例4】解不等式:log a (x -4)>log a (x -2).

思路分析:对a 分a >1和0<a <1两种情况进行讨论.

解:当a >1时,由????? x -4>x -2,x -4>0,

x -2>0,

得此时无解. 当0<a <1时,由????? x -40,

x -2>0,得x >4.

∴综上可知:当a >1时,不等式的解集为

当0<a <1时,不等式的解集为(4,+∞).

应用点五 求反函数

【例5】求y =0.2x +1的反函数. 思路分析:从已知的解析式中解出x ,再将x ,y 互换位置. 解:因为y =0.2x +1,

所以y -1=0.2x ,x =log 0.2(y -1),即y =log 0.2(x -1).

又因为函数y =0.2x +1的值域是y >1,

所以y =log 0.2(x -1)的定义域为x >1,即函数y =0.2x +1的反函数是y =log 0.2(x -1)(x >1).

迁移1.解:(1)由12

410,log 10,0,

x x x ???????-≠-≥> 得1,41,20.x x x ?????????

≠≤> ∴定义域是{x |0<x ≤12,且x ≠14

}.

(2)由40,230,lg 230,x x x ????()?-≥->-≠得4,3,22.

x x x >≥≠ 故所求函数的定义域为{x |x ≥4}.

迁移2.B 解析:作直线y =1,则直线与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1.

迁移3.D 解析:因为0<a <1, 所以f (x )=|log a x |在(0,1)上单调递减. 所以f (14)>f (13

). 因为f (x )=|log a x |在(1,+∞)上单调递增, 所以f (3)>f (2).

又因为f (3)=|log a 3|=|log a

13|=f (13), 所以f (13

)>f (2). 综上所述,f (14)>f (13

)>f (2). 迁移4.B 解析:因为log 34>1,0<log 43<1,14

43334log log ()43

-==-1, 所以log 34>log 43>4

33log 4

.

4 对数函数及其性质(1)

高中数学教学设计大赛 获奖作品汇编 4、对数函数及其性质(1) 一、教材分析 本小节主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。 二、学生学习情况分析 刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 三、设计理念 本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。 四、教学目标 1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型; 2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。 五、教学重点与难点 重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响. 六、教学过程设计

二次函数典型例题解析与习题训练

又∵y=x 2-x+m=[x 2-x+(12)2]- 14+m=(x -12)2+414 m - ∴对称轴是直线x=12,顶点坐标为(12,41 4 m -). (2)∵顶点在x 轴上方, ∴顶点的纵坐标大于0,即41 4 m ->0 ∴m> 14 ∴m>1 4 时,顶点在x 轴上方. (3)令x=0,则y=m . 即抛物线y=x 2-x+m 与y 轴交点的坐标是A (0,m ). ∵AB ∥x 轴 ∴B 点的纵坐标为m . 当x 2-x+m=m 时,解得x 1=0,x 2=1. ∴A (0,m ),B (1,m ) 在Rt △BAO 中,AB=1,OA=│m │. ∵S △AOB =1 2 OA ·AB=4. ∴ 1 2 │m │·1=4,∴m=±8 故所求二次函数的解析式为y=x 2-x+8或y=x 2-x -8. 【点评】正确理解并掌握二次函数中常数a ,b ,c 的符号与函数性质及位置的关系是解答本题的关键之处. 例2 已知:m ,n 是方程x 2-6x+5=0的两个实数根,且m

为D,试求出点C,D的坐标和△BCD的面积; (3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标. 【分析】(1)解方程求出m,n的值.用待定系数法求出b,c的值. (2)过D作x轴的垂线交x轴于点M,可求出△DMC,梯形BDBO,△BOC的面积,用割补法可求出△BCD的面积. (3)PH与BC的交点设为E点,则点E有两种可能:①EH=3 2EP,②EH=2 3 EP. 【解答】(1)解方程x2-6x+5=0, 得x1=5,x2=1. 由m

幂函数经典例题

例1、下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,1 2 时,幂函数y=xα是增函数 D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数 解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案C 例2、已知幂函数f(x)=(t3-t+1)x 1 5 (7+3t-2t2) (t∈Z)是偶函数且在(0,+ ∞)上为增函数,求实数t的值. 分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设p q (|p|、|q|互 质),当q为偶数时,p必为奇数,y=x p q 是非奇非偶函数;当q是奇数时,y= x p q 的奇偶性与p的值相对应. 解∵f(x)是幂函数,∴t3-t+1=1, ∴t=-1,1或0. 当t=0时,f(x)=x 7 5 是奇函数; 当t=-1时,f(x)=x 2 5 是偶函数; 当t=1时,f(x)=x 8 5 是偶函数,且 2 5 和 8 5 都大于0,在(0,+∞)上为增函数.

故t =1且f (x )=x 85或t =-1且f (x )=x 2 5 . 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件 t ∈Z 给予足够的重视. 例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( ) A .-11 D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0x 1 3,求x 的取值范围. 错解 由于x 2 ≥0,x 1 3∈R ,则由x 2>x 1 3 ,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α 在 α>1和0<α<1两种情况下图象的分布. 正解 作出函数y=x2和y=3 1x 的图象(如右图所示),易得x<0或x>1. 例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )

指对幂函数经典练习题

高一数学期末复习幂函数、指数函数和对数函数 1、若函数x a a a y ?+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且 2、下列所给出的函数中,是幂函数的是 ( ) A .3x y -= B .3-=x y C .32x y = D .13-=x y 3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( ) A .log c a =b B .log c b =a C .log a b =c D .log b a =c 4、若210,5100==b a ,则b a +2= ( ) A 、0 B 、1 C 、2 D 、3 5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( ) A 、0,0>>y x B 、0,0<>y x C 、0,0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.

对数函数及其性质练习题及答案解析

1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 解析:选A.????? x -1>04-x ≥0 ,解得10时,y =x x log 2x =log 2x ;当x <0时,y =x -x log 2(-x )=-log 2(-x ),分别作图象可知选D. 3.(2010年高考大纲全国卷Ⅰ)已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则ab =( ) A .1 B .2 C.1 2 D.14 解析:选A.如图由f (a )=f (b ), 得|lg a |=|lg b |. 设0<a <b ,则lg a +lg b =0. ∴ab =1. 4.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________. 解析:当x =-1时,log a (x +2)=0,y =log a (x +2)+3=3,过定点(-1,3). 答案:(-1,3) 1.下列各组函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,且a ≠1) B .y =x 与y =x C .y =lg x 与y =lg x D .y =x 2与y =lg x 2 解析:选C.A.定义域分别为R 和(0,+∞),B.定义域分别为R 和[0,+∞),C.定义域都是(0,+∞),D.定义域分别为R 和x ≠0. 2.函数y =log 2x 与y =log 12x 的图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线y =x 对称 解析:选A.y =log 12x =-log 2x . 3.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( )

教学活动设计对数函数及其性质(1)

教学设计------对数函数及其性质(1) 石家庄二中王大芬 一、教材分析 本节既是重点又是难点,对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。因此可采用类比的方法教学。但是对数函数与指数函数相比所涉及的知识更丰富、方法更灵活,能力要求也更高。 二、学生学习情况分析 刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 三、设计理念 针对学生的实际情况,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。 四、教学目标 1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点 2.通过图像掌握对数函数的性质,并能运用它解决简单问题;

五、教学重点与难点 重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响. 六、教学过程设计 教学流程:背景材料→ 引出课题 → 函数图象→ 函数性质 →问题解决→归纳小结 (一)熟悉背景、引入课题 如图1材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4 个 ……, (1)分裂次数n 与细胞个数y 的函数关系是: (2),如果大约可以得到细胞1万个,10万个 ……,试问这种细胞经过多少次分裂?分裂次数y 就是要得到的细胞个数x 的函数,即x y 2log =; 图 1 1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:形如函数0(log >=a x y a ,且)1≠a 叫做对数函数,

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

对数函数及其性质

对数函数及其性质 Prepared on 22 November 2020

对数函数及其性质(一) 教学目标 (一) 教学知识点 1.对数函数的概念; 2.对数函数的图象与性质. (二) 能力训练要求 1.理解对数函数的概念; 2.掌握对数函数的图象、性质; 3.培养学生数形结合的意识. (三)德育渗透目标 1.认识事物之间的普遍联系与相互转化; 2.用联系的观点看问题; 3.了解对数函数在生产生活中的简单应用. 教学重点 对数函数的图象、性质. 教学难点 对数函数的图象与指数函数的关系. 教学过程 一、复习引入: 1、指对数互化关系: b N N a a b =?=log 2、 )10(≠>=a a a y x 且的图象和性质.

3、 我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个 数y 是分裂次数x 的函数,这个函数可以用指数函数y =x 2表示. 现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数x 就是要得到的细胞个数y 的函数.根据对数的定义,这个函数可以写成对数的形式就是y x 2log =. 如果用x 表示自变量,y 表示函数,这个函数就是x y 2log =. 引出新课--对数函数. 二、新授内容: 1.对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为 ),(+∞-∞. 例1. 求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=. 分析:此题主要利用对数函数x y a log =的定义域(0,+∞)求解. 解:(1)由2 x >0得0≠x ,∴函数2log x y a =的定义域是{}0|≠x x ; (2)由04>-x 得4-x 得-33<

《对数函数及其性质》教案及设计说明

对数函数及其性质教学设计 三亚市第四中学邓影 课题:对数函数及其性质 使用教材:人教A版《普通高中课程标准实验教科书数学(必修1)》 第二章第2.2.2节第一课时 一、教材分析 1.本节教材的地位和作用 基本初等函数是函数的核心内容,而对数函数又是重要的基本初等函数之一。在此之前,学生已经学习了指数函数及对数运算,为本节的学习起着铺垫作用,同时对数函数作为常用数学模型是解决有关自然科学领域中实际问题的重要工具,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。因此本节课具有承前启后的作用。 2.教学重难点 重点:本节课是新授课,,因此我把本节课重点定为对数函数的概念、图象,和性质。 难点:学生在探究对数函数性质时可能会遇到障碍,因此我把探究对数函数性质作为本节课的难点。 二、教学目标 根据上述教材结构与内容分析,考虑到学生实际情况及其认知结构心理特征制定教学目标如下: 1.知识与技能: (1)理解对数函数的概念; (2)掌握对数函数的图像和性质,并在探索过程中学会运用数形结合的方法研究问题; 2.过程与方法: (1)经历对数函数概念的形成过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,由具体到一般,提高学生归纳概括能力; (2)学生通过自己动手作图,分组讨论对数函数的性质,提高动手能力、合作学习能力以及分析解决问题的能力; (3)通过类比指数函数性质研究对数函数,培养学生运用类比的思想研究数学问题的素养;

3.情感、态度与价值观: 在知识形成的过程中,体会成功的乐趣,感受数学图形的美,激发学生学习数学的热情与爱国主义热情,培养学生勇于探索敢于创新的精神。 三、教法学法 1.教学方法 建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。它既强调学习者的认知主体作用,又不忽视教师的指导作用。 高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟. 在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式 ...”教学方法。将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。其理论依据为建构主义学习理论。它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。 2. 学法指导 新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。因此本节课学生将在教师的启发诱导下对教师提供的素材经历创设情境→获得新知→作图察质→问题探究→归纳性质→学以致用→趁热打铁→画龙点睛→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。 3. 教学手段 本节课我选择计算机辅助教学。增大课堂容量,提高课堂效率;激发学生的学习兴趣,展示运动变化过程,使信息技术真正为教学服务. 4.教学流程

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

幂函数的典型例题.doc

经典例题透析 类型一、求函数解析式 例1.已知幕函数y = (nr-m-])x,,,2-2m~3,当xw(0, + 8)时为减函数,则幕函数y二___________________ . 解析:由于丁 =(加2—血—1)#宀2心为幕函数, 所以m2— \ = \,解得m = 2 ,或m = —\. 当ni = 2时,nr -2m-3 = -3 , y = x~3在(0, + 8)上为减函数; 当m = -l时,/7?2-2m-3 = 0, y = %° =1(x^0)在(0, + ?)上为常数函数,不合题意,舍去. 故所求幕函数为y = x-3. 总结升华:求慕函数的解析式,一般用待定系数法,弄明白需函数的定义是关键. 类型二、比较幕函数值大小 例2.比较下列各组数的大小. 4 4 _ 3 _ 3 (1)3」4万与兀了;(2)(-近门与(-73)^. 4 4_4 解:⑴由于幕函数y = ?亍(x>0)单调递减且3」4 <龙,???3.14万 > 兀了. _3 (2)由于y =兀5这个幕函数是奇函数.???f (-x) =-f (x) —_ 3 _ 3 _ 3 _ 3 _ _因此,(一血门二一(血)V,(―巧)V =—(內)V ,而y = (x>0)单调递减,且血 3 3 3 3 3 3 ???(血戸 >"门即(一血门v( 总结升华. (1)各题中的两个数都是“同指数”的幕,因此可看作是同一个幕函数的两个不同的函数值,从而可根据幕函数的单调性做出判断. (2)题(2)中,我们是利用幕函数的奇偶性,先把底数化为正数的幕解决的问题.当然,若直接利用x<0 上幕函数的单调性解决问题也是可以的. 举一反三 【变式一】比较O.805, O.905, 0.9皿的大小. 思路点拨:先利用幕函数)=兀"的增减性比较0?8°5与0.9°"的大小,再根据幕函数的图象比较0.9°"与0.9七5的大小. 解:y = x Q-5^.(0, + oo)上单调递增,且0.8 v 0.9 , .?,0.805 <0.905. 作出函数y = X05与歹=兀七5在第一象限内的图彖, 易知0.严< 0.9心.

次函数与幂函数典型例题

二次函数与幂函数 1.求二次函数的解析式. 2.求二次函数的值域与最值. 3.利用幂函数的图象和性质分析解决有关问题. 【复习指导】 本节复习时,应从“数”与“形”两个角度来把握二次函数和幂函数的图象和性质,重点解决二次函数在闭区间上的最值问题,此类问题经常与其它知识结合命题,应注重分类讨论思想与数形结合思想的综合应用. 基础梳理 1.二次函数的基本知识 (1)函数f (x )=ax 2+bx +c (a ≠0)叫做二次函数,它的定义域是R . (2)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,对称轴方程为x = -b 2a ,顶点坐标是? ?? ?? -b 2a , 4ac -b 2 4a . ①当a >0时,抛物线开口向上,函数在? ????-∞,-b 2a 上递减,在?????? -b 2a ,+∞上递增,当x =-b 2a 时,f (x )min =4ac -b 2 4a ; ②当a <0时,抛物线开口向下,函数在? ????-∞,-b 2a 上递增,在?????? -b 2a ,+∞上递减,当x =-b 2a 时,f (x )max =4ac -b 2 4a . ③二次函数f (x )=ax 2+bx +c (a ≠0)当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ |a | . (3)二次函数的解析式的三种形式: ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+h (a ≠0); ③两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.幂函数

商品利润问题与二次函数典型例题解析

商品利润问题与二次函数典型例题解析 知识链接复习: 1、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元 解:设每千克应涨价x 元,读题完成下列填空 问题一:涨价后每千克盈利 元; 问题二:涨价后日销售量减少 千克; 问题三:涨价后每天的销售量是 千克; 问题四:涨价后每天盈利 元 根据题意列方程得: 解方程得: 因为商家涨价的目的是 ;所以 符合题意。 答: 。 2、二次函数y=ax 2 +bx+c 的顶点坐标是x= y= 3、函数y=x 2+2x-3(-2≤x ≤2)的最大值和最小值分别是 新知解析: 例1、某商品现在的售价为每件35元,每天可卖出50件。市场调查发现:如果调整价格,每降价1元,那么每天可多卖出两件。请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少 解:设当降价X 元时销售额为y 元,根据题意得: y=(35-x )(50+2x )=-2x 2+20x+1750 x=-a b 2=-) 2(×220=5 因为0<5<35且a=-2<0 所以y=(35-5)(50+10)=1800 答:当降价5元时 销售额最大为1800元。 此类习题注意要点: 1、根据题意设未知量,一般设增加或者减少量为x 元时相应的收益为y 元,列出函数关系式。 2、判断顶点横坐标是否在取值范围内。因为函数的最值不一定是实际问题的最值 3、根据题意求最值。写出正确答案。 例2、某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出,若每张床位每天收费提高2元,则相应的减少了10张床位租出,如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元租金最高是多少钱 解:设当张价X 元时租金为y 元,根据题意得:y=(100-10 ×2 x )(10+x )=-5x 2+50x+1000 x=-a b 2=-)5_( ×250=5

高三数学专题复习总结-(幂函数)经典

高三数学专题复习总结-(幂函数)经典 1 / 1 2 高三数学专题复习 (幂函数)经典 1.设? ????? --∈3,2,1,21,1,2α,则使幂函数a y x =为奇函数且在(0,)+∞上单调递增的a 值的个数为( ) A .0 B .1 C .2 D .3 2.设11,0,,1,2,32a ? ?∈-???? ,则使函数a y x =的定义域为R 且为奇函数的所有a 的值有( ) A .1个 B .2个 C .3个 D .4个 3.对于幂函数f(x)=45x ,若0<x 1<x 2,则12( )2x x f +,12()()2 f x f x +的大小关系是( ) A. 12( )2x x f +>12()()2f x f x + B. 12()2x x f +<12()()2 f x f x + C. 12()2x x f +=12()()2 f x f x + D. 无法确定 4.设函数y =x 3与21()2x y -=的图像的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 5.下列说法正确的是( ) A .幂函数的图像恒过(0,0)点 B .指数函数的图像恒过(1,0)点 C .对数函数的图像恒在y 轴右侧 D .幂函数的图像恒在x 轴上方 6.若0>>n m ,则下列结论正确的是( ) A. 22m n < B. 22 m n < C. n m 22log log > D. 11m n > 7.若函数32)32()(-+=m x m x f 是幂函数,则m 的值为( ) A .1- B .0 C .1 D .2 8.幂函数y f x =()的图象经过点1 42 (,),则(2)f ( ) A. 14 B. 12 - 9.幂函数35m y x -=,其中m N ∈,且在(0,)+∞上是减函数,又()()f x f x -=, 则m =( ) A.0 B.1 C.2 D.3 10.已知幂函数()m f x x =的图象经过点(4,2),则(16)f =( )

《对数函数及其性质》教材梳理

疱丁巧解牛 知识·巧学·升华 一、对数函数及其性质 1.对数函数 一般地,函数y=log a x (a>0,a ≠1)叫对数函数,其中x 是自变量,函数的定义域是(0,+∞). 因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞),指数函数与对数函数的定义域和值域是互换的. 只有形如y=log a x (a>0,a ≠1,x>0)的函数才叫对数函数.像y=log a (x+1),y=2log a x ,y=log a x+3等函数,它们是由对数函数变化而得到的,都不是对数函数.对数函数同指数函数一样都是基本初等函数,它来自于实践. 2.对数函数的图象和性质 (1)下面先画指数函数y=log 2x 及y=log 1/2x 图象 描点即可完成y=log 2x ,y=x 21log 的图象,如下图. 0 1 2 4 8 x -1 -2 y=log 1/2x -3s 由表及图可以发现: 我们可以通过函数y=log 2x 的图象得到函数y=log 0.5x 的图象.利用换底公式可以得到:y=log 0.5x=-log 2x ,点(x,y)与点(x,-y)关于x 轴对称,所以y=log 2x 的图象上任意一点(x,y)关于x 轴对称点(x,-y)在y=log 0.5x 的图象上,反之亦然.根据这种对称性就可以利用函数y=log 2x 的图象画出函数y=log 0.5x 的图象. 方法点拨 注意此处空半格①作对数函数图象,其关键是作出三个特殊点(a 1,-1),(1,0),(a ,1).一般情况下,作对数函数图象有这三点就足够了.不妨叫做“三点作图法.”②函数y=log a x 与y=x a 1log 的图象关于x 轴对称.

二次函数知识点总结与典型例题讲解

二次函数知识点总结及典型例题讲解 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1 x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 三、二次函数的性质

对数函数及其性质经典练习题

对数函数及其性质(一) 班级_____________姓名_______________座号___________ 1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 2.函数y =x |x | log 2|x |的大致图象是( ) 3.若log a 2<1,则实数a 的取值范围是( ) A .(1,2) B .(0,1)∪(2,+∞) C .(0,1)∪(1,2) D .(0,12 ) 4.设a =2log 3,b =2 1log 6,c =6log 5,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 5.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( ) 6.函数y =log 2x 在[1,2]上的值域是( ) A .R B .[0,+∞) C .(-∞,1] D .[0,1] 7.函数y =log 12(x -1)的定义域是________. 8.若函数f (x )=log a x (0≤???x x x x 则g [g (1 3)]=________. 10.f (x )=log 21+x a -x 的图象关于原点对称,则实数a 的值为________. 11.函数f (x )=log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,求实数a 的取值范围.

二次函数知识点总结及典型例题

二次函数知识点总结及典型例题 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程0 2=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这 样表示。 三、抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴所在直线;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

高中数学幂函数考点及经典例题题型突破

幂函数、二次函数 考纲解读 1.结合函数y =x ,y =x 2,y =x 3,y =1x ,y =x 1 2的图象解决简单的幂函数问题; 2.用待定系数法求二次函数解析式,结合图象解决二次函数问题; 3.用二次函数、方程、不等式之间的关系解决综合问题. [基础梳理] 1.幂函数 (1)定义:一般地,函数y =x α叫作幂函数,其中底数x 是自变量,α是常数. (2)幂函数的图象比较: 2.二次函数 (1)解析式: 一般式:f (x )=ax 2+bx +c (a ≠0). 顶点式:f (x )=a (x -h )2+k (a ≠0). 两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)图象与性质: (-∞,+∞) (-∞,+∞)

[三基自测] 1.已知幂函数f (x )=k ·x α的图象过点????12,2 2,则k +α=( ) A.1 2 B .1 C.32 D .2 答案:C 2.已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a <-3 D .a ≤-3 答案:D 3.幂函数f (x )=xa 2-10a +23(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a 等于( ) A .3 B .4 C .5 D .6 答案:C 4.(必修1·第一章复习参考题改编)若g (x )=x 2+ax +b ,则g (2)与1 2[g (1)+g (3)]的大小关 系为________. 答案:g (2)<1 2 [g (1)+g (3)] 5.(2017·高考全国卷Ⅰ改编)函数y =x 2+1 x 的增区间为__________. 答案:? ?? ??132,+∞ [考点例题] 考点一 幂函数的图象和性质|易错突破 [例1] (1)已知幂函数f (x )=,若f (a +1)

相关文档
最新文档