角平分线与平行线结合的等腰三角形问题知识讲解

角平分线与平行线结合的等腰三角形问题知识讲解
角平分线与平行线结合的等腰三角形问题知识讲解

精品文档

精品文档角平分线与平行线构造等腰三角形问题

基本图形1

已知: AB∥CD, (1)CE平分∠ACD交AB于E.问⊿ACE是什么特殊三角形?

(2)反过来,若AC=AE,问CE是∠ACD的平分线吗?

基本图形2

已知:△ABC,AB=AC,(1)AE是外角∠BAD的平分线.问AE与BC平行吗?

(2)若AE∥BC,问∠DAE=∠BAE吗?(3)若AE是外角∠BAD的平分线,且AE∥BC,AB=AC吗?

问题举例

1.已知:如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形。

2.(2016?泰安)如图,在□ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()

A.2 B.3 C.4 D.6

3.如图,CD、BD平分∠BCA及∠ABC,EF过D点且EF∥BC,AB=8,AC=6 。则△AEF 的周长是______ 4.(2013泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC 交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()

A.2B.4C.4 D.8

5.(2013菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,

BP交CE于D,∠CBP的平分线交CE于Q,当CQ=

3

CE时,EP+BP= .

6.如图,正方形ABCD中,AB=6,点E在边C D上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是( )

A.1 B.2 C.3 D.4

7.已知:□ABCD,BE平分∠ABC, CF平分∠BCD,BE、CF分别交AD于E、F,BE与CF交于点G.

(1)求证:BE⊥CF.

(2)若AB=5,BC=8,求EF的长.

8.(2013?张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF;

角平分线和平行线构成等腰三角形的探究

角平分线和平行线构成等腰三角形的探究 -----李春蕊北京市育英学校 一、教材分析:《等腰三角形》是“人教版八年级数学(上)”第十二章第三节的内容。等腰三角形是一种特殊的三角形,它除了具备一般三角形的所有性质外,还有许多特殊的性质,由于这些特殊性质,使它比一般的三角形应用更广泛。这一单元的主要内容是等腰三角形的性质和判定,以及等边三角形的相关知识,尤其是等腰三角形的性质和判定,它们是研究等边三角形、证明线段等和角等的重要依据. 学情分析:本节课在学生已经学习了轴对称、等腰三角形性质及判定基础上,进一步探究角平分线和平行线形成等腰三角形的问题。学生具有一定说理能力,整体几何感观比较清晰,在探究活动中,能够根据老师的问题进行有切入的思考。 二、教学目标: (1)掌握角平分线和平行线形成等腰三角形的基本规律; (2)体会研究问题中用到的分类思想,经历由特征图形问题的解决,发展对问题的进一步探究,认识到在几何问题中,位置关系可得出一定数量关系,特殊的数量关系也能推出一定位置关系. (3)通过交流和研讨,使学生在探索的同时获得解决问题的一种方法,提高学生学习数学的兴趣和信心. 教学重点:掌握角平分线+平行线能形成等腰三角形这个基本规律,利用这个规律解决等腰三角形方面的有关问题. 教学难点:灵活运用角平分线和平行线形成等腰三角形这个基本规律解决有关问题. 突出重点方法:观察,思考,证明. 突出难点方法:自主探究 教学方法:启发与探究相结合 教学准备:PPT,课本,作图工具 三、教学设计: (一)复习等腰三角形相关知识 1、请同学们对等腰三角形的知识要点进行自我回顾: (由学生先进行回顾,教师补充) (二)探究过程 问题1:已知∠ABC,BD平分∠ABC,ED//BC.思考:△EBD是等腰三角形吗? 解:是;EB=ED

角平分线定理

角平分线定理 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 ■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 ■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 ■定理1:在角平分线上的任意一点到这个角的两边距离相等。 ■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 ■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC 提供四种证明方法: 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC 已知和证明1图 证明:方法1:(面积法) S△ABM=(1/2)·AB·AM·sin∠BAM, S△ACM=(1/2)·AC·AM·sin∠CAM, ∴S△ABM:S△ACM=AB:AC 又△ABM和△ACM是等高三角形,面积的比等于底的比,

证明2图 即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC 方法2(相似形) 过C作CN‖AB交AM的延长线于N 则△ABM∽△NCM ∴AB/NC=BM/CM 又可证明∠CAN=∠ANC ∴AC=CN ∴AB/AC=MB/MC 证明3图 方法3(相似形) 过M作MN‖AB交AC于N 则△ABC∽△NMC, ∴AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN ∴AN=MN ∴AB/AC=AN/NC ∴AB/AC=MB/MC

平行线的判定和性质知识点详解(推荐文档)

平行线的判定和性质(综合篇) 一、重点和难点: 重点:平行线的判定性质。 难点:①平行线的性质与平行线的判定的区分②掌握推理论证的格式。 二、例题: 这部分内容所涉及的题目主要是从已知图形中辨认出对顶角、同位角、内错角或同旁内角。解答这类题目的前提是熟练地掌握这些角的概念,关键是把握住这些角的基本图形特征,有时还需添加必要的辅助线,用以突出基本图形的特征。 上述类型题目大致可分为两大类。 一类题目是判断两个角相等或互补及与之有关的一些角的运算问题。其方法是“由线定角”,即运用平行线的性质来推出两个角相等或互补。 另一类题目主要是“由角定线”,也就是根据某些角的相等或互补关系来判断两直线平行,解此类题目必须要掌握好平行线的判定方法。 例1.如图,已知直线a,b,c被直线d所截,若∠1=∠2,∠2+∠3=180°,求证:∠1=∠7 分析:运用综合法,证明此题的思路是由已知角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。∠1与∠7是直线a和c被d所截得的同位角。须证a//c。 法(一)证明:∵d是直线(已知) ∴∠1+∠4=180°(平角定义) ∵∠2+∠3=180°,∠1=∠2(已知) ∴∠3=∠4(等角的补角相等) ∴a//c(同位角相等,两直线平行) ∴∠1=∠7(两直线平行,同位角相等) 法(二)证明:∵∠2+∠3=180°,∠1=∠2(已知) ∴∠1+∠3=180°(等量代换) ∵∠5=∠1,∠6=∠3(对顶角相等) ∴∠5+∠6=180°(等量代换) ∴a//c (同旁内角互补,两直线平行) ∴∠1=∠7(两直线平行,同位角相等)。 例2.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。 分析:只要求得∠EBC=∠CBD,由∠1+∠2=180°推出∠1=∠BDC,从而推出AE//FC,从而推出∠C=∠EBC而 ∠C=∠A于是可得∠A=∠EBC。因此又可得AD//BC,最后再运用平行线性质和已知条件便可推

角平分线的定义是什么

角平分线的定义是什么 本文是关于角平分线的定义是什么,仅供参考,希望对您有所帮助,感谢阅读。 角平分线的定义 角平分线定义(Anglebisectordefinition)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线(bisectorofangle)。三角形三条角平分线的交点叫做三角形的内心。三角形的内心到三边的距离相等,是该三角形内切圆的圆心。其它解释:角平分线是在角的型内及形上,到角两边距离相等的点的轨迹。 角平分线的性质 在角的平分线上的点到这个角的两边的距离相等。 (逆定理)在一个角的内部(包括顶点)且到角的两边的距离相等的点在这个角的角平分线上。 三角形的角平分线定义 三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。 角平分线的其它解释 角平分线可以看作是到角两边距离相等的所有点的集合。 三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三个角平分线。三角形的角平分线交点一定在三角形内部。 角平分线的作法 在角AOB中,画角平分线 方法一:1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,

N。 2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点p。 3.作射线Op。 则射线Op为角AOB的角平分线。 证明:连接pM,pN 在△pOM和△pON中 ∵OM=ON,pM=pN,pO=pO ∴△pOM≌△pON(SSS) ∴∠pOM=∠pON,即射线Op为角AOB的角平分线 当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。 方法二:1.在两边OA、OB上分别截取OM、OC和ON、OD,且使得OM=ON,OC=OD; 2.连接CN与DM,他们相交于点p; 3.作射线Op。 则射线Op为角AOB的角平分线。 角平分线的举例 求证:三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。 如图,若AD是△ABC的角平分线,则 BD/DC=AB/AC 。 证明:作CE∥AD交BA延长线于E。 ∵CE∥AD ∴△BDA∽△BCE ∴BA/BE=BD/BC ∴ BA/AE=BD/DC ∵CE∥AD ∴∠BAD=∠E,∠DAC=∠ACE ∵AD平分∠BAC ∴∠BAD=∠CAD ∴∠BAD=∠CAD=∠ACE=∠E 即∠ACE=∠E

平行线及角平分线类相似

平行线及角平分线类相似 中考要求 重难点 1.相似定义,性质,判定,应用和位似 2.相似的判定和证明 3.相似比的转化 课前预习 上一节课我们知道了相似三角形的由来,那你是否知道其他跟金子塔有关的不可思议的事实呢? 不仅建造金字搭的技术中,表现了古埃及人的非凡的数学天才;而且,它本身的许多数据,也说明了古埃及人的数学才华,巧夺天工,比如,胡夫金字塔底面周长365米,恰好是一年的天娄;周长乘以2,正是赤道的时分度;搭高乘以10九次方,正是地球到太阳的距离;周长除以塔塔高的2倍,正是圆周率3.1415926……;塔的自重乘以10的15次方,正好是地球的重量;塔里放置的棺材內部尺寸,正好是几千年后希腊数学家华连哥拉斯发现华连哥拉斯数——345 ∶∶. 数学的趣味是无法言语的,同学们可以从身边的点滴去发现其中的奥秘.

例题精讲 模块一 平行线类相似问题 平行线类相似的基本模型有 ?模型一、二类综合题 【例1】 如图,在ABC △中,M 是AC 的中点,E 是AB 上一点,且1 4 AE AB = ,连接EM 并延长,交BC 的延长线于D ,则 BC CD =____ ___. M E C B A 【难度】3星 【解析】先介绍常规的解法: B C F E D M A B C F E D M A 如图,过点C 作DE 或AB 的平行线均可,不妨以左图为例来说明. 过点C 作//CF DE ,交AB 于点F . ∵AM MC =,//CF DE ∴AE EF = ∵14AE AB = ∴2BF EF = ∵//CF DE ∴ 2BC BF CD EF == 当然,过点M 、点E 作适当的平行线,均可作出此题,这里不再给出.

等腰三角形知识要点及培优试题教案资料

等腰三角形知识要点及培优试题

等腰三角形性质与判定知识点及精选练习题 知识梳理 知识点1:等腰三角形的性质定理1 (1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”) (2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C (3)证明:取BC的中点D,连接AD 在△ABD和△ACD中 ∴△ABD≌△ACD(SSS) ∴∠B=∠C(全等三角形对应角相等) (4)定理的作用:证明同一个三角形中的两个角相等。 知识点2:等腰三角形性质定理2 (1)文字语言:等腰三角形的顶角平分线,底边上的中线, 底边上的高,互相重合(简称“三线合一”) (2)符号语言:∵AB=AC,BD=DC∴∠1=∠2,AD⊥BC (3)定理的作用:可证明角相等,线段相等或垂直。 说明:在等腰三角形中经常添加辅助线,虽然“顶角的平分线,底 边上的高、底边上的中线互相重合,如何添加要根据具体情况来定, 作时只作一条,再根据性质得出另两条”。 知识3:等腰三角形的判定定理 (1)文字语言:如果一个三角形的两个角相等,那么这两个角所 对的边也相等(简写为“等角对等边”) (2)符号语言:在△ABC中,∵∠B=∠C ∴AB=AC (3)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。 在△ABD和△ACD中 ∴△ABD≌△ACD (AAS)∴AB=AC (4)定理的作用:等腰三角形的判定定理揭示了三角形中角与边的转化 关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化 为边的相等关系的重要依据,是本节的重点。 说明:①本定理的证明用的是作底边上的高,还有其他证明方法(如 作顶角的平分线)。 ②证明一个三角形是等腰三角形的方法有两种:1、利用定 义 2、利用定理。 知识点4:等腰三角形的推论 1. 推论:推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对 的直角边等于斜边的一半。 知识点5:等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等 腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过 它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底 边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可 以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况 来定。 一、知识点回顾 等腰三角形的性质: 仅供学习与交流,如有侵权请联系网站删除谢谢- 2 -

中考数学专题复习:角与角平分线,平行线

角与角平分线 典题探究 例1 把15°30′化成度的形式,则15°30′=____度. 例2 命题“相等的角是对顶角”是______命题.(填“真”或“假”) 例3 已知∠A =67°,则∠A 的余角等于 度. 例4 如图,BD 是∠ABC 的平分线,P 是BD 上的一点,PE ⊥BA 于点E ,PE =4㎝,则点P 到边 BC 的距离为 ㎝. E P D C B A 课后练习 A 组 1.如图,表示下列各角: (1) (2) (3) 2.下列各图中有多少个小于180度的角?并把它们表示出来。 (1) (2) 3.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个的是( ) 4. 计算:① 57.3°=______°=______′; ②18°15′= ° ;

③ 33°52′+21°54′=__________; ④28°23′×2 - 6°2′= __________; ⑤ 90°—43°18′= __ ; ⑥360°÷7≈ ___ (精确到分) 5.按图填空: 6.下列四个图形中2∠大于1∠的是( ) 7.如图,OC 平分∠AOB ,如果∠COB=42°,那么∠AOB=_________° B 组 8.尺规作图:求作一个角,使它等于已知角∠AOB ,不写作法,保留作图痕迹。 结论: 9.尺规作图:已知∠AOB ,求作∠AOB 的角平分线。不写作法,保留作图痕迹。 结论: 10. Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于点D ,2CD =, 则点D 到AB 的距离是( ) A .1 B .2 C .3 D .4

角平分线的性质典型例题

【典型例题】 例1.已知:如图所示,/ C=/ C'= 90 °, AC= AC 求证:(1)Z ABC=Z ABC ; (2)BO BC(要求:不用三角形全等判定). 分析:由条件/ C=Z C = 90°, AO AC,可以把点A看作是/ CBC平分线上的点,由此可打开思路. 证明:(1)vZ C=Z C = 90°(已知), ??? ACL BC, AC丄BC (垂直的定义). 又??? AO AC (已知), ???点A在/CBC勺角平分线上(到角的两边距离相等的点在这个角的平分线上). ? / ABC=Z ABC. (2)vZ C=Z C;Z ABC=Z ABC, ?180°—(/ C+Z ABC = 180°—(/ C '+/ ABC)(三角形内角和定理)即/ BAC=Z BAC, ??? AC L BC, AC L BC, ?BO BC (角平分线上的点到这个角两边的距离相等). 评析:利用三角形全等进行问题证明对平面几何的学习有一定的积极作用,但也会产生消极作用,在解题时,要能打破思维定势,寻求解题方法的多样性. 例 2.女口图所示,已知△ ABC中, PE// AB交BC于E, PF// AC交BC于F, P是AD上一点,且D点到PE的距离与到PF的距离相等,判断AD是否平分Z BAC 并说明理由. 分析:判定一条射线是不是一个角的平分线,可用角平分线的定义和角平分线的判定定理.根据题意,首先由角平分线的判定定理推导出Z 1 = Z 2,再利用平行线推得Z 3=Z 4,最后用角平分线的定义得证. 解:AD平分Z BAC ??? D到PE的距离与到PF的距离相等, ???点D在Z EPF的平分线上. ? Z 1 = Z 2. 又??? PE// AB ???/ 1 = Z 3.

初一数学下册《相交线与平行线》知识点归纳上课讲义

相交线与平行线 一、目标与要求 1.理解对顶角和邻补角的概念,能在图形中辨认; 2.掌握对顶角相等的性质和它的推证过程; 3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。 二、重点 在较复杂的图形中准确辨认对顶角和邻补角; 两条直线互相垂直的概念、性质和画法; 同位角、内错角、同旁内角的概念与识别。 三、难点 在较复杂的图形中准确辨认对顶角和邻补角; 对点到直线的距离的概念的理解; 对平行线本质属性的理解,用几何语言描述图形的性质; 能区分平行线的性质和判定,平行线的性质与判定的混合应用。 四、知识框架 五、知识点、概念总结 1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。 2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。 3.对顶角和邻补角的关系

4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。 5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。 7.垂线性质 (1)在同一平面内,过一点有且只有一条直线与已知直线垂直。 (2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 (3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 8.同位角、内错角、同旁内角: 同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。 内错角:∠2与∠6像这样的一对角叫做内错角。 同旁内角:∠2与∠5像这样的一对角叫做同旁内角。 9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。 10.平行线:在同一平面内,不相交的两条直线叫做平行线。 11.命题:判断一件事情的语句叫命题。 12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。 13.假命题:条件和结果相矛盾的命题是假命题。

角平分线平行线等腰三角形“知识板块”的应用

1.角平分线遇平行线出现等腰三角形。分a 、b 两种情形: a 、 如图甲:一直线与角的一边平行 b 、 如图乙:一直线与角的平分线平行 2.等腰三角形与角平分线往往出现平行线 a 、如图甲:等腰三角形的一腰与角的一边平行 b 、如图乙:等腰三角形的底边与顶角的外角平分线平行 3.等腰三角形与平行线往往出现角平分线 a 、如图甲:与一腰平行 b 、如图乙:与底边平行 角平分线、平行线、等腰三角形关系密切,在题设中若见其一,应思其二,想其三;或作其二,寻找发现其三,这种解题思路方法往往能得到打开第一道大门的金钥匙,突破解题的一个难点,使一类题目变难为易成为可能,使学生对题目一看就会成为可能。这种思维方法称为“知识板块”思维。 角平分线、平行线、等腰三角形“知识板块”的应用举例: 例1、如图1:已知在△ABC 中∠ABC 、∠ACB 的平分线交于点I ,过点I 作DE//BC ,分别交AB 、AC 于点D 、E 。求证:DE=BD+CE 。 证明: 例2、如图2:已知I 是△ABC 的内心,DI//AB 交BC 于点D ,EI//AC 交BC 于E 。求证: △DIE 的周长等于BC 。 证明: 31∠=∠?? ??∠=∠∠=∠?2123//OA CD DC DO =?() DOC 等腰三角形()ODE 等腰三角形?? ? ?? ∠=∠?? ?∠=∠∠=∠?214231//OC DE OE OD =?∠=∠?43???∠=∠∠=∠?=2131DC CO OA CD //32?∠=∠????∠+∠=∠∠=∠?=4343AOB OE OD ??? ???? ∠=∠∠=∠?AOB AOB 21 1213DE OC //31?∠=∠?? ?? ∠=∠?=∠=∠?1323//DC CO DC OA 21∠=∠?214231//43∠=∠?? ? ?? ? ???∠=∠∠=∠?∠=∠?=OC DE OE OD ??? ∠=∠∠=∠?1232//BC DE 31∠ =∠????==?EI CE DI BD 同理:CE BD IE DI DE +=+=?? ?? ∠=∠∠=∠?2131//AB DI BD DI =?∠=∠?23图甲 1 3 A B C D E I 图(2) 2 3 2 1 I E D A B C 4 3 2 O D E C B A 1 图乙

等腰三角形知识点

等腰三角形 【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问

题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。求证:M 是BE 的中点。 E 例2. 如图,已知:AB C ?中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。 A B C D

(新)角平分线的性质和判定经典题

角平分线的性质和判定复习 一知识要点: 1. 角平分线的作法(尺规作图) 思考:这一画法的根据是什么? 2. 角平分线的性质及判定 (1)角平分线的性质: 文字表达:角的平分线上的点到角的两边的距离相等. 几何表达: ∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,(已知) ∴PA=PB.(角平分线的性质) 思考:这一性质定理的根据是什么? (2)角平分线的判定: 文字表达:到角的两边的距离相等的点在角的平分线上. 几何表达: ∵PA⊥OM,PB⊥ON,PA=PB(已知) ∴∠1=∠2(OP平分∠MON)(角平分线的判定) 二、典型例题 角平分线的性质一 例题1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( ) A.SSS B.ASA C.AAS D.角平分线上的点到角两边距离相等 例题2 如图,BD平分∠ABC,DE垂直于AB于E点,△ABC的面积等于90,AB=18,BC=12,则求DE的长.

例题3 已知:如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,F在AC上BD=DF,求证: CF=EB。 D F E C B A 例题4 已知:AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,BD=CD,求证:∠B=∠C. 例题5 已知:如图所示,点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D,E,求证:OB=OC. 例题6 如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB,垂足为E,且AB=10 cm,求△DEB的周长. A F D E B

【精心整理】平行线的性质知识点总结、例题解析

平行线的性质知识点总结、例题解析 知识点1【平行线的性质】 (1)性质1:两条平行线被第三条直线所截,同位角相等. 简称:两直线平行,同位角相等. ∵AB∥CD ∴∠2=∠3 (2)性质2:两条平行线被地三条直线所截,同旁内角互补. 简称:两直线平行,同旁内角互补. ∵AB∥CD ∴∠2+∠4=180° (3)性质3:两条平行线被第三条直线所截,内错角相等. 简称:两直线平行,内错角相等。 ∵AB∥CD ∴∠1=∠2 【例题1】如图,已知DE∥BC,∠B=80°,∠C=56°,求∠ADE和∠AEC的度数。 【答案】∠ADE=80°;∠AEC=124°

【例题2】如图,平行线AB。CD被直线AE所截,若∠1=110°,则∠2等于() A、70 B、80 C、90 D、110 【答案】A 【例题3】如图,已知AB∥CD,∠1=150°,∠2=______ 【答案】30° 【例题4】在平面内,将一个直角三角板按如图所示摆放在一组平行线上:若∠1=55°,则∠2的度数是_______ 【答案】35°

【例题5】如图所示,已知∠AOB=50 °,PC ∥OB ,PD 平分∠OPC ,则∠APC=______ °,∠PDO=______° 【答案】50 ,50 ; 【例题6】如图所示,OP∥QB∥ST,若∠2=110°,∠3=120°,则∠1的度数为________ 【答案】10° 【例题7】如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF 【答案】证明:∵AB∥CD, ∴∠BAC=∠DCA.(两直线平行,内错角相等) ∵AE∥CF, ∴∠EAC=∠FCA.(两直线平行,内错角相等)

知识点26 等腰三角形与等边三角形2019

一、选择题 12.(2019·烟台)如图,AB 是O e 的直径,直线DE 与O e 相切于点C ,过点A ,B 分别作AD DE ⊥,BE DE ⊥, 垂足为点D ,E ,连接AC ,BC .若AD = 3CE =,则?AC 的长为( ). A B C D 【答案】D 【解题过程】连接OC , 因为AD DE ⊥,BE DE ⊥, 所以90ADC CEB ∠=∠=? 所以90DAC ACD ∠+∠=? 因为AB 是O e 的直径, 所以90ACB ∠=?, 所以90BCE ACD ∠+∠=?, 所以BCE DAC ∠=∠, 在△ADC 与△CED , 因为90ADC CEB ∠=∠=?,BCE DAC ∠=∠ 所以△ADC ∽△CED , 所以 BC CE AC AD ===在Rt △ACB 中,sin BC BAC AC ∠= = 所以60BAC ∠=?, 又因为OA OC =, 所以△AOC 是等边三角形, 所以60ACO ∠=?, 因为直线DE 与 O e 相切于点C , 所以OC DE ⊥, 因为AD DE ⊥,OC DE ⊥, 所以AD//OC , 所以60DAC ACO ∠=∠=?, 所以9030ACD DAC ∠=?-∠=?, 所以2AC AD ==, 所以△AOC 是等边三角形, 所以OA AC ==,60AOC ∠=?, O D E B A

所以? AC 的长为602323 ππ??=. 8.(2019·娄底)如图(2),边长为23的等边△ABC 的内切圆的半径为( ) A. 1 B . 3 C . 2 D . 23 【答案】A 【解析】由等边三角形的内心即为中线,底边高,角平分线的交点,则在直角三角形OCD 中,从而解得. 如图(2-1),设D 为⊙O 与AC 的切点,连接OA 和OD , ∵等边三角形的内心即为中线,底边高,角平分线的交点, ∴OD ⊥AC ,∠OAD =30°,OD 即为圆的半径. 又∵23AC =, ∴11 23322 AD AC = =?= ∴在直角三角形OAD 中, 3 tan tan 303 OD OAD AD ∠=?= ==, 代入解得:OD =1. 故答案为 1. 1.(2019·潍坊)如图已知∠AOB ,按照以下步骤作图: ①以点O 为圆心,以适当的长为半径作弧,分别交∠AOB 的两边于C ,D 两点,连接CD . ②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB 内交于点E ,连接CE ,DE . ③连接OE 交CD 于点M . 下列结论中错误的是() A .∠CEO =∠DEO B .CM =MD C .∠OC D =∠ECD D .S 四边形OCED = 1 2 CD ·OE

初二数学知识点归纳角平分线的定义

初二数学知识点归纳:角平分线的定义 初二数学知识点归纳:角平分线的定义 角平分线的性质一、本节学习指导角平分线的性质有助于我们解决三角形全等相关题型。其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。二、知识要点 1、角平 分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。如下图:OC平分∠AOB ∵OC平分∠AOB ∴∠AOC=∠BOC 2、角的平分线的性质:角平分线上的点到角的两边的距离相等。【重点】如第一个图:∵OC平分 ∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB ∴PD=PE,此时我们知道 △OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边) 3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。如第一个图:∵PE⊥OA,PD⊥OB,PD=PE ∴OC平分∠AOB(或∠1=∠2)一、本节学习指导角平分线的性质有助于我们解决三角形全等相关 题型。其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。 二、知识要点 1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。 OC平分∠AOB ∵OC平分 ∠AOB ∴∠AOC=∠BOC 2、角的平分线的性质:角平分线上的点到角的两边的距离相等。【重点】∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB ∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边) 3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平 分线上。∵PE⊥OA,PD⊥OB,PD=PE ∴OC平分∠AOB(或∠1=∠2) 4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线 段的中点。∵C是AB的中点∴AC=BC 5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。如图:【重点】∵AB⊥CD ∴∠AOC=∠AOD=∠BOC =∠BOD=90° 或∵∠AOC=90° ∴AB⊥CD 注意:要判断两条直线垂直,只要知道这两条相交直线所 形成的四个角中的一个角是直角就可以了。反过来,两条直线互相 垂直,它们的四个交角都是直角。 6、全等三角形的性质:全等三角

平行线知识点+四大模型

平行线四大模型 平行线的判定与性质 I、平行线的判定 根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行. 判定方法I : 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简称:同位角相等,两直线平行. 判定方法2: 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简称:内错角相等,两直线平行, 判定方法3: 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简称:同旁内角互补,两直线平行, 若已知/仁/2,则AB//CD(同位角相等,两直线平行); 若已知/仁/3,则AB//CD(内错角相等,两直线平行); 若已知/ 1+ / 4= 180。,贝U AB// CD(同旁内角互补,两直线平行). 另有平行公理推论也能证明两直线平行: 平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 2、平行线的性质 禾U用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质. 性质1: 两条平行线被第三条直线所截,同位角相等. 简称:两直线平行,同位角相等 性质2: 两条平行线被第三条直线所截,内错角相等 简称:两直线平行,内错角相等 性质3: 两条平行线被第三条直线所截,同旁内角互补. 简称:两直线平行,同旁内角互补

模型二“猪蹄”模型( M 模型) 点P 在EF 左侧,在 AB CD 内部 | “猪蹄”模型 结论 1 :若 AB// CD 则Z P =Z AEF +Z CFR 结论 2:若Z P =Z AEP Z CFP 贝U AB// CD 模型三 “臭脚”模型 A 3 A z C / c F 点P 在EF 右侧,在 AB CD 外^ “臭脚”模型 结论 1 :若 AB// CD 则 Z P =Z AEP Z CFP 或Z P =Z CFP Z AEP 结论 2 :若Z P =Z AEP Z CFP 或Z P =Z CFP Z AEP 贝U AB// CD 模型四“骨 折”模型 ”8 A _________ D C P 在EF 左侧,在 _________ 1 点 圧AB CD 外部 ? L F “骨折”模型 结论 1 :若 AB// CD 则 Z P =Z CFP Z AEP 或Z P =Z AEP Z CFP 本讲进阶 平行线四大模型 结论 2 :若/ P +Z AEP Z PF(= 360。,贝U AB// CD

角平分线的几种辅助线作法与三种模型

一、角平分线的三种“模型” 模型一:角平分线+平行线→等腰三角形 如图1,过∠AOB平分线OC上的一点P,作PE∥O B,交OA于点E,则EO=EP. AAA EPCEC DFEP OBBCOFB 图1图2图3 例1 如图2,∠ABC,∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.求证:BD+EC=DE. 模型二:角平分线+垂线→等腰三角形 如图3,过∠AOB平分线OC上的一点P,作 EF⊥OC,交OA于点E,交OB于点F,则OE=OF, PE=PF. 例2 如图4,BD是∠ABC的平分线, AD⊥BD,垂足为D,求证:∠BAD=∠DAC+∠C. 模型三:角平分线+翻折→全等三角形 在△ABC中,AD是∠BAC的平分线,沿角平分线AD将△ABD往右边折叠就得到如图5的图形.此时有:△ABD≌△AB/D.此翻折相当于

在三角形的一边截取线段等于另一边,或延长一边等于另一边构造出相等的线段.用此方法可解决一些不相等的线段和差类问题. D A E AP / BC DB /BC 图5图6 例3 如图6,点P 是△ABC 的外角∠CAD 的平分线上的一点. 求证:PB+PC>AB+AC. 二、角平分线定理使用中的几种辅助线作法 一、已知角平分线,构造三角形 1、如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。 求证:1()2 BE AC AB =- 2、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E .求证:∠ACE=∠B+∠ ECD . 二、已知一个点到角的一边的距离,过这个点作另一边的垂线段 1、如图所示,∠1=∠2,P 为BN 上的一点,并且PD ⊥BC 于D ,AB +BC=2BD 。 2 1F E D C B A N P E D C B A A B D C E F 图

等腰三角形知识点+经典例题

第一讲等腰三角形 【要点梳理】 要点一、等腰三角形的定义 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一 边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC 为腰,BC为底边,∠A是顶角,∠B、∠C是底角. 2.等腰三角形的作法 已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a. 作法:1.作线段BC=a; 2.分别以B,C为圆心,以b为半径画弧,两弧 相交于点A; 3.连接AB,AC. △ABC为所求作的等腰三角形 3.等腰三角形的对称性 (1)等腰三角形是轴对称图形; (2)∠B=∠C; (3)BD=CD,AD为底边上的中线. (4)∠ADB=∠ADC=90°,AD为底边上的高线. 结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴. 4.等边三角形 三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴. 要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B,∠B=∠C=180 2A ?-∠. (2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形. 要点二、等腰三角形的性质 1.等腰三角形的性质 性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的三个内角都相等,并且每个内角都等于60°. 性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”. 2.等腰三角形中重要线段的性质 等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等. 要点诠释:这条性质,还可以推广到一下结论: (1)等腰三角形底边上的高上任一点到两腰的距离相等。

等腰三角形知识点汇总及典型例题

1.主要知识点: 1.在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边) 2.主要性质:  (1).等腰三角形的两个底角相等(简写成“等边对等角”)。  (2).等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。  (3).等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 3.判定: (1)两边相等的三角形为等腰三角形 (2)两底角相等的三角形为等腰三角形 (3)中线和高合一的三角形为等腰三角形

(4)角平分线和高合一的三角形为等腰三角形 (5)一个三角形,底边上的中垂线是同一条线,可以判定是此三角形是等腰三角形 4.特殊的等腰三角形------等边三角形 4.1定义: 三条边都相等的三角形叫做等边三角形,又叫做正三角形,等边三 角形是特殊的等腰三角形。 (注意:若三角形三条边都相等则 说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。 4.2性质: ⑴等边三角形的内角都相等,且均为60度。 ⑵等边三角形每一条边上的中线、高线和每个角的角平分线互 相重合。 ⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条 边上的中线、高线或所对角的平分线所在直线。 4.3判定:  ⑴三边相等的三角形是等边三角形(定义)。 ⑵三个内角都相等的三角形是等边三角形。 ⑶有一个角是60度的等腰三角形是等边三角形。

⑷有两个角等于60度的三角形是等边三角形。 4.4反证法: 4.4.1定义:假设命题的结论不成立,然后推导出定义、基本事实、已有定理或已知条件相矛盾的结果。 4.4.2一般步骤: 应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。 实施的具体步骤是: 第一步,反设:作出与求证结论相反的假设; 第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。 5.直角三角形中,30度锐角的性质: 直角三角形中30度角所对的直角边等于斜边的一半 典例分析 例1.如果一个等腰三角形的两边长分别是5cm和6cm,求此三角形的周长

角平分线的性质 知识点

角平分线的性质 一、本节学习指导 角平分线的性质有助于我们解决三角形全等相关题型。其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。本节有配套免费学习视频。 二、知识要点 1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。 如下图:OC平分∠AOB ∵OC平分∠AOB ∴∠AOC=∠BOC 2、角的平分线的性质:角平分线上的点到角的两边的距离相等。【重点】 如第一个图: ∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB ∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边) 3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。 如第一个图: ∵PE⊥OA,PD⊥OB,PD=PE ∴OC平分∠AOB(或∠1=∠2)

4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线段的中点。 如下图: ∵C是AB的中点 ∴AC=BC 5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。 如图:【重点】 ∵AB⊥CD ∴∠AOC=∠AOD=∠BOC =∠BOD=90° 或∵∠AOC=90° ∴AB⊥CD 注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的 一个角是直角就可以了。反过来,两条直线互相垂直,它们的四个交角都是直角。 6、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。 ∵△ABC≌△A'B'C' ∴AB=A'B',BC=B'C',AC=A'C'; ∠A=∠A', ∠B=∠B', ∠C=∠C'

6、角平分线模型,角平分线+平行线

角平分线模型 模型 4 角平分线+平行线 如图,P 是∠MON 的平分线上一点,过点 P 作 PQ∥ON,交 OM 于点 Q。 结论:△POQ 是等腰三角形。 模型证明 ∵PQ∥ON ∴∠PON=∠OPQ 又∵OP 是∠MON 的平分线 ∴∠POQ=∠PON ∴∠POQ=∠OPQ ∴△POQ是等腰三角形 模型分析 有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。

模型实例 解答下列问题: (1)如图①所示,在△ABC 中,EF∥BC,点 D 在 EF 上,BD、CD 分别平分∠ABC、∠ACB,写出线段 EF 与 BE、CF 有什么数量关系; (2)如图②所示,BD 平分∠ABC、CD 平分∠ACG,DE∥BC 交 AB 于点 E,交 AC 于点 F,线段 EF 与 BE、CF 有什么数量关系?并说明理由。 (3)如图③所示,BD、CD 分别为外角∠CBM、∠BCN 的平分线,,DE∥BC 交 AB 延长线于点 E,交 AC 延长线于点 F,直接写出线段 EF 与 BE、CF 有什 么数量关系? 解析:(1)由模型可知,ED=BE,DF=CF ∴EF=ED+DF=BE+CF (2)∵DE∥BC ∴∠EDB=∠DBC 又BD 平分∠ABC ∴∠DBE=∠DBC ∴∠EDB=∠DBE ∴△EBD为等腰三角形 ∴BE=ED 同理可证:FD=CF ∴EF=ED-FD=BE-CF ∴EF=BE-CF (3)EF=BE+CF(由模型可轻松证明)

模型练习 1.如图,在△ABC 中,∠ABC、∠ACB 的平分线交于点E,过点E作MN∥BC,交 AB 于点 M,交 AC 于点 N。若 BM+CN=9,则线段 MN 的长为。 解析:由模型可得,ME=BM,EN=CN ∴MN=ME+EN=BM+CN=9 2.如图,在△ABC 中,AD 平分∠BAC,点 E、F 分别在 BD、AD 上,且 DE=CD,EF=AC 求证:EF∥AB。

相关文档
最新文档