人教版中考数学压轴题 复习专题强化试卷检测试卷

人教版中考数学压轴题 复习专题强化试卷检测试卷
人教版中考数学压轴题 复习专题强化试卷检测试卷

一、中考数学压轴题

1.平面直角坐标系中,点A 、B 分别在x 轴正半轴、y 轴正半轴上,AO =BO ,△ABO 的面积为8.

(1)求点A 的坐标;

(2)点C 、D 分别在x 轴负半轴、y 轴正半轴上(D 在B 点上方),AB ⊥CD 于E ,设点D 纵坐标为t ,△BCE 的面积为S ,求S 与t 的函数关系;

(3)在(2)的条件下,点F 为BE 中点,连接OF 交BC 于G ,当∠FOB +∠DAE =45°时,求点E 坐标.

2.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”: ①个位上的数字是千位上的数字的两倍; ②百位上的数字与十位上的数字之和是12的倍数;

(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”. 例如:1423于4132为“相关和平数”

求证:任意的两个“相关和平数”之和是1111的倍数.

3.如图,在等边ABC ?中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接

BE ,DE .

(1)如图1,若310DE =,23BC =CE 的长;

(2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且

DF CD =,求证:12

AB EF =;

(3)在(2)的条件下,若45AED ∠=?直接写出线段BD ,EF ,ED 的等量关系

4.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线

AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH . (1)求证:EDO EAO ???;

(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;

(3)连接AG ,当AEG ?是等腰三角形时,求BF 的长.

5.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得

3AP AQ =,则称点A 是图形M 的“倍增点”.

(1)若图形M 为线段BC ,其中点()2,0B

-,点()2,0C ,则下列三个点()1,2D -,

()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;

(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范

围;

(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围. 6.问题提出

(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.

问题探究

(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且

2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.

问题解决

(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.

7.如图,在ABC ?中,14AB =,45B ∠=?,4

tan 3

A =

,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.

(1)当t =_______秒时,点N 落在AC 边上.

(2)设正方形PQMN 与ABC ?重叠部分面积为S ,当点N 在ABC ?内部时,求S 关于

t 的函数关系式.

(3)当正方形PQMN 的对角线所在直线将ABC ?的分为面积相等的两部分时,直接写出

t 的值.

8.如图,直线y =

12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣3

2

x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;

(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当

3

2

MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.

9.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点. 已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).

(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;

(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;

(3)已知点M (m ,﹣1),若直线y =1

2

x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.

10.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.

(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;

(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若

161A E EC

=,求n

m 的值.

(3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持

BE n

BG m

=,设AB=33E 移动过程中,PF

是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.

11.如图,抛物线2

y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点

B 与点

C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.

(1)求二次函数的关系式.

(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .

①求S 与m 的函数关系式,写出自变量m 的取值范围. ②当S 取得最值时,求点P 的坐标.

(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.

12.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与

y 轴交于点C 0,3().

(1)求抛物线的解析式及顶点M 坐标;

(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点

D 作D

E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,

PDE

ABMC 1

S

S 9

=四边形. 13.定义:两个相似等腰三角形,如果它们的底角有一个公共的顶点,那么把这两个三角形称为“关联等腰三角形”.如图,在ABC ?与AED ?中,,BA BC EA ED == ,且

,ABC

AED ??所以称ABC ?与AED ?为“关联等腰三角形”,设它们的顶角为α,连接

,EB DC ,则称

DC

EB

会为“关联比". 下面是小颖探究“关联比”与α之间的关系的思维过程,请阅读后,解答下列问题: [特例感知]

()1当ABC ?与AED ?为“关联等腰三角形”,且90α?

=时,

①在图1中,若点E 落在AB 上,则“关联比”

DC

EB

=

②在图2中,探究ABE ?与ACD ?的关系,并求出“关联比”

DC

EB

的值.

[类比探究]

()2如图3,

①当ABC ?与AED ?为“关联等腰三角形”,且120a ?=时,“关联比”

DC

EB

= ②猜想:当ABC ?与AED ?为“关联等腰三角形”,且n α=?时,“关联比”DC

EB

= (直接写出结果,用含n 的式子表示) [迁移运用]

()3如图4, ABC ?与AED ?为“关联等腰三角形”.若90,4,ABC AED AC ?∠=∠==点

P 为AC 边上一点,且1PA =,点E 为PB 上一动点,求点E 自点B 运动至点P 时,点

D 所经过的路径长.

14.在ABC ?中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ?为n 倍角三角形.例如,在ABC ?中,80A ∠=?,75B ∠=?,

25C ∠=?,可知3∠=∠B C ,所以ABC ?为3倍角三角形.

(1)在ABC ?中,55A ∠=?,25B ∠=?,则ABC ?为________倍角三角形;

(2)若DEF ?是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的1

3

,求DEF ?的最小内角. (3)若MNP ?是2倍角三角形,且90M N P ∠<∠<∠

15.小明研究了这样一道几何题:如图1,在ABC 中,把AB 绕点A 顺时针旋转

()0180a a ?<

180a β+=?时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是

他的研究过程:

特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为

AD =_______BC ;②如图3,当90BAC ∠=?,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并

给予证明.

拓展应用:(3)如图4,在四边形ABCD ,90C ∠=?,120A B ∠+∠=?,

3BC =6CD =,3DA =P ,使PDC △与PAB △之

间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由. 16.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),2,点 P 从点 O 出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.

(1)求点 B 的坐标;

(2)设点 P 的运动时间为点 t 秒,△BDP 的面积为 S ,求 S 与 t 的函数关系式; (3)当点 P 与点 D 重合时,连接 BP ,点 E 在线段 AB 上,连接 PE ,当∠BPE =2∠OBP 时, 求点 E 的坐标.

17.如图,在等边△ABC中,AB=BC=AC=6cm,点P从点B出发,沿B→C方向以1.5cm/s 的速度运动到点C停止,同时点Q从点A出发,沿A→B方向以1cm/s的速度运动,当点P停止运动时,点Q也随之停止运动,连接PQ,过点P作BC的垂线,过点Q作BC的平行线,两直线相交于点M.设点P的运动时间为x(s),△MPQ与△ABC重叠部分的面积为y(cm2)(规定:线段是面积为0的图形).

(1)当x= (s)时,PQ⊥BC;

(2)当点M落在AC边上时,x= (s);

(3)求y关于x的函数解析式,并写出自变量x的取值范围.

18.如图,等腰△ABC,AB=CB,边AC落在x轴上,点B落在y轴上,将△ABC沿y轴翻折,得到△ADC

(1)直接写出四边形ABCD的形状:______;

(2)在x轴上取一点E,使OE=OB,连结BE,作AF⊥BC交BE于点F.

①直接写出AF与AD的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);

②取BF的中点G,连接OG,判断OG与AD的数量关系,并说明理由;

(3)若四边形ABCD的周长为8,直接写出GE2+GF2=____.

19.在平面直角坐标系中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.

(1)该抛物线的解析式为;

(2)如图1,Q为抛物线上位于直线AB上方的一动点(不与B、A重合),过Q作QP⊥x 轴,交x轴于P,连接AQ,M为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系式;在此条件下,如图2,连接QN并延长,交y轴于E,连接AE,求t为何值时,MN∥AE.

(3)如图3,将直线AB绕点A顺时针旋转15度交抛物线对称轴于点C,点T为线段OA 上的一动点(不与O、A重合),以点O为圆心、以OT为半径的圆弧与线段OC交于点D,以点A为圆心、以AT为半径的圆弧与线段AC交于点F,连接DF.在点T运动的过程中,四边形ODFA的面积有最大值还是有最小值?请求出该值.

20.已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB交对角线BD于点P,连接PC.

(1)如图1,当BM=1时,求PC的长;

(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:BE

DE33

(3)如图3,取PC 的中点Q ,连接MQ ,AQ . ①请探究AQ 和MQ 之间的数量关系,并写出探究过程;

②△AMQ 的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.

21.如图,直角梯形ABCD 中,

1//,90,60,3,9,AD BC A C AD cm BC cm O ??∠∠====的圆心1O 从点A 开始沿折线

——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以

3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点

A 、点

B 同时出发,运动的时间为ts

(1)请求出2O 与腰CD 相切时t 的值; (2)在03s t s ≤<范围内,当t 为何值时,

1O 与2O 外切?

22.如图1,在平面直角坐标系中,O 是坐标原点,矩形OACB 的顶点A 、B 分别在x 轴和

y 轴上,已知OA=5,OB=3,点D 的坐标是(0,1),点P 从点B 出发以每秒1个单位的

速度沿折线BCA 的方向运动,当点P 与点A 重合时,运动停止,设运动的时间为t 秒.

(1)点P 运动到与点C 重合时,求直线DP 的函数解析式;

(2)求△OPD 的面积S 关于t 的函数解析式,并写出对应t 的取值范围;

(3)点P 在运动过程中,是否存在某些位置使△ADP 是不以DP 为底边的等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.

23.已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.

(1)如图1,求证:CD=DE ;

(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;

(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.

24.在平面直角坐标系xOy 中,点A 为x 轴上的动点,点B 为x 轴上方的动点,连接

OA ,OB ,AB .

(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点

P ,请直接写出P ∠的度数;

(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=?,求

OAB

OCB

∠∠;

(3)如图3,当点B 在第一象限内,点P 是AOB ?内一点,点M ,N 分别是线段OA ,

OB 上一点,满足:1902

APB AOB ∠=?+∠,PM PN =,180ONP OMP ∠+∠=?.

以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;④AM BN AB +=.

正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过

程).

25.综合与探究:如图1,在平面直角坐标系xOy 中,四边形OABC 是边长为4的菱形,

60C ?∠=

(1)把菱形OABC 先向右平移4个单位后,再向下平移()03m m <<个单位,得到菱形

''''O A B C ,在向下平移的过程中,易知菱形''''O A B C 与菱形OABC 重叠部分的四边形'AEC F 为平行四边形,如图2.试探究:当m 为何值时,平行四边形'AEC F 为菱形:

(2)如图,在()1的条件下,连接''',AC B O G 、为CE 的中点J 为EB 的中点,H 为

AC 上一动点,I 为''B O 上一动点,连接,,,GH HI IJ 求GH HI IJ ++的最小值,并直

接写出此时,H I 点的坐标.

【参考答案】***试卷处理标记,请不要删除

一、中考数学压轴题 1.A

解析:(1)A (4,0);(2)2

144

S t =-;(3)(4,8)E -

【解析】 【分析】

(1)利用三角形的面积公式构建方程即可解决问题.

(2)证明△CEA 和△COD 是等腰直角三角形,由EN ⊥AC ,推出4

2

t CN NE NA +===,AC=4+t ,根据S=S △AEC -S △ABC 计算即可.

(3)过点F 作FM ⊥AC 于点M ,由(2)求出点F 的坐标为(1,3)44

t t

-

+,从而得到 1144t t OM =-

=-,34

t

FM =+,由∠ABO=∠BDA+∠BAD=45°,∠FOB +∠DAE =45°,得出∠FOB=∠BDA ,进而得出∠MFO=∠ODA ,tan ∠MFO =tan ∠ODA ,故而

OA OM

OD MF

=, 即1443

4t t t -=+,解出t 的值,再求点E 的坐标即可. 【详解】

(1)由题意可得:2

11???822

AOB S OA OB OA ===,

∴OA 2=16, ∵OA >0, ∴OA=OB=4,

∴A (4,0),B (0,4).

(2)如图,过点E 作EN ⊥AC 于点N .

∵∠AOB=90°,OA=OB , ∴∠OAB=45°, ∵AB ⊥CD , ∴∠CEA=90°, ∴∠ECA=45°,

∴△CEA 是等腰直角三角形, ∵∠ECA=45°,∠COD=90°, ∴∠CDO=45°,

∴△CDO 是等腰直角三角形. ∵点D 纵坐标为t , ∴CO=DO=t. ∵OA=OB=4, ∴AC=t+4.

∴4

2

t CN NE NA +===, ∴()()2141144442224AEC

ABC

t S S

S

t t t +??=-=?+?-?+?=- ???

; ∴S 与t 的函数关系是:2

144

S t =

-. (3)如图,过点F 作FM ⊥AC 于点M ,

由(2)可知,4

2

t CN NE +==, ∴22

t

ON OC CN =-=-, ∴点E 的坐标为(2,2)22

t t

-

+, ∵点B (0,4),点F 为BE 中点, ∴点F 的坐标为(1,3)44

t t

-+, ∴1144t t OM =-

=-,34

t

FM =+,

∵∠ABO=∠BDA+∠BAD=45°,∠FOB +∠DAE =45°, ∴∠FOB=∠BDA , ∴OF ∥AD , ∵FM ⊥AC , ∴FM ∥DO , ∴∠MFO=∠ODA , ∴tan ∠MFO =tan ∠ODA , ∴

OA OM

OD MF

=, 即14434

t t t -=+,

解得t=12或4=-4(不合题意,舍去) ∴点E 的坐标为(4,8)-. 【点睛】

本题考查三角形综合题,解题的关键是正确作出辅助线,灵活运用所学知识,利用参数构建方程解决问题.

2.(1)1001;9999;(2)2754和4848;(3)见解析 【解析】 【分析】

(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;

(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到12

2

a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;

(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明. 【详解】

解:(1)根据“和平数”的定义可得: 最小的“和平数”1001,最大的“和平数”9999, 故答案为1001;9999;

(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤, 则个位数字是2a ,

又∵029a ≤≤,

∴a 的可能取值为1,2,3,4;

∵百位上的数字与十位上的数字之和是12的倍数, ∴m+n =0或m+n =12, ∵“和平数”中a+m =n+2a ,

当m+n =0时,即m=n =0,则此时a =0,不符合题意, ∴m+n =12,

∴a+m =12?m +2a ,解得:12

2

a m +=

, ∵a 的可能取值为1,2,3,4;且m 为正整数, ∴m 的可能取值为7,8;

当a =2时,m =7,这个“和平数”是2754; 当a =4时,m =8,这个“和平数”是4848; 综上所述,满足条件的“和平数”是2754和4848;

(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++ 110011001111a b c d =+++

1100()11()a b c d =+++

由“和平数”的定义可知:a+b =c+d , ∴原式1100()11()a b a b =+++ 1111()a b =+,

∵a ,b 为正整数,则1111()a b +能被1111整除,

即(100010010)(100010010)a b c d b a d c +++++++能被1111整除, ∴任意的两个“相关和平数”之和是1111的倍数. 【点睛】

本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.

3.B

解析:(1)9CE =-2)详见解析;(3)1

32

BD DE EF =- 【解析】 【分析】

(1)过点B 作BH AC ⊥于点H ,分别求出BH ,BE ,根据勾股定理问题得解; (2)如图在FE 上取一点G ,使FG AC =,连接DG ,先证明

()ACD GFD SAS ??≌,再证明()ECB DGE AAS ??≌,问题得证;

(3)过点D 作AE 的垂线,构造出一个30,60?,90?的三角形和一个等腰直角三角形,

借助(2)的结论,设222EF AB AC x ===,ED =

,通过解两个直角三角形,代

换x 和y 的关系,得出结论. 【详解】

解:(1)如图,过点B 作BH AC ⊥于点H , 在等边ABC ?中∵23BC =

∴3AH HC ==,223BH BC CH =-=,

∵点E 在BD 的垂直平分线上,

∴310BE DE == , 在Rt BHE ?中229EH BE BH =

-=

∴93CE EH HC =-=-

(2)如图在FE 上取一点G ,使FG AC =,连接DG ∵DF CD = ∴FCD CFD ∠=∠ ∴ACD EFD ∠=∠ 在ACD ?和GFD ?中,

DF CD ACD EFD FG AC =??

∠=∠??=?

∴()ACD GFD SAS ??≌ ∴AD DG = ∴60A DGA ∠=∠=? ∴60A DGA ADG ∠=∠=∠=? 设EBD EDB α∠=∠= ∴120CBE α∠=?- 在ADE ?中

∴18060120AED αα∠=?-?-=?- ∴120AED CBE α∠=∠=?- 在ECB ?和DGE ?中

120AED CBE ECB ECD EB DE ∠=∠??

∠=∠=???=?

∴()ECB DGE AAS ??≌ ∴BC GE =

∴AB AC BC GE FG ====

1

2

AB EF =

(3)如图,设222EF AB AC x ===,DP=y , 过点DP ⊥AE ,垂足为P , ∵∠AED=45°, ∠A=60°, ∴2sin sin 45DP y ED y AED =

==∠?,23sin sin 603

DP y y

AD A ===

∠?, ∴2

=

y DE , ∴BD=AD-AB =

2323

2161

22

y x DE EF DE EF -=-=-, 故答案为:61

2

BD DE EF =

-. 【点睛】

本题涉及知识点较多,设计新颖,综合性强,难度较大,根据题意添加适当辅助线,构造直角三角形或构造全等是解题关键.

4.A

解析:(1)详见解析;(2)2

448

x x y -+=(04x <<);(3)当AEG ?是等腰

三角形时,2BF =或43

【解析】 【分析】

(1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;

(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到

1

22

AN BN ON AB ===

=, 根据勾股定理得到()

2

22222248OF FN ON x x x =

+=

-+=-+,根据平行线分

线段成比例定理即可得到结论;

(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论. 【详解】

(1)∵四边形ABCD 是正方形,

,OA OD AC BD ∴=⊥,

90AOD ∴∠=?,

∵四边形OEGH 是正方形,

,90OE OH EOH ∴=∠=?,

AOD EOH ∴∠=∠,

AOD AOH EOH AOH ∴∠-∠=∠-∠, 即HOD EOA ∠=∠, HDO EAO ∴???.

(2)如图1,过O 作ON⊥AB 于N ,

则1

22

AN BN ON AB ===

=,

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

人教版中考数学压轴题 易错题自检题学能测试试卷

一、中考数学压轴题 1.已知:在平面直角坐标系中,抛物线2 23y ax ax a =--与x 轴交于点A ,B (点B 在 点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2. (1)如图1,求此抛物线的解析式; (2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点 D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围); (3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若 72 8 CG AG = ,求点P 的坐标. 2.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”: ①个位上的数字是千位上的数字的两倍; ②百位上的数字与十位上的数字之和是12的倍数; (3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”. 例如:1423于4132为“相关和平数” 求证:任意的两个“相关和平数”之和是1111的倍数. 3.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”. (概念感知) (1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=?,试判断ABC 是否是“准黄金”三角形,请说明理由.

中考数学压轴题专集二一次函数

中考数学压轴题专集二:一次函数 1、如图,在平面直角坐标中,点A 的坐标为(4,0),直线AB ⊥x 轴,直线y =- 1 4 x +3经过点B ,与y 轴交于点C . (1)求点B 的坐标; (2)直线l 经过点C ,与直线AB 交于点D ,E 是直线AB 上一点,且∠ECD =∠OCD ,CE =5,求直线l 的解析式. 解:(1)∵A (4,0),AB ⊥x 轴,∴点B 的横坐标为4 把x =4代入y =- 1 4 x +3,得y =2 ∴B (4,2) (2)∵AB ⊥x 轴,∴∠EDC =∠OCD ∵∠ECD =∠OCD ,∴∠EDC =∠ECD ∴ED =EC =5 在y =- 1 4 x +3中,当x =0时,y =3 ∴C (0,3),OC =3 过C 作CF ⊥AB 于F ,则CF =OA =4 ∴EF = EC 2 -CF 2 = 5 2 -4 2 =3 ∴FD =5-3=2,∴DA =1 ∴D (4,1) 设直线l 的解析式y =kx +b ,把C (0,3),D (4,1)代入 得:?????b =3 4k +b =1 解得 ?????k =- 1 2 b =3 ∴直线l 的解析式为y =- 1 2 x +3

2、如图,直线y=2x+4交坐标轴于A、B两点,点C为直线y=kx(k>0)上一点,且△ABC是以C为直角顶点的等腰直角三角形. (1)求点C的坐标和k的值; (2)若在直线y=kx(k>0)上存在点P,使得S△PBC=1 2S△ABC,求点P的坐标. (1)过点C分别作坐标轴的垂线,垂足为G、H 则∠HCG=90° ∵∠ACB=90°,∴∠ACG=∠BCH 又∠AGC=∠BHC=90°,AC=BC ∴△ACG≌△BCH,∴CG=CH 在y=2x+4中,令y=0,得x=-2;令x=0,得y=4 ∴A(-2,0),B(0,4),OA=2,OB=4 设CG=CH=x,则2+x=4-x 解得x=1,∴C(1,1) ∴k=1 (2)由(1)知,CG=1,AG=3 ∴AC2=BC2=12+32=10 ∴S△ABC=1 2AC 2=5,S △PBC = 1 2S△ABC= 5 2 当点P在点G左侧时 S△PBC=S△PBO+S△BOC-S△PCO ∴1 2OP×4+ 1 2×4×1- 1 2OP×1= 5 2 解得OP=1 3,∴P1(- 1 3,0) 当点P在点G右侧时 S△PBC=S△PBO-S△BOC-S△PCO ∴1 2OP×4- 1 2×4×1- 1 2OP×1= 5 2 解得OP=3,∴P2(3,0)

人教版中考数学压轴题 易错题难题专题强化试卷学能测试

一、中考数学压轴题 1.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形). (1)当x = (s )时,PQ ⊥BC ; (2)当点M 落在AC 边上时,x = (s ); (3)求y 关于x 的函数解析式,并写出自变量x 的取值范围. 2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3(). (1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点 D 作D E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时, PDE ABMC 1 S S 9 =四边形. 3.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且2n -2n -,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标; (2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、 Q ∠的数量关系并说明理由; (3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线

中考数学压轴题解题方法大全和技巧

中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

2018年度中考数学压轴题

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,

∵AP=x ,∴BP=10﹣x ,BQ=2x ,∵△QHB ∽△ACB , ∴ QH QB AC AB = ,∴QH=错误!未找到引用源。x ,y=错误!未找到引用源。BP ?QH=1 2 (10﹣x )?错误!未找到引用源。x=﹣4 5 x 2+8x (0<x ≤3), ②当点Q 在边CA 上运动时,过点Q 作QH ′⊥AB 于H ′, ∵AP=x , ∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH ′∽△ABC , ∴'AQ QH AB BC =,即:' 14106 x QH -=错误!未找到引用源。,解得:QH ′=错误!未找到引用源。(14﹣x ), ∴y= 12PB ?QH ′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

人教版中考数学压轴题检测

一、中考数学压轴题 1.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC , 连接CD 交AB 于E , (1)如图(1)求证:90AEC ∠=?; (2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接 MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠ (3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==?的面积等于8,求线段MN 的长度 2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3(). (1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点 D 作D E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时, PDE ABMC 1 S S 9 =四边形. 3.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点

M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y) (1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D, OA=2,OC=1. ①点A、B、C在此斜坐标系内的坐标分别为A,B,C. ②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为. ③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为. (2)若ω=120°,O为坐标原点. ①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=23,求圆M的半径及圆心M的斜坐标. ②如图4,圆M的圆心斜坐标为M(23,23),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是. 4.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题. (1)(课本习题)如图①,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.求证:DB=DE (2)(尝试变式)如图②,△ABC是等边三角形,D是AC边上任意一点,延长BC至E,使CE=AD. 求证:DB=DE. (3)(拓展延伸)如图③,△ABC是等边三角形,D是AC延长线上任意一点,延长BC至E,使CE=AD请问DB与DE是否相等? 并证明你的结论.

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

中考数学压轴题归类复习(十大类型附详细解答)

中考数学压轴题辅导(十大类型) 目录 动点型问题 (3) 几何图形的变换(平秱、旋转、翻折) (6) 相似不三角函数问题9 三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13) 不四边形有关的二次函数问题 (16) 刜中数学中的最值问题 (19) 定值的问题 (22) 存在性问题(如:平行、垂直,动点,面积等) (25) 不圆有关的二次函数综合题... .. (29) 其它(如新定义型题、面积问题等) (33) 参考答案 (36)

中考数学压轴题辅导(十大类型) 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方 法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再迚行图形的研究,求点的坐标戒研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件迚行计算,然后有动点(戒动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系迚行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,戒探索两个三角形满足什么条件相似等,戒探究线段乊间的数量、位置关系等,戒探索面积乊间满足一定关系时求 x 的值等,戒直线(圆) 不圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量乊间的 等量关系(即列出含有 x、y 的方程),变形写成 y=f(x)的形式。找等量关系的途径在刜中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量 的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千 变万化,但少丌了对图形的分析和研究,用几何和代数的方法求出 x 的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点不数即坐标乊间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数不方程思想。以直线戒抛物线知识为载体,列(解)方程戒方程组求其解 析式、研究其性质。 二是运用分类讨论的思想。对问题的条件戒结论的多变性迚行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识戒方法组块去思考和探究。 解中考压轴题技能技巡: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题戒几个“难点”一个时间上 的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空 万无一失,前面的解答题尽可能的检查一遍。 二是解数学压轴题做一问是一问。第一问对绝大多数同学来说,丌是问题;如果第一小问丌会解,切忌丌可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要巟整,布局要合理;过程会写多少写多少,但是丌要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。 三是解数学压轴题一般可以分为三个步骤。认真审题,理解题意、探究解题思路、正确 解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

2019年各省市中考数学压轴题合辑5(湖南专辑)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】 2019年各省市中考数学压轴题合辑(五) 1.(2019?长沙)如图,抛物线26(y ax ax a =+为常数,0)a >与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(30)t -<<,连接BD 并延长与过O ,A ,B 三点的P e 相交于点C . (1)求点A 的坐标; (2)过点C 作P e 的切线CE 交x 轴于点E . ①如图1,求证:CE DE =; ②如图2,连接AC ,BE ,BO ,当3a = ,CAE OBE ∠=∠时,求11OD OE -的值.

2.(2019?长沙)已知抛物线22(2)(2020)(y x b x c b =-+-+-,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值; (2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围; (3)在(1)的条件下,存在正实数m ,n (m <n ),当m ≤x ≤n 时,恰好≤≤, 求m ,n 的值.

3.(2019?长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比. (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”). ①四条边成比例的两个凸四边形相似;(命题) ②三个角分别相等的两个凸四边形相似;(命题) ③两个大小不同的正方形相似.(命题) (2)如图1,在四边形ABCD和四边形 1111 A B C D中, 111 ABC A B C ∠=∠, 111 BCD B C D ∠=∠,111111 AB BC CD A B B C C D ==.求证:四边形ABCD与四边形 1111 A B C D相似. (3)如图2,四边形ABCD中,// AB CD,AC与BD相交于点O,过点O作// EF AB分 别交AD,BC于点E,F.记四边形ABFE的面积为 1 S,四边形EFCD的面积为 2 S,若 四边形ABFE与四边形EFCD相似,求2 1 S S 的值.

中考数学压轴题(含答案)

2016中考压轴题突破 训练目标 1.熟悉题型结构,辨识题目类型,调用解题方法; 2.书写框架明晰,踩点得分(完整、快速、简洁)。 题型结构及解题方法 压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。

答题规范动作 1.试卷上探索思路、在演草纸上演草。 2.合理规划答题卡的答题区域:两栏书写,先左后右。 作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。 3.作答要求:框架明晰,结论突出,过程简洁。 23题作答更加注重结论,不同类型的作答要点: 几何推理环节,要突出几何特征及数量关系表达,简化证明过程; 面积问题,要突出面积表达的方案和结论; 几何最值问题,直接确定最值存在状态,再进行求解; 存在性问题,要明确分类,突出总结。 4.20分钟内完成。 实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称: 2014中考数学难点突破 1、图形运动产生的面积问题 2、存在性问题 3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题) 4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存 在性、四边形的存在性、压轴题综合训练)

一、图形运动产生的面积问题 一、 知识点睛 1. 研究_基本_图形 2. 分析运动状态: ①由起点、终点确定t 的范围; ②对t 分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3. 分段画图,选择适当方法表达面积. 二、精讲精练 1. 已知,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上,沿AB 方向以1 厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其他边交于P 、Q 两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积. (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 1题图 2题图 2. 如图,等腰梯形ABCD 中,AB ∥CD ,AB = CD 高CE =,对角线AC 、BD 交于点H .平 行于线段BD 的两条直线MN 、RQ 同时从点A 出发,沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时,两直线同时停止移动.记 等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒. (1)填空:∠AHB =____________;AC =_____________; (2)若213S S ,求x . 3. 如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 、Q 同时从点C 出发,以1cm/s 的速度分别沿CA 、 CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ'R .设点Q 的运动时间为t (s ),△PQ'R 与△PAR 重叠部分的面积为S (cm 2). (1)t 为何值时,点Q' 恰好落在AB 上 (2)求S 与t 的函数关系式,并写出t 的取值范围. (3)S 能否为9 8 若能,求出此时t 的值; 若不能,请说明理由. C B A B C P R Q Q' l A C M N Q P B C H D C B A A B C H H D C B A A B C D M N R Q F G H E H D C B A H D C B A

中考数学压轴题专题

中考数学压轴题专题Prepared on 21 November 2021

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-=。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

中考数学压轴题集锦

中考数学冲刺复习资料:二次函数压轴题 1、(本题满分10分) 如图,在平面直角坐标系中,抛物线y =- 3 2x 2 +b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2 -x 1=5. (1)求b 、c 的值;(4分) (2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对 角线的菱形;(3分) (3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分) 2、如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB = ABOC 绕点O 按顺时针 方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2 y ax bx c =++过点 A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式; (3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由. y O 第26题图 D E C F A B (第25题图) A x y B C O

3、如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线2 23 (0)y ax x c a =- +≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由. 4、如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为 1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经 过A B ,两点. (1)求二次函数的解析式; (2)求切线OM 的函数解析式; (3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由. 5、ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s . (1)若AMP △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围); (2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由; (3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似? 图14 y x O A B M O 1 A O x y B F C

相关文档
最新文档