二次函数典型题解题技巧.doc

二次函数典型题解题技巧.doc
二次函数典型题解题技巧.doc

v1.0可编辑可修改

二次函数典型题解题技巧

(一)有关角

2

1、已知抛物线y ax bx c

的图象与x轴交于A、B两点(点A在点B的左边),与

y

交于点C (0

3)

,过点 C 作x轴的平行线与抛物线交于点 D ,抛物线的顶点为M ,直线

y x 5

经过 D 、 M 两点.

(1)求此抛物线的解析式;

(2)连接AM、 AC 、 BC ,试比较MAB 和ACB的大小,并说明你的理由.

思路点拨:对于第( 1)问,需要注意的是CD和 x 轴平行(过点 C 作x轴的平行线与抛物线交于点 D )

对于第( 2)问,比较角的大小

a、如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就

清楚了

b、如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就

确定了

c、如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大

d、除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,

全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下

的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等

e、可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快

速的找出题目的结论问题,在本题中,需要用到的点只有M、 C、A、 B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,

再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看 d 这一条解:( 1)∵ CD∥x轴且点 C(0, 3),

∴设点 D 的坐标为 (x , 3).

∵直线 y= x+5 经过 D 点,

∴3= x+5 .∴ x=- 2.

即点 D( - 2, 3).

根据抛物线的对称性,设顶点的坐标为M(- 1, y),

又∵直线y= x+5 经过 M点,

∴y = - 1+5, y =4 .即 M(- 1, 4).

∴设抛物线的解析式为y a(x 1)2 4 .

∵点 C( 0, 3)在抛物线上,∴ a=- 1.

即抛物线的解析式为y

x2 2x

3

.????3分

(2)作 BP⊥AC 于点 P,MN⊥AB 于点 N.由(1)中抛物线y x22x 3 可得点 A(- 3, 0), B(1, 0),

∴A B=4, AO=CO=3, AC=3 2.

∴∠ PAB=45°.

∵∠ ABP=45°,∴ PA=PB= 2 2

∴PC=AC- PA= 2.

PB

在Rt△BPC中, tan ∠BCP= PC =2.

在Rt△ANM中,∵ M( -1 , 4),∴ MN=4.∴ AN=2.

MN

tan ∠NAM=AN =2.

∴∠ BCP=∠ NAM.

即∠ ACB=∠ MAB.

后记:对于几何题来说,因为组成平面图形的最基本的元素就是线段和角(圆分开再说),所以几何的证明无非就是线段之间的关系,角之间的关系,在二次函数综合题里,我主张首先要想到的是利用角之间的关系来解题,其次才是利用线段之间的关系来解题,除非你很快就能看出利用线段之间的关系来解题很简单,因为在直角坐标系里要求两点之间的距离是很

麻烦的,尤其是不知道某个点的确切坐标时,那么这个题给了我们一个如果判断角之间关系

的基本思路

2 、如图,抛物线y ax

2 bx 3与 x轴交于 A, B两点,与 y 轴交于点C,且

OB OC

3OA .

(I )求抛物线的解析式;

(II )探究坐标轴上是否存在点

P ,使得以点

P, A,C

为顶点的三角形为直角三角形

若存在,求出 P 点坐标,若不存在,请说明理由;

1 x 1

(III

y

)直线

3

y

轴于 D 点, E 为抛物线顶点.若DBC

CBE ,求

的值.

思路点拨:( II )问题的关键是直角,已知的是

AC 边,那么 AC 边可能为直角边,可能为斜

边,当 AC 为斜边的时,可知

P 点是已 AC 为直径的圆与坐标轴的交点,且不能与

A 、

C 重合,明显只有 O 点;当 AC 为直角边时,又有两种情况,即 A 、 C 分别为直角顶

点,这时候我们要知道无论是

A 或者 C 为直角顶点,总有一个锐角等于∠

OCA (或

Rt △ PAC 和 Rt △OAC 相似),利用这点就可以求出 OP 的长度了

( I II )从题目的已知条件看,除了∠ABC=45°外没有知道其他角的度数,那么这两个角要么全

是特殊角( 30°, 45°, 60°, 90°),在这种情况下,他们的差才有可能不是特殊的角,很明显,这两个角不是特殊角,那只有一种可能(在没有学反三角函数

的前提下),就是他们的差是特殊角,

再联系到∠ ABC=45°,可知,这两个角的差就

是 45°,那么我们需要证明的就是∠

ABD=∠CBE ,再想想上一题所说的,就明白是

利用相似三角形来证明了,即证明△ BCE 是一个直角三角形且与△ BAD 相似

解:( I ) 抛物线 y ax 2

bx 3与y 轴交 C 点 0, 3 ,且 OB OC 3OA .

A 1,0 , B(3,0) .

v1.0

可编辑可修改

代入 y

ax 2 bx

3 ,得

a b 3 0

a 1

9a 3b 3 0

b 2

y x

2

2x

3

( II )①当

P AC 90 时,

可证

P 1

AO

ACO

1

Rt P 1 AO 中,tan P 1 AO tan ACO

1 P 1 (0, 1

)

3 . 3

②同理 : 如图当 P 2CA 90 时, P 2 (9,0)

③当

CP 3 A 90 时, P 3 ( 0,0)

综上,坐标轴上存在三个点 P ,使得以点

P,A,C

为顶点的三角形为直角三角形,分别

1

)

P 2 (9,0) , P 3 (0,0) . 是 P 1 (0, 3

) 由 y

1

x 1, 得 D 0 ,1 . 由y x 2 2x

3,得顶点 E 1, 4 .

( III

3

BC 3 2,CE 2,BE 2 5.

BC 2 CE 2 BE 2 , BCE 为直角三角形 .

tan

CE 1

CB

3 .

Rt DOB 中

tan

OD 1

DBO

3 .DBO

OB

DBOOBC 45 .

(二)线段最值问题

引子:初中阶段学过的有关线段最小值的有两点之间线段最短和垂线段最短,

无论是两点之

间选段最短还是垂线段最短,它们的本质就是要线段首尾相接,或者说线段要有公共端点,

如果我们公共端点, 我们要想办法把它们构造成有公共端点来解决;

有关线段最大值的问题,

学过的有三角形三边之间的关系,

两边之差小于第三边, 我们可以利用这个来求第三边的最

大值,还有稍微难一点的就是利用二次函数及其自变量取值范围来求最大值

y ax 2 bx c a 0

v1.0 可编辑可修改为直线 x = -1,B(1,0) , C(0,-3).

⑴求二次函数 y ax2 bx c a

0 的解析式;

⑵ 在抛物线对称轴上是否存在一点P,使点 P 到 A、C 两点距离之差最大若存在,求出点P

坐标;若不存在,请说明理由 .

思路点拨:点 P到 A、 C两点距离之差最大,即求|PA- PC|的最大值,因 P 点在对称轴上,有 PA=PB,也就是求 |PB - PC|,到了这儿,易知当P 点是 BC 所在直线与对称轴的交点,易知最大值就是线段BC的长。

具体解题过程略

4、研究发现,二次函数y ax2 ( a 0 )图象上任何一点到定点(0,1

)和到定直线

1 1 4a

y 的距离相等. 我们把定点(0 ,)叫做抛物线 y ax2的焦点,定直线4a 4a

y 1 叫做抛物线 y ax 2的准线.

4a 1

x 2图象的焦点坐标和准线方程;

( 1)写出函数y

4 1

x 2图象上,O为坐标原点,( 2)等边三角形OAB的三个顶点都在二次函数y

4

求等边三角形的边长;

( 3)M为抛物线y 1

x2上的一个动点,F为抛物线 y

1

x 2的焦点,P(1,3)4 4

为定点,求MP+MF的最小值 .

思路点拨:( 2)因△ OAB是等边三角形,易知AB 平行于 X 轴,且∠ AOB=60°,知 OA、OB于y 轴的夹角等于30°,利用这点容易求出三角形的边长

(3)由题目可知MF的长度等于M点到直线y=- 1 的距离,那么 MP+MF就是 P 点到达抛物线上某一点再到y= - 1 上某一点的距离和,易知最小值就是过P 点做 y=- 1 的垂线段的长解:( 1)焦点坐标为( 0, 1),准线方程是y 1 ;

(2)设等边OAB的边长为 x,则 AD=1

x, OD=

3

x .

2 2

故 A 点的坐标为(1

x ,

3

x ).

2 2

v1.0可编辑可修改把 A 点坐标代入函数y 1 x 2,得

4

3 x 1 ( 1

x) 2,

2 4 2

解得 x 0 (舍去),或 x 8 3 .

∴等边三角形的边长为8 3 .

( 3)如图,过 M作准线y1的垂线,垂足为N,则 MN=MF过. P 作准线y1的垂线PQ,垂足为 Q,当 M运动到 PQ与抛物线交点位置时,MP+MF最小,最小值为PQ=4.

5、

v1.0可编辑可修改思路点拨:( 2)要求 AE和 AM的长,对于求线段的长度我们学过的是勾股定理,相似三角形

和简单三角函数,从题目可知OA和 OE的长以及 E 点到 x 轴的距离,我们作 EG⊥x 轴,垂足为G,那么容易求出 OG的长,从而求出 AE 的长;要求 AM的长,先做 OK⊥ AE,垂足为 K,

要求 AM的长,首先我们利用已知的 OA的长和∠ EAO的函数值来求出 AK和 OK的长,利用 OK

的长和三角形OMN是等边三角形求出MK和 NK的长, AM的长也就知道了

(3)这个是著名的费马点的问题,第 2 问给了我们提示,我们可以猜想当P 点在什么位置

时, PA+PB+PO才能取最小值, P 点应该在线段AE上,至于具体的位置我们还不知道,我们

就在线段AE上任取一点P,把 PA、 PB、PO连起来,要取最小值,那么这三条线段应该首尾

相接,我们应该能想到它们首尾相接后的位置就是AE 所在直线,这时P 点应该和在△ OAB

内的 M点重合, PA的长就是AM的长, m的最小值就是AE的长

答案详见前段时间发过的《从近近几年北京中考模拟及中考压轴题谈起》

额外讲解一个与二次函数无关的有关线段最值的问题

6、 2009 年中考第25 题

如图,在平面直角坐标系xOy中,△ ABC三个顶点的坐标分别为A(-6,0),B(6,0),C(0,

1 AC ,过D点作DE∥AB交BC的延长线于点E.

4 3 ),延长AC到点D,使 CD

2

(1)求 D点的坐标;

(2)作 C点关于直线 DE的对称点 F,分别连结 DF、 EF,若过 B 点的直线 y= kx+ b 将四边

形 CDFE分成周长相等的两个四边形,确定此直线的解析式;

(3) 设G为y轴上一点,点P 从直线 y= kx +b 与 y 轴的交点出发,先沿y 轴到达 G点,

再沿 GA到达 A点.若 P 点在 y 轴上运动的速度是它在直线GA上运动速度的 2 倍,试

确定 G点的位置,使P 点按照上述要求到达 A 点所用的时间最短.

( 要求:简述确定G点位置的方法,但不要求证明)

v1.0可编辑可修改

思路点拨:( 3)首先要把速度转化成路程,也就是线段的长度,直线与y轴的交点假设为M,则 OM=6 3 , 设 P 点在 y 轴上的速度为2v ,那么在 GA上的速度为v,P 点到达 A 点所用的时

间为,要使时间最短,也就是求AG+GM/2的最小值,那么我

们要把它转化成我们熟悉的两条线段的和,因为∠ BMO=30°,GM/2 也就是 G点到 BM的距离,我们作 GK⊥BM,垂足为 K, 问题转化成求GA+GM的最小值,易知,A、 G、 M必须共线且垂直

BM,所以 G点就是过 A 点作 BM的垂线与y 轴的交点

解: (1) ∵A( - 6, 0) ,C(0 ,43 ),∴OA=6,OC=4 3 .

设DE与 y 轴交于点 M.由 DE∥ AB可得△ DMC∽△ AOC.

又 CD 1 AC ,MD CM CD 1 .

2 OA CO CA 2

∴CM=23, MD=3.

同理可得 EM=3.∴ OM=63.

∴D点的坐标为(3,63).

(2)由 (1) 可得点M的坐标为 (0 , 6 3 ) .

由DE∥ AB, EM= MD,

可得 y 轴所在直线是线段ED的垂直平分线.

∴点 C关于直线 DE的对称点 F 在 y 轴上.

∴ED与 CF互相垂直平分.

∴CD=DF= FE=EC.

∴四边形 CDFE为菱形,且点M为其对称中心.作直线BM.

设 BM与 CD、 EF分别交于点S、点 T.可证△ FTM≌△ CSM.

v1.0可编辑可修改

∴FT=CS.

∵FE=CD,∴ TE= SD.

∵EC=DF,∴ TE+ EC+ CS+ ST= SD+DF+ FT+ TS.

∴直线 BM将四边形 CDFE分成周长相等的两个四边形.

由点 B(6,0),点 M(0,63 )在直线y=kx+b上,

可得直线 BM的解析式为y=- 3 x+6 3 .

第 25 题答图

(3) 确定G点位置的方法:过A点作 AH⊥BM于点 H,则 AH与 y 轴的交点为所求的G点.

由 OB=6, OM=63 ,可得∠OBM=60°.∴∠BAH=30°.

在 Rt△OAG中,OG=AO·tan ∠BAH= 2 3 .

∴G点的坐标为(0,2 3 ).(或G点的位置为线段OC的中点)

(三)平移对称旋转问题

引子:平移问题以前讲过了,现在重点将对称旋转问题

我们知道( a, b)关于 x 轴对称的点的坐标为(a,- b),

关于 y 轴对称的点的坐标为(-a, b),

关于原点对称的点的坐标为(-a,- b),

关于直线x=m的对称点为(2m-a, b),

关于直线y=n 的对称点为(a, 2n- b),

关于点( m, n)的对称点为(2m- a, 2n- b)

任意两点( x1, y1)和( x2, y2)的中点为

v1.0可编辑可修改对于抛物线关于x 轴、 y 轴、 x=a、 y=b 的对称抛物线,应该都会了吧,现在重点讲解抛物线

关于某点( m,n)的对称抛物线解析式(其他平移、关于直线对称都可以用这个方法解决),为了方便,选取抛物线的顶点式来证明

例:对于一个抛物线y=a(x- h)2+k( a≠ 0)来说,坐标为(x, y)的所有点都在他的图像上,关于( m, n)的对称点为(2m- x, 2n-y),那么坐标为(2m- x, 2n-y)都在抛物线

关于( m,n)对称的抛物线上,我们把(2m- x, 2n- y)代入 y=a( x- h)2+k( a≠ 0)就可

以得到它关于(m, n)对称的抛物线的解析式为2n- y=a( 2m- x-h)2+k,变形为

y=- a( x-2m+h)2+2n- k

现在利用待定系数法来验证这个方法是否正确

首先 y=a( x- h)2+k( a≠ 0)和它关于点(m,n)的对称的抛物线的开口大小是一样的,所

以二次项系数的绝对值是相同的,由于关于点对称,开口方向是相反的,故二次项系数互为

相反数;其次原抛物线与对称抛物线的顶点是关于(m,n)对称的,原抛物线的顶点为(h,k),它关于( m, n)的对称点的坐标为(2m- h, 2n-k),那么对称抛物线的解析式可以写

成 y=- a(x- 2m+h)2+2n- k,和利用上述方法所得结果一致

7、已知抛物线

2 2

A,抛物线C2的对称轴是 y C1: y=ax - 2amx+am+2m+1(a>0, m>1)的顶点为

轴,顶点为B,且抛物线C1和 C2关于 P(1 ,3) 成中心对称

(1)用含 m的代数式表示抛物线 C1的顶点坐标

(2)求 m的值和抛物线 C2的解析式

(3)设抛物线C2与 x 正半轴的交点是C,当△ ABC 为等腰三角形时,求 a 的值

思路点拨:(1)很多人一看到求抛物线的顶点,习惯使用顶点的坐标公式来求,如果你熟悉

因式分解和抛物线的顶点公式是如何得到的,那么这个题明显利用配方更容易得到顶点坐

标, y=a( x- m)2+2m+1,故顶点坐标为(m, 2m+1)

(2)C1和 C2关于点对称,利用上述方法容易求出C2的解析式和顶点坐标,易知m=2 详解过程略

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

二次函数典型例题解析与习题训练

又∵y=x 2-x+m=[x 2-x+(12)2]- 14+m=(x -12)2+414 m - ∴对称轴是直线x=12,顶点坐标为(12,41 4 m -). (2)∵顶点在x 轴上方, ∴顶点的纵坐标大于0,即41 4 m ->0 ∴m> 14 ∴m>1 4 时,顶点在x 轴上方. (3)令x=0,则y=m . 即抛物线y=x 2-x+m 与y 轴交点的坐标是A (0,m ). ∵AB ∥x 轴 ∴B 点的纵坐标为m . 当x 2-x+m=m 时,解得x 1=0,x 2=1. ∴A (0,m ),B (1,m ) 在Rt △BAO 中,AB=1,OA=│m │. ∵S △AOB =1 2 OA ·AB=4. ∴ 1 2 │m │·1=4,∴m=±8 故所求二次函数的解析式为y=x 2-x+8或y=x 2-x -8. 【点评】正确理解并掌握二次函数中常数a ,b ,c 的符号与函数性质及位置的关系是解答本题的关键之处. 例2 已知:m ,n 是方程x 2-6x+5=0的两个实数根,且m

为D,试求出点C,D的坐标和△BCD的面积; (3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标. 【分析】(1)解方程求出m,n的值.用待定系数法求出b,c的值. (2)过D作x轴的垂线交x轴于点M,可求出△DMC,梯形BDBO,△BOC的面积,用割补法可求出△BCD的面积. (3)PH与BC的交点设为E点,则点E有两种可能:①EH=3 2EP,②EH=2 3 EP. 【解答】(1)解方程x2-6x+5=0, 得x1=5,x2=1. 由m

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数最经典综合提高题

周村区城北中学二次函数综合提升寒假作业题 一、顶点、平移 1、抛物线y =-(x +2)2 -3的顶点坐标是( ). (A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) 2、若,,,,,123351A y B y C y 444??????- ? ? ??????? 为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是 A.123y y y << B. 213y y y << C.312y y y << D.132y y y << 3、二次函数y=﹣(x ﹣1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( )A . B .2 C . D . 4、下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A .y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D .y = (x + 2)2 ? 3 5、将二次函数2 45y x x =-+化为2 ()y x h k =-+的形式,则y = . 6二次函数与y=kx 2﹣8x +8的图象与x 轴有交点,则k 的取值范围是 ( ) A .k <2 B .k <2且k ≠0 C .k ≤2 D .k ≤2且k ≠0 7、由二次函数1)3(22+-=x y ,可知( ) A .其图象的开口向下 B .其图象的对称轴为直线3-=x C .其最小值为1 D .当3

初中二次函数的解题方法

初中二次函数的解题方 法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

11.1班沈阳 14号 初中二次函数的解题方法 首先回顾一下初中二次函数的重要性质和基本表达式:一般式:y=a x2+bx+c(a≠0,a、b、c为常数),顶点坐 标为(-b/2a,4ac-b2/4a) ; 顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标 为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方 向与函数y=ax2的图像相同,有时题目会指出让你用配 方法把一般式化成顶点式。 交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0 有交点A(x1,0)和 B(x2,0)的抛物线,即b^2-4ac≥0] :由 一般式变为交点式的步骤:∵X1+x2=-b/a x1·x2=c/a ∴ y=ax2+bx+c=a(x2+b/ax+c/a)=a[﹙x2;-(x1+x2)x+x1x2]=a(x- x1)(x-x2) 重要概念:。 1.二次函数图像是轴对称图形。对称轴为直线x = h 或者x=-b/2a 对称轴与二次函数图像唯一的交点为二次 函数图像的顶点P。特别地,当h=0时,二次函数图像 的对称轴是y轴(即直线x=0);a,b同号,对称轴在y轴左 b=0,对称轴是y轴;a,b异号,对称轴在y轴右侧

2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当 h=0时,P在y轴上;当k=0时,P在x轴上。h=-b/2a k=(4ac-b2)/4a 3.二次项系数a决定二次函数图像的开口方向和大 小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。 有时也可以考虑图像的整体性质、特殊点的位置及二次方程的联系,结合韦达定理和判别式定理确定a,b,c, △及系数的代数符号。 常见问题 1、抛物线中特殊点组成的三角形问题:抛物线线中的特殊三角形主要有两类:(1)、抛物线与x轴的两个交点和与y轴的交点所组成的三角形;(2)、抛物线与x轴的两个交点和顶点所组成的三角形。 解决策略是:应用平面几何的有关定理,如等腰三角形的三线合一、直角三角形的勾股定理、射影定理、斜边中线定理等结合两点间的距离公式及二次方程的求根公式、判别式定理、韦达定理等知识求解。用到的数学思想方法有数形结合、分类讨论、转化等。 2、二次函数的定点和动点问题:求动点运动所形成的直线或曲线一般采用消去参数法,即消去参数以后的方程即为动点需满足的函数解析式。

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

二次函数综合题解题方法与技巧

图1 图 2 压轴题解题技巧练习 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、 动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、 x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的 点Q 的坐标;若不存在,请说明理由. 二、圆 2. 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l. (1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 . 2

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

二次函数压轴题解题思路

?二次函数压轴题解题思路路 ?一、基本知识 1会求解析式 2.会利利?用函数性质和图像 3.相关知识:如?一次函数、反?比例例函数、点的坐标、?方程。图形中的三?角形、四边形、圆及平?行行线、垂直。?一些?方法:如相似、三?角函数、解?方程。?一些转换:如轴对称、平移、旋转。 ?二、典型例例题: (?一)、求解析式 1.(2014?莱芜)过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c 经过O、C、D三点.(1)求抛物线的表达式; 2.(2012?莱芜)顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式; 练习:(2014兰州)把抛物线y=﹣2x2先向右平移1个单位?长度,再向上平移2个单位?长度后,所得函数的表达式为() A.y=﹣2(x+1)2+2 B.y=﹣2(x+1)2﹣2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣2 (?二)、?二次函数的相关应?用 第?一类:?面积问题 例例题.(2012?莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0) 与y轴交于点C(0,3),与x轴交于A、B两点. (1)求抛物线的表达式;(抛物线的解析式:y=(x﹣2)2﹣1=x2﹣4x+3.) (2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的?面积; 2.(2014?莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线 y=ax2+bx+c经过O、C、D三点. (1)求抛物线的表达式;(抛物线的表达式为:y=﹣x2+x.) (3)若△AOC沿CD?方向平移(点C在线段CD上,且不不与点D重合), 在平移的过程中△AOC与△OBD重叠部分的?面积记为S,试求S的最?大值.

二次函数典型中考试题解析和训练

二次函数典型中考试题解析及训练 [解读中考要点] 1、二次函数 一般地,形如 2y ax bx c =++(,,a b c 是常数,0a ≠)的函数叫做x 的二次函数。 解读:在函数中注意二次项系数0a ≠,,b c 是任意的实数即可。 2、二次函数 2y ax =(0a ≠)的性质 解读:(1)二次函数2y ax =的图象是抛物线,它的顶点是原点,对称轴是y 轴。 (2)当0a >时, 抛物线2y ax =的开口向上,并且向上无限延伸,顶点是它的最低点;当0a <时,抛物线2 y ax =的开口向下,并且向下无限延伸,顶点是它的最高点。 3、二次函数 2y ax k =+(0a ≠)的图象与性质 解读:(1)二次函数2y ax k =+的图象与2y ax =的图象的形状完全一样,可以通过平移二次函数2y ax =的图 象得到 2y ax k =+的图象。当0k >时,向上平移k 个单位长度;当0k <时,向下平移k 个单位长度。 (2)当0a >时,抛物线的开口向上;当0a <时,抛物线的开口向下。 (3)抛物线的顶点是 ()0,k ,对称轴是y 轴。 4、二次函数 ()2 y a x h k =-+(0a ≠)的图象与性质 解读:(1)它的图象与2y ax =的图象的形状完全一样,可以通过二次函数2 y ax =的图象得到()2 y a x h k =-+的图象。 (2)当0a >时,抛物线的开口向上;当0a <时,抛物线的开口向下。 (3)抛物线的顶点是 (),h k ,对称轴是y 轴。 5、关于二次函数 2y ax bx c =++(0a ≠)的图象 解读:(1)二次函数 2y ax bx c =++(0a ≠)的图象是与2y ax =的图象的形状完全一样的一条抛物线。 (2)抛物线2 y ax bx c =++(0a ≠)的对称轴是直线2b x a =-,顶点是24,24b ac b a a ??-- ???。 (3)当0a >时,抛物线的开口向上,顶点是它的最低点。当2b x a =-时,函数有最小值 244ac b a -;当2b x a <- 时, y 的值随x 值的增大而减小;当2b x a >- 时,y 的值随x 值的增大而增大。

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数压轴题解题技巧

C x x y y A O B E D A C B C D G 图1 图 2 A P O B E C x y 二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4), 其中x 1、x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由. 二、圆 2.如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC , tan ∠ACO = 1 3 . (1)求这个二次函数的解析式; (2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度; (3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.

中考数学二次函数综合经典题附答案解析

一、二次函数真题与模拟题分类汇编(难题易错题) 1.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D. (1)求抛物线及直线AC的函数关系式; (2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标; (3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由. 【答案】(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣1 2 时,△APC的面积取最大值, 最大值为27 8 ,此时点P的坐标为(﹣ 1 2 , 15 4 );(3)在对称轴上存在一点M(﹣1, 2),使△ANM的周长最小,△ANM周长的最小值为10 2 【解析】 【分析】 (1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得 出AQ的值,利用三角形的面积公式可得出S△APC=﹣3 2 x2﹣ 3 2 x+3,再利用二次函数的性 质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论. 【详解】 (1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:

二次函数压轴题解题技巧

二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与 x 轴交于 (1,0)、(2,0)两点,且1>2,与 y轴交于点 (0,4), A x B x x x C 其中 x1、 x2是方程 x2-2x-8=0的两个根. (1)求这条抛物线的解析式; (2)点 P是线段 AB上的动点,过点 P 作 PE∥AC,交 BC于点 E,连接 CP,当△ CPE的面积最大时,求点 P 的坐标; (3) 探究:若点 Q 是抛物线对称轴上的点,是否存在这样的点,使△成为等腰三角 Q QBC 形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由. y C E B A 二、圆 OP 2.如图1,在平面直角坐标系xOy,二次函数 y= ax2+bx+ c( a>0)的图象顶点为D,与 轴交于点,与 x 轴交于点、,点在原点的左侧,点 B 的坐标为 (3 , 0) ,=, C A BA OB OC 1 tan ∠ACO=3.x y (1)求这个二次函数的解析式; (2)若平行于 x 轴的直线与该抛物线交于点 M、N,且以 MN为直径的圆与 x 轴相切,求该圆的半径长度; (3)如图 2,若点G(2 ,y) 是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点 P 运动到什么位置时,△AGP的面积最大?求此时点P 的坐标和△ AGP的最大面积. y y A B E O x AC B x C C G D D 图 1图 2

商品利润问题与二次函数典型例题解析

商品利润问题与二次函数典型例题解析 知识链接复习: 1、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元 解:设每千克应涨价x 元,读题完成下列填空 问题一:涨价后每千克盈利 元; 问题二:涨价后日销售量减少 千克; 问题三:涨价后每天的销售量是 千克; 问题四:涨价后每天盈利 元 根据题意列方程得: 解方程得: 因为商家涨价的目的是 ;所以 符合题意。 答: 。 2、二次函数y=ax 2 +bx+c 的顶点坐标是x= y= 3、函数y=x 2+2x-3(-2≤x ≤2)的最大值和最小值分别是 新知解析: 例1、某商品现在的售价为每件35元,每天可卖出50件。市场调查发现:如果调整价格,每降价1元,那么每天可多卖出两件。请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少 解:设当降价X 元时销售额为y 元,根据题意得: y=(35-x )(50+2x )=-2x 2+20x+1750 x=-a b 2=-) 2(×220=5 因为0<5<35且a=-2<0 所以y=(35-5)(50+10)=1800 答:当降价5元时 销售额最大为1800元。 此类习题注意要点: 1、根据题意设未知量,一般设增加或者减少量为x 元时相应的收益为y 元,列出函数关系式。 2、判断顶点横坐标是否在取值范围内。因为函数的最值不一定是实际问题的最值 3、根据题意求最值。写出正确答案。 例2、某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出,若每张床位每天收费提高2元,则相应的减少了10张床位租出,如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元租金最高是多少钱 解:设当张价X 元时租金为y 元,根据题意得:y=(100-10 ×2 x )(10+x )=-5x 2+50x+1000 x=-a b 2=-)5_( ×250=5

中考数学二次函数综合练习题附答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线22343 23y x x =- -+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C . (1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ; (2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标; (3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. 【答案】(1)2323 y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3); (3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】 【分析】 (1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可 【详解】 (1)∵2343 2333y x x =- -+a=233 - ,则抛物线的“衍生直线”的解析式为

二次函数典型题解题技巧

二次函数典型题解题技巧

————————————————————————————————作者:————————————————————————————————日期:

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C、A、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD ∥x 轴且点C(0,3), ∴设点D 的坐标为(x ,3) . ∵直线y = x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M(-1,4). ∴设抛物线的解析式为 2(1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP ⊥AC 于点P,MN⊥AB 于点N. 由(1)中抛物线 223y x x =--+可得 点A(-3,0),B(1,0), ∴AB=4,AO =C O=3,A C=32. ∴∠PAB =45°. ∵∠ABP=45°,∴P A=PB=22. ∴P C=A C-PA =2. 在Rt△BPC 中,tan ∠BCP=PB PC =2.

二次函数知识点总结与典型例题讲解

二次函数知识点总结及典型例题讲解 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1 x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 三、二次函数的性质

初中数学二次函数经典综合大题练习卷

1、如图9(1),在平面直角坐标系中,抛物线经过A (-1,0)、B (0,3)两点, 与x 轴交于另一点C ,顶点为D . (1)求该抛物线的解析式及点C 、D 的坐标; (2)经过点B 、D 两点的直线与x 轴交于点E ,若点F 是抛物线上一点,以A 、B 、E 、F 为顶点的四边形是平行四边形,求点F 的坐标; (3)如图9(2)P (2,3)是抛物线上的点,Q 是直线AP 上方的抛物线上一动点,求△APQ 的最大面积和此时Q 点的坐标. 2、随着我市近几年城市园林绿化建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,如图①所示;种植花卉的利润y 2与投资成本x 成二次函数关系,如图②所示(注:利润与投资成本的单位:万元) 图① 图② (1)分别求出利润y 1与y 2关于投资量x 的函数关系式; (2)如果这位专业户计划以8万元资金投入种植花卉和树木,请求出他所获得的总利润Z 与投入种植花卉的投 资量x 之间的函数关系式,并回答他至少获得多少利润?他能获取的最大利润是多少?

3、如图,为正方形的对称中心,,,直线交于,于,点 从原点出发沿轴的正半轴方向以1个单位每秒速度运动,同时,点从出发沿方向以 个单位每秒速度运动,运动时间为.求: (1)的坐标为; (2)当为何值时,与相似? (3)求的面积与的函数关系式;并求以为顶点的四边形是梯形时的值及 的最大值. 4、如图①,正方形ABCD的顶点A,B的坐标分别为,顶点C,D在第一象限.点P从点 A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒. (1)求正方形ABCD的边长. (2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图②所示),求P,Q两点的运动速度. (3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积取最大值时点的坐标. (4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间的增大而减小.当点沿着这两边运动时,使∠OPQ=90°的点有个.

相关文档
最新文档