基于小波变换的图像融合的研究

基于小波变换的图像融合的研究
基于小波变换的图像融合的研究

基于小波变换的图像融合的研究

摘要:数据融合是80年代初形成与发展起来的一种信息综合处理技术。图像融合是数据融合在数字图像处理方面的一个应用。近年来,图像融合已成为图像理解和计算机视觉领域一项重要的新技术。把小波变换技术应用到图像融合技术之中时该研究领域的重大突破。本文首先论述图像融合技术和小波变换的相关理论,在将小波变换运用于图像融合,并设计了相关实验验证基于小波变换的图像融合,对融合结果进行质量评价。

关键词:小波变换,图像融合

1.引言

图像融合是信息融合技术的一个重要的分支,它是以图像为主要研究内容的数据融合技术。从八十年代初到至今,图像融合技术已引发了世界范围的广泛研究兴趣和热潮,它在自动目标识别、计算机视觉、遥感机器人、医学图像处理以及军事应用等众多领域有着广泛的应用前景。

图像融合的方法与具体的处理对象类型、处理等级有关。如:可分为像素级融合、特征级融合和决策级融合三大类。主要基于各类图像的解析度不同、表现的目的不同,相应的处理方法也要根据具体情况而定。随着小波变换技术的出现,在众多融合方法中,基于小波变换的融合方法具有良好的效果,现已成为当今研究的一个热点。同时产生的一个亟待解决的问题是如何准确地对融合效果进行评价。评价的方法有很多,评价的标准也是因人、因物而不同,这就需要进行综合研究比较,得出不同融合方法的适应性和优异性。

2.图像融合技术简介

图像融合以图像作为研究和处理对象,是一种综合多个源图像信息的先进图像处理技术,它把对同一目标或场景的多重源图像根据需要通过一定的融合规则融合成为一幅新图像,在这一幅新图像中能反映多重源图像中的信息,以达到对目标或场景的综合描述,以及精确的分析判断,有效地提高图像信息的利用率、系统对目标探测识别的可靠性及系统的自动化程度。其目的是集成多个源图像中的冗余信息和互补信息,以强化图像中的可读信息、增加图像理解的可靠性等。相对于源图像,通过图像融合得到的融合图像可信度增加、模糊性减少、可读性增强、分类性能改善等,并且融合图像具有良好的鲁棒性,所以通过图像融合技术将会获得更精确的结果,也将会使系统更实用。

图像融合的方法目前能够参照的有很多,如HIS变换法,PCA法,聚类分析法,贝叶斯方法,小波变换方法等等,目前成为主流方法的研究是基于小波变换的图像融合方法。在此简单介绍几种融合方法,了解各方法的优缺点。

(1)线性加权法

线性加权法是一种最简单的图像融合方法,它直接对多幅原图像的对应像素点进行加权叠加。如A k(i,j)为n幅图像A k在对应位置(i,j)的灰度值,那么融合后图像可通过下式得到

1(,)(,)(,)n

k k k k B i j W i j A i j ==∑

其中,1(,)=1n

k k W i j =∑。

线性加权法的优点在于概念简单,计算量非常小,适合实时处理;其缺点是融合后的图像包含很强的噪声,特别是当融合图像的灰度差异很大时,就会出现明显的拼接痕迹,视觉效果差。

(2) PCA 法

采用主分量变换法对图像进行融合时,首先对图像进行主分量变换,通过相关矩阵求特征值和特征向量求得各主分量。通过该融合,我们可以尽可能多地保留全色图像的细节信息,最后,对融合后的图像进行反变换,即可得到包含丰富细节信息的融合图像,这种变换在图像融合中通常叫做PCA 。

(3) 多分辨金字塔法

多分辨金字塔法是目前金字塔法中较为常用的图像融合方法。在这类算法中,原图像不断地被滤波,形成一个塔状结构,在塔的每一层都用一种算法对这一层的数据进行融合,从而得到一个合成的塔式结构,然后对合成的塔式结构进行重构,最后得到合成的图像,合成图像包含了原图像的所有重要信息。

(4) 小波变换法

小波变换是对图像在不同频率通道上进行处理,首先将源图像进行多层小波分解,得到一系列子图像,再在变换域上进行特征选择,创建融合图像,最后通过逆变换重建融合图像。

小波变换与金字塔图像融合法相比,具有如下的优点:①图像经抽样小波变换后的大小与原图像相同,而图像经塔形算法分解后通常存在一定的数据冗余,但与冗余小波变换相比,金字塔分解的冗余量所包含的信息又相对较少,在实际应用时,可以选择合适的小波变换方法;②小波表达式提供了方向信息,而金字塔算法没有将空间方向选择性引入分解过程;③金字塔算法的重构过程可能具有不稳定性,特别是当两幅图像存在明显差异区域时,而基于小波变换的图像融合方法没有类似的问题;④由于可以选择正交小波核,因此不同分辨率包含的信息是唯一的,而金字塔分解在两个不同的尺度之间含有冗余,另外金字塔不同级的数据相关,很难判断两级之间的相似性是由于冗余还是图像本身的性质引起。

3.小波变换

小波分析是20世纪80年代中期出现的一种信号分析工具,是在傅立叶分析的基础上发展起来的,它优于傅立叶分析的地方是它在空域和时域都是局部化的,同时具有良好的空间一频率局部化特性,可将信号分解成许多具有不同的分辨率、频率特性和方向特性的子带信号,被誉为“数学显微镜”之美称

信号在时域的小波变换取决于两个参量:尺度(或频率)和时间。小波变换可以分为连续小波变换(CWT )和离散小波变换(DWT )。CWT 和 DWT 算法可以继续分为有冗余和无冗余的,按照这种划分,可以将小波变换分为二值的和非二值的。

3.1 小波变换的基础理论

小波(wavelet),即小区域的波,是一种特殊的长度有限、平均值为0的波形。 小波函数的确切定义为:设()t ψ为一平方可积函数,即2()()t L R ψ∈,若其傅里叶变换满足条件:

2

()C d ψωωω∧+∞-∞ψ=

<∞? (3.1)

即:(0)()0t dt ψ+∞∧-∞

ψ==?

式中()ω∧

ψ为()t ψ的傅立叶变换。我们称()t ψ为一个基本小波或小波母函数,称式 (3.1)为小波函数的可容许条件

3.1.1 连续小波变换

假设信号2()()f t L R ∈,则它的连续小波变换定义为:

,1()()a b t b t a a -ψ=ψ ,;0a b R a ∈> (3.2) 这里,a 为伸缩因子,b 是平移因子。根据小波的定义,函数(信号) ()f t 的小波变换在数学上可以表示为:

,(,)()()a b R

W a b t f t dt =ψ? (3.3)

从 (,)W a b 重建()f t 的逆变换在数学上表示为:

,01()(,)()a b a b f t W a b t dadb C +∞+∞

ψ==-∞=

ψ?? (3.4) 这里2()

C d ψωωω∧+∞-∞ψ=

<∞?,并且()ω∧

ψ为母小波()t ψ的傅立叶变换。 如果a 和b 是两个连续的变量,且 ()f t 也是一个连续函数,(,)W a b 称为连续小波变换(continuous wavelet transform ,CWT )

3.1.2 离散小波变换

为了减少小波变换系数的冗余度,我们将小波基函数,1()()a b t b t a a

-ψ=ψ的a ,b 限定在一些离散点上进行取值。

(1)尺度的离散化。目前通行的办法是对尺度进行幂级数化,即令 a 取0m

a a = 00,a m Z >∈,此时对应的小波函数是20

0[()],0,1,2,j

j a a t b j --ψ-=…。 (2)位移的离散化。通常对 b 进行均匀离散取值,以覆盖整个时间轴。为了防止信息的丢失,我们要求采样间隔 b 满足 Nyquist 采样定理,采样率大于等于该尺度下频率通常的二倍。,()a b t ψ 就改为:

2200000

00[()][]j

j j j j a a t ka b a a t kb ----ψ-=ψ- (3.5) 离散小波变换定义为:

00

00,(,)()(),0,1,2,,j j a kb W a kb t f t dt j k Z =ψ=∈?… (3.6) 小波变换有以下特点:

(1) 小波变换是一个满足能量守恒方程的线性运算,它把一个信号分解成对空间和尺度(即时间和频率)的独立贡献,同时又不失原信号所包含的信息显微镜。

(2) 小波变换相当于一个具有放大、缩小和平移等功能的数学显微镜,通过检查不同放大倍数下信号的变化来研究其动态特性。

(3) 小波变换不一定要求是正交的,小波基不唯一,小波函数系的时宽-带宽积很小,并且在时间和频率轴上都很集中,即展开系数的能量很集中。

(4) 小波变换巧妙地利用了非均匀的分辨率,较好地解决了时间和频率分辨率的矛盾:在低频段用的高的频率分辨率和低的时间分辨率(宽的分析窗口),而在高频段则用低的频率分辨率和高的时间分辨率(窄的分析窗口),这与时变信号的特征一致。

(5) 小波变换将信号分解为对数坐标中具有相同大小频带的集合,这种以非线性的对数方式处理频率的方法对时变信号具有明显的优越性。

(6) 小波变换是稳定的,是一个信号的冗余表示。

(7) 小波变换同傅立叶变换一样,具有统一性和相似性,其正反变换具有完美的对称性。

3.2 多分辨率分析

多分辨率分析 (Multi-resolution Analysis ,MRA)是由 S.Mallat 和 Y .Meyer 于 1986 年提出来的,它是在2()L R 函数空间内,将函数()f t 描述为一系列近似函数的极限。每一个近似都是函数()f t 的平滑逼近,而且具有越来越细的近似函数。这些近似是在不同分辨率得到的,多分辨分析由此得名。MRA 不仅为正交小波基的构造提供了一种简单的方法,而且为正交小波变换的快速算法提供了理

论依据。因此 MRA 在小波变换理论中具有非常重要的地位。

空间2()L R 中的多分辨率分析是指2()L R 中满足下述性质的一个空间序列{},j V j z ∈:

(1)一致单调性:1,m m V V +?,对于所有的m :这个性质表明,每个子空间都包含在下一个分辨率子空间中。

(2)渐近完全性:20,(),m m V V L R == ,这个性质表明,子空间的并集在平方可积函数空间2()L R 是收缩的;R 表示实数集

(3)伸缩规则性:0()(2)m m f t V f t V -∈?∈,尺度函数以2m 因子从分辨率

空间0V 生成较低分辨率空间m V 。

(4)平移不变性:00()()f t V f t n V ∈?-∈,结合尺度不变性,这个性质表明在分辨率空间平移不改变分辨率。

(5)正交基存在性:存在 V φ∈,使得{()}n z t n φ∈-是0V 的正交集。即

0,{()},()()m n R

V span t n t n t m dt φδ=---=? 。

多分辨率分析基本的原则是每当满足上述性质时,都存在标准正交小波基: /2,()2(2)m m m n t t n φ--ψ=-,这样:

1,,()()()()m m m n m n P f P f c f t -=+ψ∑ (3.7)

这里m P 是m W 到j V 的正交投影。对于每个m ,认为小波函数,()m n t ψ跨过了整个向量空间m W 。从公式中可以清楚地知道,产生空间的小波和产生空间的尺度函数不是独立的。m W 确切地是m V 在1m V - 的正交补。因此,在1m V -中的任何函数都可以表示为m V 中函数与小波空间m W 中函数和。可以表示为

1m m m V V W -=⊕ (3.8)

由于 m 是任意的:

111m m m m V V W W -++=⊕⊕ (3.9)

112m k k k k m V V W W W W ---=⊕⊕⊕⊕… (3.10)

因此,如果我们有属于空间1m V -的函数,我们可以将它分解为函数的和,开

始是以小波尺度产生的函数序列逼近较低分辨率,根据这些细节来表示丢失的信息。在连续地逐级逼近中,让我们考虑用较少的像素表示图像。然后可以将小波系数作为附加的细节信息,这些细节信息来自于较高逼近和较低逼近。因此,在各级分解中,信号可以分解成两部分,一种是信号在较低分辨率的较低逼近,另一种是由于逼近丢失的细节信息。

4. 基于小波变换的图像融合

小波变换作为一种新的数学工具,它在时间域和频率域上同时具有良好的局部化性质。它能够将一个信号分解成具有不同空间分辨率、频域特性和方向特性的子信号,同时又不丢失原信号所包含的信息,并且可以实现无冗余的信号分解。它通过伸缩平移运算对信号逐步进行多尺度细化,最终达到高频处细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节。图像经过小波分解后,可以将原始图像分解成低频图像和高频图像,低频图像还可以逐级分解,分解的各子图像都包含着原始图像的空间结构信息。高频图像变化较剧烈,包含了原始图像的边缘信息。目前较常用的是二进小波变换

4.1 图像的小波分解

小波变换具有多分辨率分析特点,可以聚焦到分析对象的任意细节,在图像处理领域有着广泛的应用。基于小波变换的图像融合算法是一种多尺度分解的像素级图像融合方法,由于小波分解具有非冗余性,图像经小波分解后数据总量不会增大;小波分解的空间频率特性和方向性,能针对人眼的视觉频率特性和方向特征获得视觉效果良好的融合图像;但图像的小波分解,通常只对每一层所得到的低频分量继续下一个尺度的分解,对其余的高频部分则不再分解下去。

图像经二维小波变换进行分解后,可得到图像的低频分量、水平高频分量、垂直高频分量和对角高频分量。如图1所示为二维小波三层分解示意图。图1中,LL ——图像低频部分,集中了图像主要信息;HL ——图像水平高频部分;LH ——图像垂直高频部分; HH ——图像对角高频部分;HL 、LH 、HH 这三者都体现了图像的细节信息。

LL3LH3LH2HH3

LH1HH2HL1

HH3

HL3

HL2

图1 小波分解示意图

4.2基于小波变换的图像融合原理

基于小波多尺度分解的图像融合的流程图2所示。其处理的基本步骤如下: 首先,对已配准的源图像进行小波分解,相当于使用一组高低通滤波器进行滤波,分离出高频信息和低频信息;

其次,对每层分解得到的高频信息和低频信息依据所得到的信息特点,采取不同的融合策略,在各自的变换域进行特征信息抽取,分别进行融合;

最后,采用第一步的小波变换的重构算法对处理后的小波系数进行反变换重建图像,即可得到融合图像。 图像A 图像B 融合图像

小波变换

小波变换小波逆变换融

合算

图2 小波变换图像融合算法流程

从图2可以看出,基于小波变换的图像融合主要经历两个过程,即图像的分解和重构。

(1)图像的分解

小波函数对图像进行分解就是充分利用小波变换的多分辨率的特点,通过一组高低通滤波器,逐层分离出高频和低频信息,然后在不同的频谱上,以小波函数对待分析的信号进行采样和比较,进而得到小波变换系数(即所选小波的波形与待分析信号波形的相似程度),这是小波分解过程。

(2)图像的重构

小波函数对图像进行重构就是在不同的变换层次上,对已分解的两幅图像或更多图像的小波变换系数进行处理。通常按高频和低频分别对小波变换系数进行比较,并根据一定的算法对变换系数进行筛选,重构。

4.3 融合规则

在图像融合过程中,融合规则及融合算子的选择对于融合的质量至关重要,也是图像融合中至今尚未很好解决的难点问题之一。目前,常见的融合规则可以分为基于单个像素的融合规则和基于区域的融合规则两大类。

融合规则设计的理论基础是小波变换后低频子带表征的是图像近似部分,而高频子带表征的是图像的细节信息。高频子带的系数在零值上下波动,绝对值越大的系数表示该处灰度变化越剧烈,即包含图像的重要信息,如图像的边缘、线条以及区域的边界。另外,同一场景经过不同的传感器得到的图像,其低频近似部分的系数值差别不大,而高频细节部分却存在显著差异。因此,低频常采用简单的基于单像素的融合规则就能达到较好的融合效果,而高频通常采用基于区域特性的融合规则。

两幅待融合图像 A 和 B 经过多尺度分解后,令(,)A

N L x y 和(,)B N L x y 表示两

幅图像经分解后的最低频子带系数,N 为多尺度分解的层数,( x , y )表示系数坐标;令(,)A i H x y 和(,)B i H x y 表示两幅图像分解后的各层次高频子带系数, i=1, 2…

N 。令(,)F

N L x y 和(,)F i H x y 表示经融合处理后的图像变换系数。

对于低频子带图像的系数组合,常用的融合规则如公式 4.1 所示:

12(,)(,)(,)F

A B N N N L x y L x y L x y αα=+ (4.1)

其中:121αα+=。特殊情况下,当1α取 0 时,选取图像 B 经多分辨率分

解后的低频系数作为融合后的系数,即(,)(,)F

B N N L x y L x y =;当2α 取 0 时,选

取图像 A 经多分辨率分解后的低频系数作为融合后的系数,即

(,)(,)F

A N N L x y L x y =。

对于高频子带图像的系数组合,常用的融合规则:

(1) 取系数绝对值最大

(,),(,)(,)(,)(,),(,)(,)

A A

B i i i F i B A B i i i H x y H x y H x y H x y H x y H x y H x y ?≥?=?

(2)基于窗口的系数加权平均

考虑到相邻系数间的相关性,Burt. P. J 和 Kolczynski R. J. 提出了基于窗口的融合规则,将系数的融合选取与其所在的局部窗口区域联系起来。一般为3×3或5×5窗口,并把当前待融合运算的系数位置作为窗口中心点,求取窗口区域的加权平均特征值作为该系数的重要性测度。

(3)基于窗口的系数绝对值选大

在 Li H.等人的融合规则中,采用选取窗口领域内绝对值最大的系数作为融合后的系数。在选取系数时,这种融合规则对融合结果进行一致性验证以避免出现某点与其领域的点来自不同源图像的情况。

4.4 图像融合的质量评价

图像融合评价方法可以分为主观和客观两类。

4.4.1 主观评价

主观评价法,也就是目测法,这种方法主观性比较强,但对一些明显的图像信息进行评价,特点是直观、快捷、方便,对一些暂无较好客观评价指标的现象可以进行定性的说明。具体评价中要对以下内容进行判断:

(1)判断图像的配准精度,如果配准不好,融合图像会出现重影。

(2)判断融合图像的清晰度,如果清晰度降低,目标的边缘会变得模糊。

(3)判断融合图像的纹理和彩色信息是否丰富,如果光谱与空间信息丢失, 融合图像会显得比较平淡。

(4)判断融合图像的整体亮度和色彩反差,如果这两项值不合适,会出现蒙雾或斑块等现象。

(5)判断融合图像的整体色彩分布,如果它能与天然色彩保持一致则融合图像的色彩就真实。

主观评价法受评价人的主观思想的影响较大,因此该法受应用场合、待融合图像的种类等多个因素的限制,最多应用的还是客观评价方法。

4.4.2 客观评价

(1)信息熵

信息熵可以客观地评价图像在融合前后信息量的变化。根据香农(Shannon )信息论的原理,一幅2r 级灰度表示的图像,其信息熵E 为

1

20log r k k k E P P -==-∑ (4.3)

式中,r 表示图像总的灰度级,k P 为图像灰度值为k 的像素k N 和图像总像素N 之比,/k k P N N =, 信息熵越大,表示图像所含的信息越丰富,融合质量越好。

(2)标准差

一幅图像的灰度标准差反映了各灰度相对于均值的离散程度,可以用来评价图像反差的大小。一幅融合图像标准差的计算公式为

2111[(,)]

M N x y g x y M N σμ===-?∑∑ (4.4)

标准差用来评价图像反差的大小,标准差较大,则表示图像的反差较大,图像整体色调丰富,可观察到的信息较多。

(3)平均梯度

平均梯度G 敏感地反映了图像的微小细节反差,可以作为清晰度检测的指标。

221/211

1[(x,y)+(x,y)]M N X Y x y G G G M N ===?∑∑ (4.5) (4)互信息

互信息用来衡量融合图像从源图像中继承信息的多少。令()A P a ,()B P b 分别为待融合图像A I 和B I 的归一化直方图,互信息定义为

2,(,)()()(,)

(,)(,)log ()()AB AB a b

A B I A B H A H B H A B P a b P a b P a P b =+-=?∑ (4.6)

(5)均方根误差

融合图像F 与标准参考图像R 之间的均方根误差 RMSE 定义为

211

((,)(,))M N

x y R x y F x y RMSE M N ==-=?∑∑ (4.7)

5. 图像融合实验

实验选取了尺寸( 512*512)相同但是聚焦不同的两幅图像,分别为图3(a)、图3(b)进行融合实验,图3(c)是在matlab 平台上基于小波变换进行融合实验后获

得的融合图像。

(a) 源图像A(右边聚焦) (b) 源图像B(左边聚焦

)

(c) 小波分解融合结果

图3 源图像

为了对融合效果进行比较,对源图像分别使用基于小波变换的图像融合方法、加权平均图像融合方法以及交叉像素选择法进行图像融合。对多聚焦图像进行融合后,得到使用各种方法的融合结果如图2所示。图4(a)、(b)分别为使用基

于加权平均图像融合方法以及交叉像素选择法得到的融合图像。

(a) (b)

图4使用不同融合规则的融合实验

本章用信息熵、平均梯度、标准差和互信息对得到的融合图像的融合性能进行了比较分析。借助Matlab的图像处理工具箱中的相关函数,上述指标均可容易得到。表1中给出了三种不同融合算法所对应的客观评价准则值。

表1 统计平均的图像融合评价指标

信息熵平均梯度标准差互信息小波变换的图像融合方法7.0870 4.8231 41.0259 6.3460

加权平均图像融合方法 6.9692 3.1170 39.7312 6.9040 交叉像素选择法7.0847 4.8209 40.8592 6.2825

从表1的平均评价指标中可以看出,基于小波的融合策略比经典的融合策略能够更有效地改善融合效果。

6.结论

本文是在学习了小波变换和图像融合的基础上,将小波变换算法运用于图像融合,针对多聚焦图像的特点,文中提出了一种基于小波变换的图像融合算法。对图像进行小波分解后,对高频分量和低频分量都采用了各自的融合规则。实验结果表明使用该融合算法得到的融合图像有利于对场景的整体认识,实验数据和视觉效果都表明了该算法的有效性。

7.致谢

通过本学期小波课程的学习以及论文的研究,我对小波有了一定的理解,当论文写作结束时,我本学期小波理论的学习生活也即将画上句号,借此机会感谢冉启文老师在小波学习上给予我的帮助,冉老师治学严谨,让我受益良多,使我们学习的榜样。不只是让我能够学到专业的知识,也让我学会在学习以及工作中应该具有的端正的态度。

参考文献

1冉启文.《小波变换与分数傅里叶变换理论及应用》[M].哈尔滨工业大学出版社,2003:102~124

2张家明.基于小波变换的图像融合算法研究.武汉理工大学学报,2007:62~65

3顾霞芳. 基于小波变换的图像融合方法探讨与比较. 中国西部科技, 2009:21~22

4浦西龙,吕建平. 一种基于小波变换的多分辨率图像融合算法[J].《计算机工程与应用》.

2007,43期:65~68

5李晓春,陈京. 基于小波变换的图像融合算法研究. 遥感技术与应用,2003:27~30

6赵瑞珍等.基于小波变换的图像多尺度数据融合[J].《计算机辅助设计与图像学学报》.

2002,14期:361~364

7陆宏波. 基于小波变换的图像融合方法[J].《微电子与基础产品》. 2001,5期:54~57

像素级图像融合讲解

山东大学(威海)毕业论文 毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号:201100800668 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

第8章 小波变换在图像去噪与图像增强中的应用

是第8章小波变换在图像去噪与图像增强中的应用 本章集中讨论小波在图像去噪与图像增强中的应用,首先研究基于小波的图像去噪方法。 设原图像(即待恢复的图像)为 []{},:,,,f i j i j I N =,被噪声污杂的图像(即观察到的图像)为[]{},:,,,g i j i j I N =,并设 [][][],,,,,,,g i j f i j i j i j I N ε=+= (0.1) 其中[],i j ε是噪声分量,独立同分布于()20,N πσ,且与[],f i j 独立,去噪的目的 是得到[],f i j 的估计[]?,f i j ,使其均方误差(MSE )最小,其中 [][]()22,,11?,,N i j MSE f i j f i j N ==-∑ (0.2) 在小波域,利用正交小波变换,(8.1)式变换后既得 [][][],,,,,1,,Y i j X i j V i j i j N =+= (0.3) 其中Y [],i j 是有噪小波系数,X [],i j 是无噪小波系数,为简单记并考虑到实际问 题的需要,本章对噪声的讨论仅限于加性的高斯白噪声,即V [],i j 为互相独立、 与()20,N πσ同分布的噪声分量。 图像去噪在信号处理中是一个经典的问题,传统的去噪方法多采用平均或线性方常用的是Wiener 滤波,但是去噪效果不够好,随着小波理论日趋完善,它以其自身良好的时频特性在图像、信号去噪领域法进行,受到越来越多的关注,开辟了用非线性方法去噪的先河,具体来说,小波去噪的成功主要得益于小波变换有如下特点:低熵性。小波系数的稀疏分布,使图像变换后的熵降低;多分辩率特性,由于采用了多分辩率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等,可在不同分辩率下根据信号和噪声分布的特点去噪;去相关性。因小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪;选基灵活性。由于小波变换可以灵活选择基,也可根据信号特点和去噪要求选择多带小波、小波包、平移不变小波等,对不同场合,可以选择不同的小波母函数。 因此,本章重点讨论基于各种小波变换的去噪方法。 8.1信号的奇异性检测与小波模极大值 信号(或函数)的奇异性是指信号(或函数)在某处有间断或某阶导数不连续。显然,无限次可导的函数是光滑的或者说是没有奇异性,奇异点(即突变点)通常包含

像素级图像融合及其关键技术研究

像素级图像融合及其关键技术研究 图像融合是将多个相同或不同类型的成像传感器获取的同一场景的多幅图像信息加以综合与提取,从而产生比任何单一图像信息对景物更加精确的描述。图像融合一般可分为像素级、特征级和决策级图像融合。 本文针对像素级图像融合技术中需要解决的关键问题,重点研究了其中的三项关键技术:像素级图像融合预处理中的图像降噪技术、多聚焦图像融合技术以及全色与多光谱遥感影像融合技术。主要内容为:1.提出了一种基于人类视觉系统的图像去噪方法。 该方法结合了像素分类与小波变换,在不同的图像区域采用不同的阈值进行去噪,可有效提高图像去噪的效果,同时较好的保持了图像细节。2.提出了一种有利于图像压缩的小波图像去噪方法以及一种小波系数校验方法。 该去噪方法利用图像小波系数的层内相关性进行图像去噪,并可与后续的图像压缩处理有效结合。3.提出了一种基于局部区域梯度信息的多分辨率图像融合算法及其改进算法。 改进算法对不同源图像的对应尺度系数进行自适应加权相加,以获得融合后的尺度系数。这两种方法的融合效果均优于常用融合方法。 4.提出了一种基于离散余弦变换以及一种结合小波变换与离散余弦变换的图像融合新方法。前者的计算量相对较少,适用于实时处理,而后者则能有效提高图像融合的质量。 5.提出了一种基于支持向量机与图像块分割的自适应图像融合策略。该方法依据多聚焦源图像块所在的位置,采用不同大小的图像块进行自适应融合处理,可有效提高图像的融合效果。

6.提出了一种结合块分割与多分辨率分析的多聚焦图像融合方法。该方法可与现有的基于多分辨率分析的多聚焦图像融合方法相结合,能有效提高这些方法的融合效果。 7.提出了一种基于离散余弦变换与IHS(Intensity-hue-saturation,IHS)变换的多光谱与全色遥感影像融合方法及其改进算法。这两种方法可直接在离散余弦变换域进行遥感影像融合,适合压缩格式的遥感影像快速融合。 利用这两种方法的思想在空域结合基于IHS变换的融合方法,仅需较小的计算量,在提高融合图像空间分辨率的同时,保持了绿色植被区域的光谱特性。8.提出了一种基于抽样小波变换与IHS变换的高空间分辨率遥感影像融合方法。 该方法的计算量接近于基于抽样小波变换的常用融合方法,并可获得近似甚至优于冗余小波变换的融合效果。上述各个技术研究点均进行了相应的计算机仿真与性能分析。 本论文的所有研究工作在图像去噪与图像融合处理领域具有重要的理论与应用价值。

图像融合的研究背景和研究意义

图像融合的研究背景和研究意义 1概述 2 图像融合的研究背景和研究意义 3图像融合的层次 像素级图像融合 特征级图像融合 决策级图像融合 4 彩色图像融合的意义 1概述 随着现代信息技术的发展,图像的获取己从最初单一可见光传感器发展到现在的雷达、高光谱、多光谱红外等多种不同传感器,相应获取的图像数据量也急剧增加。由于成像原理不同和技术条件的限制,任何一个单一图像数据都不能全面反应目标对象的特性,具有一定的应用范围和局限性。而图像融合技术是将多种不同特性的图像数据结合起来,相互取长补短便可以发挥各自的优势,弥补各自的不足,有可能更全面的反映目标特性,提供更强的信息解译能力和可靠的分析结果。图像融合不仅扩大了各图像数据源的应用范围,而且提高了分析精度、应用效果和使用价值,成为信息领域的一个重要的方向。图像配准是图像融合的重要前提和基础,其误差的大小直接影响图像融合结果的有效性。 作为数据融合技术的一个重要分支,图像融合所具有的改善图像质量、提高几何配准精度、生成三维立体效果、实现实时或准实时动态监测、克服目标提取与识别中图像数据的不完整性等优点,使得图像融合在遥感观测、智能控制、无损检测、智能机器人、医学影像(2D和3D)、制造业等领域得到广泛的应用,成为当前重要的信息处理技术,迅速发展的军事、医学、自然资源勘探、环境和土地、海洋资源利用管理、地形地貌分析、生物学等领域的应用需求更有力地刺激了图像融合技术的发展。 2 图像融合的研究背景和研究意义 Pohl和Genderen对图像融合做了如下定义:图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把

图像处理中的小波变换算法原理及其应用

图像处理中的小波变换算法原理及其应用 摘要:小波分析是近年来迅速发展起来的一个数学分支,由于它在时间域和频率域里同时具有良好的局部化性质,因而在图像处理领域有着日益广泛的应用。随着数字图像处理需求的不断增长,相关应用也不断的增长,文章以一例图像处理过程为例,阐述了基于小波二维变换的图像处理方法在图像处理过程中的应用。 关键词:小波变换;图像;分解 1小波变换的基本概念及特点 小波定义:(t)∈L2(R),其傅里叶变换为(),当满足允许条件,即完全重构条件或恒等分条件。 C=∞-∞d<∞时,我们称(t)为一个基本小波,或者母小波。将母函数(t)经伸缩和平移后,得: a,b(t)=(),a,b∈R,a≠0 我们称其为一个小波序列。其中a为伸缩因子,b为平移因子。 小波变换是一种信号的时间-尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状可变,时间窗和频率窗都可变的时频局部化分析方法。在低频部分具有较高的频率分辨率和时间分辨率,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,因此被誉为分析信号的显微镜。 小波分析是把信号分解成低频A1和高频D1两部分,在分解中,低频A1失去的部分由高频D1捕获。而在下一层分解过程中,又将A1部分分解为低频A2和高频D2两部分,如此类推,可以进行多层分解。 2二维离散小波变换 在图像分解过程中,图像的小波分解就是二维小波的离散化分解。在此可取a=a0j,b=b0j,这里,j∈z,取a0>1,则离散小波函数可写为j,k(t)。 j,k(t)=()=(a0-jt-kb0) 离散化变换系数可表示为: Cj,k +∞-∞ f(t)j,k(t)dt=(f,Cj,k)

一种基于小波变换的自适应图像增强算法

崔 冲 丁建华 (大连海事大学信号与图像处理研究所 大连 116026) E-mail cui_chong@https://www.360docs.net/doc/7d2781578.html, ; huazai0135020@https://www.360docs.net/doc/7d2781578.html, 摘 要:针对含有微弱纹状物或点状物的图像,提出一种基于小波变换的自适应图像增强算法,首先根据小波变换提取出图像中不同变化频率的微弱纹状物,再对这些微弱纹状物进行自适应放大,加大其对比度,从而达到增强的目的,实验结果表明,该算法有着良好的增强效果。 关键词: 图像增强;自适应;小波变换; 1 引言 由于受光照、设备等因素的制约,实际摄取的图像会含有较大的噪声,灰度对比度低,某些局部细节没有明显的灰度差别,使人眼或者机器难以识别,因此有必要进行图像增强,为后续处理做准备。 常用的图像增强算法,比如直方图变换、直方图均衡等都有很好的增强效果,但这些都是全局性算法,对某些灰度集中且对比度低的图像,如含有微弱纹状物或点状物的图像,应用这些算法反而会降低清晰度[1],本文根据此类图像的特点,在已有算法的基础上[2],利用小波变换,根据图像信号的变化频率自适应调整求均值的邻域窗口大小,从而使得慢变和快变的信号同时得到增强。 2 基本原理 先介绍一种简单的增强算法[2],为讨论方便,取出一副数字图像中某一行的像素数据形成一维数据信号,它表示数字图像中某一行的灰度变化信息。如图1所示。增强微弱 )(x f 变化就是增强波形中缓变部分,从而使得波形中微弱的波峰和波谷尽可能得到增强。为此,需要求出的慢变均值,再求出其差值)(x f )(x g )()(x g x f a ?=Δ,即可提取出波峰和波谷。下一步就是对这个差值信号进行自适应放大:a Δa A x p Δ?=)(,A 为放大系数,A 应能按照自适应变化,当大时,A 值小,当a Δa Δa Δ小时,A 值大。经自适应放大后的波形如图2所示,显然,中微弱的波峰和波谷都得到充分的放大。 )(x p )(x f 图1 原始信号f(x)波形 图2 增强后的信号p(x)波形 https://www.360docs.net/doc/7d2781578.html,

基于图像的小波变换

基于图片的小波变换 研硕13-13张佳浩 0 引言 在经典的信号分析理论中,傅里叶理论是应用最广泛、效果最好的一种分析手段。但它只是一种纯频域的分析方法,不能提供局部时间段上的频率信息。随后的短时傅里叶变换STFT,虽然可以同时分析时域和频域信息,但是由于STFT的固定时窗,对于分析时变信号是不利的。这是因为时变信号中的高频一般持续时间很短,而低频持续时间比较长,所以都希望对高频信号采用大的时窗,对低频信号采用小的时窗进行分析。小波变换正是在这样的背景下发展起来的。近年来,小波变换作为一种变换域信号处理方法,得到了非常迅速的发展,在信号分析、图像处理、地震勘探和非线性科学等诸多领域得到了广泛的运用。小波理论为各种信号及图像处理方法提供了一种统一的分析框架,成为当前信号与图像处理等众多领域的研究热点。当前对数字图像进行多分辨率观察和处理时,离散小波变换(DWT)是首选的数学工具。除了具有有效、高度直观的描述框架以及多分辨率图像存储之外,DWT还有利于我们深入了解图像时域和频域特性。 1 小波变换 小波变换是一种窗口大小固定不变,但其形状可以改变的局部化分析方法。小波变换在信号的高频部分可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号(如语音、图像等)中提取信息。 小波变换分为以下两种: 1.1 连续小波变换 引言中提到的短时傅里叶变换(STFT),其窗口函数是通过函数 时间轴的平移与频率限制得到的,由此得到的时频分析窗口具有固定的大小。对于非平稳信号而言,需要时频窗口具有可调的性质,即要求在高频部分具有较好的时间分辨率特性,而在 低频部分具有较好的频率分辨率特性。为此,特引入窗口函数,并定义平方可积分函数的连续小波变换为: (1) 式中:a称为尺度参数;b称为平移参数。很显然,并非所有函数都能保证式(1)中的变换对于所有均有意义;另外,在实际应用中,尤其是信号处理以及图像处理的应用中,变 换只是一种简化问题、处理问题的有效手段,最终目的需要回到对原问题的求解,因此还要保证连续小波变换存在逆变换。同时,作为窗口函数,为了保证时间窗口与频率窗口具有快速衰 减特性,经常要求函数具有如下性质: 式中:C为与x,ω无关的常数;ε>0。 1.2 离散小波变换

基于小波变换与阀值收缩法的图像增强去噪(精)

第 19卷第 2期四川理工学院学报 (自然科学版 V ol . 19 No. 2 JOURNAL OF SICHUAN UNIVERSITY OF 2006年 4月 SCIENCE & ENGINEERING (NATURAL SCIENCE EDITION Apr . 2006 文章编号:1673-1549(2006 02-0008-04 基于小波变换与阀值收缩法的图像增强去噪 高飞,杨平先,孙兴波 (四川理工学院电子与信息工程系,四川自贡 643000 摘要:提出了一种基于小波变换与阀值收缩法的图像增强去噪方法。图像经过小波分解后可以得到一系列不同尺度上的子带图像, 在不同尺度的子带图像上进行基于阈值收缩滤波的细节系数增强, 再进行小波重构,即可得到增强后的图像。该方法可以有效地去除噪声,增强图像的平均梯度,改善图像的视觉效果。 关键词:图像增强;小波变换;去噪;阀值收缩 中图分类号:TP391 文献标识码:A 前言 小波变换是传统傅里叶变换的继承和发展, 由于小波的多分辨率分析具有良好的空间域和频率域局部化特性, 对高频采用逐渐精细的时域或空域步长, 可以聚焦 到分析对象的任意细节, 因此特别适合于图像信号这一类非平稳信源的处理,已成为一种信号/ 图像处理的新手段。目前,小波分析已被成功地应用于信号处理、图象 处理、语音与图像编码、语音识别与合成、多尺度边缘提取和重建、分形及数字电视等科学领域 [1]。

图像增强是图像处理中一个非常重要的研究领域,已经有许多非常成熟和有效的方法如直方图均衡、高通滤波、反掩模锐化法等,但是这些传统的图像增强方法都存在着不足,如噪声放大、有时可能引入新的噪声结构等。目前已经有许多关于小波变换在图像处理方面的应用研究, 取得了非常不错的效 果。针对传统图像增强中存在的一些问题,如增强噪声、丢失细节等,本文提出了一种基于阈值收缩法 [2]的小波图像增强方法, 实验结果表明该方法能较好地解决图像增强中的噪声放大的问题, 并能非线性地增强图像的细节信息,保持图像的边缘特征,改善图像的视觉效果,是一种很有效的方法。 1 小波变换 小波变换的基本思想是用一族函数去表示或逼近一信号, 这一族函数称为小波函数系。它是通过一 小波母函数的伸缩和平移产生其“子波”来构成的,用其变换系数描述原来的信号 [3]。设相应的尺度函 数为 (x ?,小波函数为(x ψ,二维尺度函数 , (y x ?,是可分离的,即: ( ( , (y x y x ???=,即可以构造 3个二维基本小波函数: ( ( , (1y x y x ψ?ψ=, ( ( , (2y x y x ?ψψ=, ( ( , (3y x y x ψψψ= 那么,二维小波基可以通过以下伸缩平移实现: 2, 2(2 , (, , n y m x y x j j i j i n m j ??=???ψψ 3, 2, 1, , , =∈i Z n m j 这样,一个二维图像信号 , (y x f 在尺度 j 2下的平滑成分(低频分量可用二维序列 , (n m D j 表示为: , ( , ( , (, , y x y x f n m D n m j j ?=

偏振成像及偏振图像融合技术与方法模板

编号 偏振成像与偏振图像融合技术与方法 Technology and Method of Polarization Imaging and Polarization Image Fusion 学生姓名 专业 学号 学院 2014年06月

摘要:偏振成像技术能在杂乱背景下提高目标的识别率,对于人造假目标和伪装具有独特的辨别能力,同时能提高图像的对比度和清晰度。在过去的十几年中,成像偏振技术获得了迅速的发展,应用的范围也在不断地扩大,己经成为信息获取领域中的一个研究热点。本文主要论述了偏振成像技术的发展现状及应用前景,对偏振光的基本理论进行了研究。通过用数学表达式和矩阵对多源图像融合技术进行了详细的理论描述。 关键词:偏振成像图像融合斯托克斯参量琼斯矩阵

Abstract Polarization imaging has the ability to identify false targets and enhance images taken in poor visibility and even restore clear-day visibility of scene. In the past several years, polarization imaging has been developed rapidly, the scope of application in continually expanding, already became in the field of information for a research hotspot. This article mainly discusses the technology development status and the application prospect of polarized light and studies the basic theory of polarized light technology. By using mathematical expression and the matrix of the source image fusion technology detailed description of the theory. Keywords:Polarization Imaging; Polarization Image Fusion; Stokes parameter; Jones matrix

图像融合

图像融合 实验目的 1.熟悉图像融合的意义和用途,理解图像融合的原理; 2.掌握图像融合的一般方法; 3.掌握运用MATLAB软件进行图像融合的操作。 实验原理 图像融合(Image Fusion)技术是指将多源信道所采集到的关于同一目标的图像经过一定的图像处理,提取各自信道的信息,最后综合成同一图像以供观察或进一步处理。 高效的图像融合方法可以根据需要综合处理多源通道的信息,从而有效地提高了图像信息的利用率、系统对目标探测识别地可靠性及系统的自动化程度。其目的是将单一传感器的多波段信息或不同类传感器所提供的信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,以增强影像中信息透明度,改善解译的精度、可靠性以及使用率,以形成对目标的清晰、完整、准确的信息描述。 这诸多方面的优点使得图像融合在医学、遥感、计算机视觉、气象预报及军事目标识别等方面的应用潜力得到充分认识、尤其在计算机视觉方面,图像融合被认为是克服目前某些难点的技术方向;在航天、航空多种运载平台上,各种遥感器所获得的大量光谱遥感图像(其中分辨率差别、灰度等级差别可能很大)的复合融合,为信息的高效提取提供了良好的处理手段,取得明显效益。 一般情况下,图像融合由低到高分为三个层次:数据级融合、特征级融合、决策级融合。数据级融合也称像素级融合,是指直接对传感器采集来得数据进行处理而获得融合图像的过程,它是高层次图像融合的基础,也是目前图像融合研究的重点之一。这种融合的优点是保持尽可能多得现场原始数据,提供其它融合层次所不能提供的细微信息。 图像融合最简单的理解就是两个(或多个)图像间的相加运算。这一技术广泛

应用于多频谱图像理解和医学图像处理等领域。主要分为空域和频域相加。 一、应用MATLAB软件进行两幅图像的融合的主要方法有: 1.图像直接融合; 2.图像傅立叶变换融合; 3.图像小波变换融合。 图像融合的MATLAB程序如下: (1)调入、显示两幅图像的程序语句 load A; X1=X;map1=map; load B; X2=X;map2=map; %打开图像 subplot(1,2,1) image(X1),colormap(map1); title(‘图像map1’) subplot(1,2,2) image(X2),colormap(map2); title(‘图像map2’) %显示两幅图像 (2)两幅图像直接融合的程序语句 figure,subplot(1,3,1) image((X1+X2)/2),colormap(map2); %在空域内直接融合 title(‘两图像直接相加融合’) %显示融合后的图像,并命名为“两图像直接相加融合” (3)两幅图像傅立叶变换融合的程序语句 F1=fft2(X1); F2=fft2(X2); %分别计算两幅图像的快速傅立叶变换

基于小波变换的图像增强研究

基于小波变换的图像增强研究 摘要 随着社会的不断进步,网络和计算机在人们日常生活中的迅速普及,人们对图像、视频、音频等多媒体文件的要求也愈来愈高。而图像在获取或传输过程中,由于各种原因,可能对图像造成破坏,使图像失真,为了满足人们的视觉效果,必须对这些降质的图像进行处理,满足实际需要,使用不同的方法进行图像增强处理,尽可能对图像进行还原。 图像增强技术是数字图像处理的一个重要分支,其方法有很多,主要可以分为两大类:空间域增强和频率域增强.但是传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。本文针对图像对比度低、成像质量差的问题,提出一种基于小波变换的直方图均衡算法,用于图像对比度增强。 关键词:图像增强直方图均衡小波变换

Abstract With the development of the society the internet and computers are used widely in people’s everyday life.The transmit of images visions videos and so on have brought so many pleasures,at the same time the demand of such documents become more and more strongly.But the quality of images many decrease because during the course of gaining and transmitting images they are interfered with all kinds of causes .The paper is about how to deal with the enhancement of images. The image enhancement is an important part of digital image processing.There are many methods of image enhancement,image enhancement techniques can be divided into tow broad categories:Spatial domain methods and frequency domain methods.But the traditional methods will enhancement the image with block effect;this is not satisfied human viewer.The technology of wavelet analysis has special advantages to deal with images it can withdraw characters of signals in many directions and in freely scale.The technology can separated noises from signals in different scales.In this paper we discussed how the property of the wavelet basis affect the process of image noising.In view of image problems of low in contrast gradient and poor imaging quality,in this artical

基于小波理论的图像去噪和图像增强

基于小波理论的图像去噪和图像增强 1.3图像去噪技术 图像去嗓是信号处理中的一个经典的问题。传统的去噪方法多采用平均或线性方法,如Wiener滤波,但去嗓效果不令人满意。随着小波理论嚣趋完善,它以其自身良好的时频特性在图像信号去噪领域受到越来越多的关注,开辟了用非线性方法去噪的先河。小波变换用于豳像去噪的理论基础始于S。Mallat把数学上的Lipschitz系数与小波变换的模极大值联系起来。随后Donohol8j提出了小波M值萎缩方法并从渐透意义上证明了其优越性。然而在实际应用中却往往效果不好,存在“过扼杀"系数的缺点。以后人们进一步研究小波相关去噪方法、比例萎缩方法等,并且在进一步提高辣法的局部适旋性、先验模型的准确性、边缘信息的傈留性等方西取得了巨大的进步。具体回顾小波去噪方法可以大致分成以下三个阶段:第~阶段,最初的去噪方法主要是利用小波变换去相关性。在小波分解后不同层次麴纲节子带,采用不同的阈值。代表方法有Visushrink(逶用软闺值去噪方法)和SureShrink(基于Stein's的无偏风险估计,可得出接近最优软阈值的佶计量)方法等。这期间硬阂值、.软阙值和半软闽值等阈值函数也楣继提出。第二阶段,人们开始根据小波系数的统计性质建立各种先验模型,对小波系数的萎缩自适应变化,也就是每个小波系数所采取的阈值都各不相同。小波系数模型主要可分为基于尺度内相关性的层内模型、基于尺度阗相关性的层闻模型和混合模型。最常用小波系数先验模型是广义高斯分布模型。原图像小波系数的方差估计采髑局部邻域估计,代表方法有数据驱动的爨适应BayesShrink 方法,LawmlShrink方法等。第三阶段,这~阶段入们主要关注如何利用小波系数层闻和层肉的楣关性,二元或多元的小波萎缩函数被提出。在去噪的同时如何尽可能地保留边缘、纹理等细节、如何使去噪后的图像更光滑、如何将小波变换去噪与其他方法结合等都处于不断地探索和研究中,代表方法有BivaShrink方法、小波的马尔可夫方法和复数小波去噪方法等。 1.4图像增强技术 数字图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,其主要目的是使处理后的图像对某种特定的应用来浼,比原始图像更适用。因此,这类处理是为了某种应用目的两去改 3 武汉理王大学硕士学位论文善图像矮量的。处理的结果锼图像更适合于人的视觉特性或机器的识别系统Il别。图像的增强技术主要分为两大类:~类是空域类处理法,一类是频域类处理法。空域法是指蛊接对图像孛的像素进行处理,基本上是以获度映射变换为基础的。频域法的基础是卷积定理,一般情况下采用修改傅立叶变换的方法来实现对图像进行增强处理。健在这里以延伸为其毽的变换翔DCT变换、Walsh 变换和小波变换等。小波算法的发展极大影响了信号与图像处理领域的研究。在图像处理领域,很多算法被痰用到罂像去嗓方面。相对来讲在图像增强这个领域研究工作做得稍微少了些,但还是出现了~些很重要的方法。图像增强中主要问题是噪声,许多通用、知名方法都存在下列瓣题:帮在增强细节信号豹同时,也放大了噪声。在诸如CCD这种低对比度、多噪声图像中,尤其需要改进算法,在增强微弱细节信号的困时抑制背景孛的离频噪声。传统图像增强方法,如直方腿均衡、高通滤波、反掩模锐化法等。但是,这些传统的图像增强方法都存在着不足,如噪声放大、有时可能弓l入新的噪声结擒等。知翁解决这些闯题一直是图像增强领域孛的~个难题。小波分

图像融合开题报告2

齐鲁工业大学 毕业设计(论文)开题报告题目:图像拼接技术研究—图像融合 院(系)电气工程与自动化学院 专业电子信息工程 班级电子12-1 姓名泳麟 学号 201202031022 导师玉淑 2016年 4月 20 日

5.主要参考文献: [5] Blinn J F.Light reflection functions for simulation of clouds and dusty surfaces[C]//Proceedings of SIGGRAPH,1982:21-29. [6] Max N.Optical models for direct volume rendering[J].IEEE Transactions on Visualization and Computer Graphics,1995,1: 99-108. [7] Max N.Light diffusion through clouds and haze[C]//Computer Vision,Graphics,and Image Processing,1986:280-292. [8] 尤赛,福民.基于纹理映射与光照模型的体绘制加速算法[J]. 中国图象图形学报,2003,8(9). [3] Chao R,Zhang K,Li Y J.An image fusion algorithm using wavelet transform[J].Area Electronical Sinica,2004,32:750-753. [4] Hill P,Canagarajah N,Bull D.Image fusion using complex wavelets[C]//British Machine Vision Conference,Cardif,2002. [5] 梁栋,瑶,敏,等.一种基于小波-Contourlet 变换的多聚焦图像 融合算法[J].电子学报,2007,35(2):320-322. [6] 杰,龚声蓉,纯平.一种新的基于小波变换的多聚焦图像融合 算法[J].计算机工程与应用,2007,43(24):47-49. [7] 福生.小波变换的工程分析与应用[M].:科学,1999. [8] 敏,小英,毛捷.基于邻域方差加权平均的小波图像融合[J].国 外电子测量技术,2008,27(1):5-7. [9] 楚恒,杰,朱维乐.一种基于小波变换的多聚焦图像融合方法[J]. 光电工程,2005,32(8):59-63. [10] 王丽,卢迪,吕剑飞.一种基于小波方向对比度的多聚焦图像融合 方法[J].中国图象图形学报,2008,13(1):145-150. (上接196页) 康健超,康宝生,筠,等:一种改进的基于 GPU 编程的光线投射算法 201

matlab中图像小波变换的应用实例

matlab中图像小波变换的应用实例如下: 1 一维小波变换的Matlab 实现 (1) dwt 函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D) 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组Lo_D、Hi_D 对信号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L) X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量cA 和细节分量cD 经小波反变换重构原始信号X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器Lo_R 和Hi_R 经小波反变换重构原始信号X 。 X=idwt(cA,cD,'wname',L) 和X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号X 中心附近的L 个点。 2 二维小波变换的Matlab 实现 二维小波变换的函数 ------------------------------------------------- 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换

利用小波变换实现彩色图像增强

利用小波变换实现彩色图像增强 专业:通信工程姓名:李厚福指导教师:王建华 摘要:中国有句谚语“百闻不如一见”,可见视觉信息的重要性。图像是人们获得信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的最主要载体也是图像,因此图像的增强处理受到越来越多的人们关注。而图像在获取或传输过程中,由于各种原因,可能对图像造成破坏,使图像失真,为了满足人们的视觉效果,必须对这些降质的图像进行处理,满足实际需要,使用不同的方法进行图像增强处理,尽可能对图像进行还原。 图像增强技术是数字图像处理的一个重要分支,其方法有很多,主要可以分为空间域增强和频率域增强两大类。但是传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。本文对小波变换理论、小波阈值滤波和增强的方法,小波阈值滤波及增强中的阈值函数和阈值的选取做了理论上的研究,重点研究利用小波变换对图像进行增强处理。关键词:小波变换,图像增强,噪声,信号

第一章绪论 1.1课题研究的意义 图像是人们获取信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的主要载体也是图像。对于生活中的指纹识别,视频监控,生活拍照,医学拍照等无不与图像有着紧密的关系。所以图像增强的目的是改善图像的视觉效果,这对人们的生活有着重要的意义。 图像增强作为基本的图像处理技术,其目的是要改善图像的视觉效果。针对给定图像的应用场合,通过处理设法有选择的突出便于人或机器分析有用的信息,将原来模糊的图像变得清晰,抑制一些没有的信息,得以改善图像质量,丰富信息量,加强图像判读和识别效果,以提高图像的使用价值。 图像增强有很多种方法,传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。对于其性质随实践是稳定不变的信号,傅立叶变换是理想的工具。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波变换。小波变换是傅立叶变换的发展与延拓,它对不同频率成分在时域上的取样步长具有调节性,高频则小,低频则大。具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。小波变换解决了傅立叶变换不能解决的许多困难问题,运用到图像增强方面有很重要的现实意义。

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

相关文档
最新文档