浅谈金矿石勘探期问常用的选矿方法

浅谈金矿石勘探期问常用的选矿方法
浅谈金矿石勘探期问常用的选矿方法

铁矿选矿工艺

我国铁矿石资源供给形势 随着我国经济持续高速的发展,钢铁工业迅速发展。国内各钢铁企业对矿石的需求量增长迅猛,国内的矿山生产已远远满足不了需求,不得不依靠国外的优质铁矿石资源。据统计,1985年我国进口铁矿石突破1000万t,2002年突破1亿t,2004年突破2亿t,2005 年1~7月份累计进口铁矿石已达2亿t。 国内的铁矿石资源中易选的磁铁矿资源日益减少,充分利用国内的资源,提高钢铁企业矿石的自给率,缓解进口铁矿石的压力,维持优质的铁矿原料供给,必须以科技的进步来推动贫铁矿资源的高效开发与利用。我国铁矿矿床类型多,贮存条件复杂,矿石类型多,硫、磷、二氧化硅等有害组分含量高,多组分共生铁矿石占了很大比重,而且有用组分嵌布粒度细,因此采选难度大、效率低、产品质量差。 几十年来,广大选矿工作者针对我国铁矿资源“贫、细、杂”的特点开展了大量的研究工作,解决了诸多技术难题,使我国铁矿选矿技术得到长足进步和发展,总体水平有很大提高。尤其是近年来,研制并成功应用了新的高效分选设备、新的高效浮选药剂以及新的分选工艺。从而使选矿工艺指标取得了突破性进展。 铁矿选矿技术及选矿设备简介 (一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m 短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。 (二)磨矿工艺 我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。磨矿后的分级基本上使用的是螺旋分级机。为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。 (三)选别技术 1.磁铁矿选矿主要用来选别低品位的“鞍山式”磁铁矿。由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)(图3. 2.23)。我国自己研制的系列化的永磁化,使磁选机实现了永磁化。70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%左右,实现了冶金工业部提出精矿品位达到65%的要求。 2.弱磁性铁矿选矿主要用来选别赤铁矿、褐铁矿、镜铁矿、菱铁矿、假象赤铁矿或混合矿,也就是所谓的“红矿”。这类矿石品位低、嵌布粒度细、矿物组成复杂,选别困难。80年代后,选矿技术方面对焙烧磁选、湿式强磁选、弱磁性浮选和重选等工艺流程、装备和新品种药剂的研究不断改进,使精矿品位、金属回收率不断提高。如鞍钢齐大山选矿厂采用弱磁—强磁—浮选的新工艺流程,获得令人鼓舞的成就。 3.多金属共(伴)生矿选矿这类矿石成分复杂、类型多样,因此采用的方法、设备和流程也各不相同,如白云鄂博铁矿采用反浮选—多梯度磁选、絮凝浮选、弱磁-反浮选-强磁选、弱磁-正浮选、焙烧磁选等不同的工艺流程,以提高铁的回收率,并综合回收稀

难选锡矿选矿工艺技术

书山有路勤为径,学海无涯苦作舟 难选锡矿选矿工艺技术 锡矿石的分选多为重选法、其工艺流程约分为原矿处理、矿砂分选和矿泥分选三部分。 原矿处理锡选厂的原理处理一般由洗矿、脱泥、破碎、筛分、分级、配矿、调浆和重介质预选等作业中的一项或几项组成。含泥量大且胶结性强的原料,在进入选矿作业之前要经过洗矿和脱泥;选矿在圆筒式或槽式洗矿机中,也可在洗矿筛上进行,或者用几种设备组成洗矿流程;脱泥常用的设备有圆锥分级机(分泥斗)和水力旋流器,脱泥用水力旋流器多为小型的,其直径为125mm、75mm、50mm 甚至>5mm。锡矿石选矿对破碎、筛分、分级等作业都有特殊的要求:破碎(包括磨矿)要达到但不得超过起始选矿粒度,以保证锡石只实现单体分离而不发生过粉碎,为避免过粉碎,通常采用多段磨矿和多段分选的流程;筛分作业通常是为跳汰选矿做准备的;分级作业则是为摇床选矿做准备;筛分和分级也常常作为控制破碎粒度的手段。重选的调浆作业是与浮选的调浆完全不同的,重选的调浆是为了给后续作业提供所要求的浓度、细度和悬浮状态。重介质预选是20 世纪70 年代后发展起来的,中国多采用重介质旋流器作为预选设备;英国、澳大利亚等国自80 年代后开发了DWP 旋涡分选器;重介质预选的脱废率高于20%~25%,在经济上是合理的。 矿砂分选分选所用的设备主要是跳汰机和摇床。但是,随着资源的变化,入选锡石原矿的嵌布粒度越来越细。摇床便成为了最主要的设备。选锡摇床通常有四种产品,即精矿、次精矿、中矿和尾矿。选锡流程中的次精矿粒度比较粗,其中除部分单体锡石外,还有大量的铁锡结合体;通常都把全厂的次精矿集中磨矿,再单独进行分选。中国把这一流程称作“次精矿集中复洗”。 矿泥分选中国的典型流程的:离心机—皮带溜槽—刻槽矿泥摇床或悬挂式

铁矿石选矿技术

铁矿选矿与加工技术 一、铁矿石分类 各种含铁矿物按其矿物组成,主要可分为4大类:磁铁矿、赤铁矿、褐铁矿和菱铁矿。由于它们的化学成分、结晶构造以及生成的地质条件不同,因此各种铁矿石具有不同的外部形态和物理特性。 (一)磁铁矿 主要含铁矿物为磁铁矿,其化学式为Fe3O4,其中FeO=31%,Fe2O3=69%,理论含铁量为72.4%。这种矿石有时含有TiO2及V2O5组合复合矿石,分别称为钛磁铁矿或矾钛磁铁矿。在自然纯磁铁矿矿石很少遇到,常常由于地表氧化作用使部分磁铁矿氧化转变为半假象赤铁矿和假象赤铁矿。所谓假象赤铁矿就是磁铁矿(Fe3O4)氧化成赤铁矿(Fe2O3),但它仍保留原来磁铁矿的外形,所以叫做假象赤铁矿。磁铁矿具有强磁性,晶体常成八面体,少数为菱形十二面体。集合体常成致密的块状,颜色条痕为铁黑色,半金属光泽,相对密度4.9~5.2,硬度5.5~6,无解理,脉石主要是石英及硅酸盐。还原性差,一般含有害杂质硫和磷较高。 (二)赤铁矿 赤铁矿为无水氧化铁矿石,其化学式为Fe2O3,理论含铁量为70%。这种矿石在自然界中经常形成巨大的矿床,从埋藏和开采量来说,它都是工业生产的主要矿石。赤铁矿含铁量一般为50%~60%,含有害杂质硫和磷比较少,还原较磁铁矿好,因此,赤铁矿是一种比较优良的炼铁原料。赤铁矿有原生的,也有野生的,再生的赤铁矿的磁铁矿经过氧化以后失去磁性,但仍保存着磁铁矿的结晶形状的假象赤铁矿,在假象赤铁矿中经常含有一些残余的磁铁矿。有时赤铁矿中也含有一些赤铁矿的风化产物,如褐铁矿(2Fe2O3·3H2O)。赤铁矿具有半金属光泽,结晶者硬度为5.5~6,土状赤铁矿硬度很低,无解理,相对密度4.9~5.3,仅有弱磁性,脉石为硅酸盐。 (三)褐铁矿 褐铁矿是含水氧化铁矿石,是由其他矿石风化后生成的,在自然界中分布得最广泛,但矿床埋藏量大的并不多见。其化学式为nFe2O3·mH2O(n=1~3、m=1~4)。褐铁矿实际上是由针铁矿(Fe2O3·H2O)、水针铁矿(2Fe2O3·H2O)和含不同结晶水的氧化铁以及泥质物质的混合物所组成的。褐铁矿中绝大部分含铁矿物是以2Fe2O3·H2O形式存在的。 一般褐铁矿石含铁量为37%~55%,有时含磷较高。褐铁矿的吸水性很强,一般都

铁矿石常用的选矿方法

铁矿石常用的选矿方法 The manuscript was revised on the evening of 2021

第一章铁矿石常用的选矿方法 第一节磁铁矿选矿流程 第二节 磁铁矿石主要包括单一磁铁矿矿石、钒钛磁铁矿 矿石、含磁铁矿混合矿石和含磁铁矿多金属共生矿石, 磁铁矿属强磁性产物,在磁铁矿选矿中普遍采用以弱 磁选工艺为主的选别流程: 1、单一弱磁选流程:选别作业采用单一弱磁选工艺,适合于矿物组成简单的 易选单一磁铁 矿矿石;可进一步划分为两类:连续磨矿-弱磁选流程、阶段磨矿-阶段选别流程。 1)连续磨矿-弱磁选流程:适用于嵌布粒度较粗或含铁品位较高的矿石。根据 铁矿无的嵌布 粒度,可采用一段磨矿或两段连续磨矿,磨矿产品达到选别要求后进行弱磁选。 2)阶段磨矿-阶段选别流程:适用于嵌布粒度较细的低品位矿石。在一段磨矿 石进行磁选粗 选,抛弃部分合格尾矿,磁选粗精矿在给入二段磨矿(再磨)进行再磨再选。如果能再粗磨条件下,经过选别丢弃大量尾矿,对于减少后续磨矿和分选作业负荷、降低成本是有利的。 2、弱磁选-反浮选流程:主要针对的是某些铁矿石精矿石品位难以提高、铁精 矿中SiO2等

杂质组成偏高的问题,工艺方法包括磁选-阳离子反浮选流程和磁选-阴离子反浮选流程两种。 3、弱磁选-精选流程:这种流程方法是对某些铁矿石精矿品位难以提高、铁精 矿石中SiO2 等杂质组分偏高的问题开发出来的。 4、弱磁-强磁-浮选联合流程:主要用于处理多金属共生铁矿石和混合铁矿石, 分为三类: 1)弱磁选-浮选流程:主要用于处理伴生硫化物的磁铁矿矿石。根据矿石性质 进一步分为先 磁后浮和先浮后磁两种。 2)弱磁-强磁流程:主要用于处理磁性率较低的混合矿石。特点是采用弱磁选 首先分离弱磁 性的磁铁矿,弱磁选尾矿再采用强磁选回收赤铁矿等弱磁性矿物。 3)弱磁-强磁-浮选流程:主要用于处理多金属共生铁矿石。 第三节赤铁矿选矿流程 赤铁矿化学成分为Fe2O3、晶体属三方晶系的氧化物 矿物。与等轴晶系的磁赤铁矿成同质多象。晶体常呈板状; 集合体通常呈片状、鳞片状、肾状、鲕状、块状或土状等。 呈红褐、钢灰至铁黑等色,条痕均为樱红色。 1、焙烧磁选流程:当矿物组成比较复杂而其他选矿方法难以获得良好的选别 指标时,往往

细粒锡石氧化锡矿选矿工艺技术

立志当早,存高远 细粒锡石氧化锡矿选矿工艺技术 全国绝大多数锡选厂是采用重选法回收锡。重选法回收锡的有效粒级为 +40μm,而对-40μm 粒级来说回收率极低一般仅为10%左右。全国的尾矿库每年损失的锡金属达9.6 万吨,其中-40μm 粒级所损失的金属约为7.68 万吨/年,占总尾矿损失的80%。回收细泥中的锡,最有效的方法是采用浮选法。广西大厂车河选厂从1983 年至1987 年是使用混合甲苯胂酸和苄基胂酸做捕收剂,浮选指标较好,细泥中锡回收率有大幅度提高,但这两种药剂再生产过程中和使用过程中对环境和人体危害都较大。1987 年开发了水杨氧肟酸和P86 组合捕收剂在该厂浮选锡,锡精矿品位达28%,作业回收率达93%,与重选相比,细泥中的回收率可提高40-50%。 在此基础上2005 年又研制了锡矿新型捕收剂,该药剂价格较水杨氧肟酸 低,和P86 联合使用对云南都龙锡矿进行小型试验,取得了较好的试验指标。采用重-浮联合流程(粗粒重选,细粒浮选),取得精矿品位为40.48%,回收率53.77%的指标,小型试验与原全重选指标相比,回收率提高了16 个百分点。该项试验工作正准备进行扩大试验和工业试验,试验成功后,可在都龙锡矿各选厂中推广应用。 锡石性脆,选矿过程中极易泥化损失,多年来国内外选矿工作者在致力于减少锡细泥化损失,提高锡选矿回收率的研究作了大量工作。如采用周边排矿磨机,细筛,粗粒浮选机等,而这些设备及传统台浮工艺均难以解决锡石多金属硫化矿中锡石嵌布粒度粗细不均等类型矿石的选矿问题。 后来开发的粗磨早收锡石台浮工艺是将粗磨(-1.5mm)条件下的重选精矿通过台浮作业,首先将粗粒单体锡石与硫化矿分离,及时回收已单体竭力的锡石,直接获得高质量锡石精矿,实现早收锡石之目的。从而减少了锡石过磨泥化损

铁矿石常用的选矿方法

第一章铁矿石常用的选矿方法 第一节磁铁矿选矿流程 磁铁矿石主要包括单一磁铁矿矿石、钒钛磁铁矿 矿石、含磁铁矿混合矿石和含磁铁矿多金属共生矿石, 磁铁矿属强磁性产物,在磁铁矿选矿中普遍采用以弱 磁选工艺为主的选别流程: 1、单一弱磁选流程:选别作业采用单一弱磁选工艺,适合于矿物组成简单的易 选单一磁铁 矿矿石;可进一步划分为两类:连续磨矿-弱磁选流程、阶段磨矿-阶段选别流程。 1)连续磨矿-弱磁选流程:适用于嵌布粒度较粗或含铁品位较高的矿石。根据 铁矿无的嵌布 粒度,可采用一段磨矿或两段连续磨矿,磨矿产品达到选别要求后进行弱磁选。 2)阶段磨矿-阶段选别流程:适用于嵌布粒度较细的低品位矿石。在一段磨矿 石进行磁选粗 选,抛弃部分合格尾矿,磁选粗精矿在给入二段磨矿(再磨)进行再磨再选。如果能再粗磨条件下,经过选别丢弃大量尾矿,对于减少后续磨矿和分选作业负荷、降低成本是有利的。 2、弱磁选-反浮选流程:主要针对的是某些铁矿石精矿石品位难以提高、铁精 矿中SiO2等 杂质组成偏高的问题,工艺方法包括磁选-阳离子反浮选流程和磁选-阴离子反浮选流程两种。

3、弱磁选-精选流程:这种流程方法是对某些铁矿石精矿品位难以提高、铁精 矿石中SiO2 等杂质组分偏高的问题开发出来的。 4、弱磁-强磁-浮选联合流程:主要用于处理多金属共生铁矿石和混合铁矿石, 分为三类: 1)弱磁选-浮选流程:主要用于处理伴生硫化物的磁铁矿矿石。根据矿石性质 进一步分为先 磁后浮和先浮后磁两种。 2)弱磁-强磁流程:主要用于处理磁性率较低的混合矿石。特点是采用弱磁选 首先分离弱磁 性的磁铁矿,弱磁选尾矿再采用强磁选回收赤铁矿等弱磁性矿物。 3)弱磁-强磁-浮选流程:主要用于处理多金属共生铁矿石。 第二节赤铁矿选矿流程 赤铁矿化学成分为Fe2O3、晶体属三方晶系的氧化物 矿物。与等轴晶系的磁赤铁矿成同质多象。晶体常呈板状; 集合体通常呈片状、鳞片状、肾状、鲕状、块状或土状等。 呈红褐、钢灰至铁黑等色,条痕均为樱红色。 1、焙烧磁选流程:当矿物组成比较复杂而其他选矿方法难以获得良好的选别指 标时,往往 采用磁化焙烧宣发;对于粉矿常用强磁选、重选、浮选等方法及其联合流程进行选别。 2、赤铁矿浮选流程:

选锡矿的常见方法介绍

选锡矿的常见方法介绍 锡矿石的选矿方法是由其本身的特性所决定的。由于锡石的密度比共生矿物大,因此锡矿石传统的选矿工艺为重力选矿。随着时间推移,入选矿石中锡石粒度不断变细,从而出现了锡石浮选工艺。此外,由于锡矿物中往往有各种氧化铁矿物存在,如磁铁矿、赤铁矿和褐铁矿等,这些矿物用浮选和重选均不能与锡石很好地分离,因此近年来在锡矿选矿流程中出现了磁选作业。 目前云锡公司大都沿用大屯选厂硫化矿车间30多年的浮-重选矿工艺,其流程是:原矿碎至20mm,一段闭路磨矿至0.074mm(200目)占60%~65%,混合浮选一粗二扫一精;铜硫分离磨至0.074mm占95%一粗二扫三精,产铜精矿、硫精矿;混合浮选尾矿再选硫化物后上重选。经一、二段床选;一次复洗;泥选;锡粗精矿除硫浮选,产锡精矿、富中矿。 长坡选矿厂为大厂矿务局所属选厂之一,其选矿流程为首先将原矿碎至-20mm后经筛分分成20~4和4~0mm两个粒级,20~4mm进入重介质旋流器预选。重介质旋流器重产品经一段棒磨后采用跳汰预选,跳汰尾矿用2mm振筛筛除+2mm作为废弃尾矿,-2mm进入摇床选别。跳汰和摇床精矿及中矿按品级分成富贫两系统,分别进行再磨并进行混合浮选。混合浮选尾矿进行摇床选别产出合格锡精矿;混合浮选精矿再经细磨进行铅锌分离浮选,并分别产出铅锑精矿和锌精矿。重选矿泥进入Φ300mm旋流器,溢流再经Φ125和Φ75mm水力旋流器组脱除细泥,沉砂经浓缩、浮选脱硫后进行锡石浮选。 近年来,在大厂查明了100号特富矿体,这是世界罕见的锡石多金属硫化矿大型特富矿体。矿石中锡、铅、锑和锌品位高,且含硫、砷、镉、铟、银和金可综合回收的伴生元素及稀贵金属元素。该矿石矿物种类多,组分复杂,选矿难度大。经过“八五”重点科技攻关,采用磁—浮—重和磁—重—浮—重两大类原则流程进行扩大试验,取得了较好的分选指标。磁—浮—重流程首先在高峰矿巴里选矿厂应用,硫化矿浮选采用两段混浮分离工艺,获得锡、铅、锑和锌回收率为83.72%、82.16%、73.89%和80.50%。后长坡选矿厂经改造处理100号矿石,设计流程为磁—浮—重流程,硫化矿浮选采用优先混浮分离工艺,获得锡、铅、锑和锌回收率分别为78.11%、85.59%、82.63%和81.65%。 新路锡矿是广西平桂矿务局所属的主要锡矿,其砂锡矿分残坡积砂锡矿和冲积砂锡矿两种类型。前者品位高、储量大,呈块状、囊状和串珠状分布;后者品位较低,分布面广,矿体比较复杂。 白面山选厂是处理该矿砂锡矿的选厂之一。由于锡石在大于5mm和小于5mm粒级中的嵌布特性有一定的差异,因此以5mm为界粗细分选。+5mm的粗砂经棒磨机后进行两次跳汰选别,第一次跳汰的尾矿用摇床扫选,得到锡品位8%~9%的粗精矿进入二段磨。-5mm的细砂,用Φ600mm旋流器分级,其沉砂经两次跳汰选别,其溢流再用Φ400mm旋流器分级并用摇床选别。

铁矿选矿技术概述(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 铁矿选矿技术概述(通用版) Safety management is an important part of production management. Safety and production are in the implementation process

铁矿选矿技术概述(通用版) 我国铁矿由于贫矿多(占总储量的97.5%)和伴(共)生有其他组分的综合矿多(占总储量的1/3),所以在冶炼前绝大部分需要进行选矿处理。 1996年全国入选铁矿石21497万t,占全国产铁矿石原矿25228万t的85.2%。入选铁矿石生产铁精矿粉8585.7万t,其中重点选矿厂处理原矿10961万t,生产铁精矿粉4158万t,占全国铁精矿粉产量的48.4%。 (一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。

(二)磨矿工艺 我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。磨矿后的分级基本上使用的是螺旋分级机。为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。 (三)选别技术 1.磁铁矿选矿 主要用来选别低品位的“鞍山式”磁铁矿。由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)(图3.2.23)。我国自己研制的系列化的永磁化,使磁选机实现了永磁化。70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%

复杂难选铁矿石选矿

复杂难选铁矿石选矿技术 我国97%的铁矿石需要选矿处理 找国铁矿石的主要特点是“贫”、“细”、“杂”,平均铁品位32%,比世界平均品位低11个百分点。其中97%的铁矿石需要选矿处理,并且复杂难选的红铁矿所占比例大(约占铁矿石储量的20.8%)。铁矿床成因类型多样,矿石类型复杂。我国探明的铁矿资源量为380亿~410亿吨,主要铁矿类型有:鞍山式沉积变质型铁矿,以磁铁矿石为主,品位为30%~35%,资源量为200亿吨。其中鞍本地区120亿吨,冀东地区50亿吨,山西、北京、冀西、安徽等地约30亿吨。攀枝花式岩浆分异则铁矿,以磁铁矿、钛铁矿为主,品位为30%~35%,主要分布在四川省西昌到渡口一带,资源量为70亿吨。大冶式和邯邢式接触交代型铁矿,以磁铁矿石为主,品位为35%~60%,主要分布在邯邢、莱芜和长江中下游一带,资源量为50亿吨,铁含量>45%的富矿较多。梅山式玢岩型铁矿,以磁铁矿石为主,资源量为10亿吨,品位为35%~60%。宣龙式和宁乡式沉积型铁矿,以赤铁矿石为主,品位低,含磷高,难处理,主要分布在河北宣化和湖北鄂西一带,资源量为30~50亿吨。大红山式和蒙库式海相火山沉积变质型铁矿,以

磁铁矿矿石为主,品位为35%~60%,主要分布在云南、新疆一带,资源量为20亿吨。在铁矿中共生和伴生铁矿多,约占资源量的17.9%,典型矿床有攀枝花铁矿、白云鄂博铁矿、大冶铁矿等,共(伴)生组分有钒、钛、稀土、铜等。 目前,我国菱铁矿石和褐铁矿石的利用率极低,大部分没有回收利用或根本没有开采利用。我国利用最多的矿石为鞍山式沉积变质铁矿石,但其中也有部分矿石由于嵌布粒度微细,矿物组成复杂尚未得到有效的开发利用。宣龙式和宁乡式铁矿,约占我国铁矿总储量的12%,占我国红铁矿储量的30%,由于矿石嵌布粒度微细,矿石结构为鲕状,含有害杂质磷高,目前尚未开发利用。包头白云鄂博铁矿为大型多金属共生复合铁矿,除铁外,尚有稀土、铌等多种金属,已发现有71种元素、170多种矿物。包钢目前采用弱磁-强磁-浮选回收铁和稀土的工艺流程,这种工艺获得的铁精矿品位低,其主要原因是铁精矿中含有硅酸盐类矿物,尤其是钾钠含量高,严重影响高炉冶炼效果;稀土矿物回收率低,总回收率不足20%,另外其他有价元素没有得到回收。 我国选铁矿石技术进展 菱铁矿石选矿技术

选矿方法的一般原则

选矿方法的一般原则 在确定选矿试验方案或推荐流程时,要对各种方法进行选择和比较。选择选矿方法必须以“鼓足干劲,力争上游,多快好省地建设社会主义”的总路线和党关于经济建设的一系列方针和政策为指导,具体分析技术和经济等各方面因素,综合考虑决定取舍,使所选择的方法符合实际,生产可靠,指标先进和经济合理。下面是考虑的一般原则。 (一)生产要求 1.采用先进的选矿工艺,大力提高选矿指标,充分利用矿石资源,满足冶炼要求。所选择的方法应该保证生产优质精矿,提高金属回收率和劳动生产率,降低生产成本和缩短建设周期。 2.对含多金属铁矿石必须全面考虑综合利用一切有用成分,对选矿生产中的尾矿和废水也要尽可能综合利用。 3.注意劳动保护和环境卫生。例如,避免采用氰化物或氟化物等有毒药剂,尽可能少采用细粒矿石的干选等。 4.选择的方法应该力求简单可靠,便于生产操作和管理;采用复杂的方法必须有明显的技术经济效果。 5.选择的方法应该与当地的建设条件相适应。例如,矿区的矿石储量丰富,选矿厂服务年限较长,应该采用完善的流程;资源分散的矿区,如砂矿,应该采用设备轻便而又高效率的方法,便于建成可移动的选矿厂;多雨地区避免采用干选;交通不便,机械加工能力较差的地区应该采用简易的方法;选矿的主要原材料,如药剂、燃料和介质应考虑当地有来源等。 6.生产选矿厂流程的改进,必须充分利用原有的生产基础,包括厂房、设备和生产经验等。 7.选择的方法应该经过生产或试验证明是有效和可靠的。 例如,新技术必须经过试验和鉴定,才能采用;采用的设备应该是定型的或暂列定型的产品。 (二)矿石性质 1.含有块状脉石的贫化矿石,应该考虑用重介质选矿、跳汰或干式磁选等方法剔除脉石。 2.含泥矿石应该考虑用洗矿方法除去矿泥。 3.强磁性矿物用弱磁选方法回收。 4.弱磁性矿物根据其物理或化学性质和嵌布粒度,用重选、焙烧磁选、浮选、强磁选或电选等方法回收。 5.硫化物和磷矿物等比较易浮的矿物,常用浮选方法回收。 6.含多金属铁矿石和难以用单一方法选别的多铁矿物铁矿石,常用几种方法联合的联合流程。

云南省箇旧红旗锡矿选矿厂

立志当早,存高远 云南省箇旧红旗锡矿选矿厂 (一)概况红旗锡矿隶属箇旧市工业局。位于云南省箇旧市东南方向老厂矿区。红旗锡矿在三面红旗的光辉照耀下,坚持自力更生、勤俭建国的方针,自1958 开始土法采矿和选矿。至1963 年国家投次70 万元,地方自筹资 金50 万元,建设100 吨/日采选厂,于1964 年10 月正式投产,目前实际生产能力可达120 吨/日。用浅孔分层崩落法采矿。原矿经两级斜坡卷扬运至选矿厂(运距约300 米)。自1958 年至1973 年该矿共向国家提供金属锡6000 多吨,上缴利润925 万元。矿山设备大修和备品配件,大部分靠本矿翻砂加工, 少部分由局属冶金修配厂协助制造。矿山供电来自开远电厂,经箇旧变电所降压至10 千伏,用5 公里线路送到选矿厂。选矿厂装有560 和180 千伏安变 压器各一台。选矿厂用水90%取自尾矿回水、水源距选矿厂高位水池200 米左右。新水来自箇旧湖。选矿厂建于20-25°的山坡上,尾矿排出均为自流。尾矿池为不占农田的天然洼地共三处,分别距选矿厂100 米和2000 米左右, 其容积较大可作长期堆存尾矿和回水用。(二)工艺流程1.原矿性质该矿处理的矿石为中低温氧化脉锡矿床。主要金属矿物为锡石、褐铁矿、赤铁矿。 脉石矿物为方解石、白云石、大理岩等。锡石呈细粒嵌布并与褐铁矿、赤铁矿 致密共生,磨至0.074 毫米锡石已大部分单体分离。原矿含泥21-25%,属难选氧化脉锡矿。2.工艺流程该厂流程基本上与云锡地区重选原则流程相同(见下图)。 [next] 其流程为一段破碎,三段磨矿,三段选别。次精矿集中复洗,复洗中矿返 回本段再选,复洗尾矿单独磨矿,磨后送入矿泥部分沉砂合并处理。分泥斗、 分级箱溢流经Ф250毫米旋流器分级,沉砂0.074-0.037 毫米入沉砂床选别,溢

采矿方法总结

采矿方法要点归纳 采矿方法要点归纳 2011-1-19 14:06:45 中国选矿技术网浏览946 次收藏我来说两句 一、空场采矿法 适用于开采水平、微倾斜、缓倾斜的矿体。其采矿法不仅能开采薄矿体,更适合于开采厚矿体和极厚矿体。 特征:将矿块划分为规则的矿房和矿柱,并根据矿体的厚度及采矿设备、技术条件的不同,选用浅孔、中深孔或深孔落矿方案进行矿房的回采,因而有浅孔房柱和中深孔房柱之分。 1.浅孔房柱采矿法 (1)主要适用于矿石和围岩稳固与较稳固的矿体。 (2)矿体倾角30°以下。 (3)矿体厚度小于8-10m。 (4)价值不高或品位较低的矿石。 2.中深孔房柱采矿法 (1)矿石稳固和中等稳固。当顶板围岩稳固或中等稳固时,采用不切顶或不预控顶;当顶板不太稳固或局部不稳固时,可采用切顶与预控顶; (2)矿体倾角≤30°; (3)厚度≤6-8m的矿体,采用不切顶房柱法;厚度8-10m的矿体,可采用浅孔切顶房柱法;厚度11-12m的矿体;可采用中深孔切顶房柱法; (4)顶板接触面平整,可采用不切顶房柱法;顶板接触面不平整,可采用切顶房柱法; (5)使用于低品位、价值低、凿岩性较好的矿石中。 二、全面采矿法 适用于开采矿石围岩均较稳固,矿体厚度小于5-7m的水平至缓倾斜矿体;也适合于开采矿体底板起伏较大或矿体厚度变化较大以及矿石品味不均匀的矿体。 1.普通全面采矿法(又称全面采矿法) (1)一般要求矿岩中等稳固以上;顶板的暴露面积应大于200-500m; (2)矿体倾角≤30°; (3)矿体厚度在5-7m以下,国内大部分矿山开采1.5-3.0m的矿体; (4)一般矿体产状较稳固; (5)该法留有采场内矿柱,最好在贫矿中应用。 2.留矿全面采矿法 (1)矿石和顶板岩石为稳固或中等稳固;矿石不粘结,不自然; (2)矿体倾角由缓倾斜到倾斜(即26°-55°),以倾斜矿体为主; (3)厚度由薄至中厚的矿体,以薄矿体为主; (4)可用于形态较复杂,厚度和品位变化较大,以及底板沿走向和倾斜均有起伏的不稳定矿体。 三、浅孔留矿采矿法 适用于开采矿石中等稳固和围岩稳固的急倾斜矿体,并要求矿石无自燃性、氧化性,破碎后不易再结块。 1.普通浅孔留矿采矿法 (1)矿岩基本稳固的急倾斜矿体;

铁矿石常用的选矿办法

精心整理第一章铁矿石常用的选矿方法 第一节磁铁矿选矿流程? 磁铁矿石主要包括单一磁铁矿矿石、钒钛磁铁矿 矿石、含磁铁矿混合矿石和含磁铁矿多金属共生矿石, 磁铁矿属强磁性产物,在磁铁矿选矿中普遍采用以弱 磁选工艺为主的选别流程: 1、单一弱磁选流程:选别作业采用单一弱磁选工艺,适合于矿物组成简单的易选单一磁铁 矿矿石;可进一步划分为两类:连续磨矿-弱磁选流程、阶段磨矿-阶段选别流程。 1)连续磨矿-弱磁选流程:适用于嵌布粒度较粗或含铁品位较高的矿石。根据铁矿无的嵌布 粒度,可采用一段磨矿或两段连续磨矿,磨矿产品达到选别要求后进行弱磁选。 2)阶段磨矿-阶段选别流程:适用于嵌布粒度较细的低品位矿石。在一段磨矿石进行磁选粗 选,抛弃部分合格尾矿,磁选粗精矿在给入二段磨矿(再磨)进行再磨再选。如果能再粗磨条件下,经过选别丢弃大量尾矿,对于减少后续磨矿和分选作业负荷、降低成本是有利的。 2、弱磁选-反浮选流程:主要针对的是某些铁矿石精矿石品位难以提高、铁精矿中SiO2等 杂质组成偏高的问题,工艺方法包括磁选-阳离子反浮选流程和磁选-阴离子反浮选流程两种。 3、弱磁选-精选流程:这种流程方法是对某些铁矿石精矿品位难以提高、铁精矿石中SiO2 等杂质组分偏高的问题开发出来的。 4、弱磁-强磁-浮选联合流程:主要用于处理多金属共生铁矿石和混合铁矿石,分为三类: 1)弱磁选-浮选流程:主要用于处理伴生硫化物的磁铁矿矿石。根据矿石性质进一步分为先 磁后浮和先浮后磁两种。 2)弱磁-强磁流程:主要用于处理磁性率较低的混合矿石。特点是采用弱磁选首先分离弱磁 性的磁铁矿,弱磁选尾矿再采用强磁选回收赤铁矿等弱磁性矿物。 3)弱磁-强磁-浮选流程:主要用于处理多金属共生铁矿石。

金矿石中提炼金的方法

金矿石中提炼金的方法 单一浮选适用于处理粗、中粒自然黄金铁矿石。经破碎后的矿进入球磨机,磨细呈矿浆后进入浮选。在浮选中,用碳酸钠作调整剂,使黄金上浮。同时用丁黄药与胺黑药作补收剂,使金矿粉与矿渣分离,产出金精矿粉。 重力选矿系利用黄金与其它矿物比得的差异性进行浮选。比重差异愈大,更易于分离。将含金矿沙置入圆筒筛,通过高压水进行流矿,大于筛孔的砾砂经溜糟、皮带输送入尾矿场;小于筛孔的矿沙通过公配器输入1-3段圆跳汰机,经3段跳汰机精矿自流入摇床,进行粗、细、扫选,生产出精沙矿。此法多用于流沙矿,细碎后的矿石也可适用。 混汞浮选适用于处理自然金嵌布粒度较粗,储存在黄铁矿和其它硫化矿石。与单一浮选不同的是在磨矿后加汞板进行金回收,回收率可达30-45%。混汞后的矿浆,通过分级机溢流进行浮选。为使更好地生成汞金,磨矿时加添一定浓度的碳酸纳、苛性钠等,可使汞金回收率提到70% 。 炭浆法提金工艺,这种工敢是80年代世界最先进的提金方法,用在处理含金褐铁矿氧化矿石的选别效果更佳。1983年,中国黄金总公司对潼关金矿的选矿工艺决定改造,引用美国戴维麦基公司的炭浆提金新工艺。炭浆法即在氧化浸出的同时,进行活性炭吸附,提高金的浸出率。其流程包括:两段闭路破碎,两段磨矿,挽流器溢流产品-200目占95%,而后进入浓密机,将矿浆浓度由18-20%浓缩为42-45%左右,再经缓冲槽进入浸出吸附槽,进行浸出作业,同时用椰子壳制成的活性炭吸附,得出最终产品载金炭。尾矿用高频完全筛回收碎活性炭中的金,而后用液氯处理含氰尾液。金回收以解析、电解、酸洗等方法获得。解

析用高浓度氰化物、高碱度,进行高温高压将载金炭中的金解析下来,再将载析下来的溶液送电解回收。电解槽以钢棉为阴极、不锈钢为阳极,使金吸附在钢棉上,解析下来的活性炭用盐酸洗涤,附去炭酸钙以及其他杂质,最后在返600℃的回转窑中再生。此项工艺经过1986-1987年的试行情况分析,1987年的浸出率比1986年5个月平均指标低5.73个百分点,为81.36%。而且各月浸出率波动较大,最你为33%,最高达98.4%。原因是矿厂中硫化物及铜的含量比1984年1月和5月分别由国内、国外试验分析的结果都有增加的趋势,银、铝、铜增加亦较显着,影响炭浆工艺的浸出效果。故于1987年改造了一条浮选流程,把部分含铜较高的硫化矿用浮选法处理,既利用了原浮选系列闲置设备,又保证了炭浆法的浸出率。冶炼经过各种选矿方法生产出金精矿粉、加入KNO3氧化剂及银和硼砂。当炉温升到700℃时,毛金熔化,炉温升至1000℃,熔液开始沸腾,渣液呈飘浮状,白炽明亮的金质下沉平静,当炉温加温至1250℃-1350℃时,渣液表面亮度变暗,经数次扒去渣液,生产出纯金。总过程是通过熔化使熔液中的过剩硫等化合物氧化除去。电解直接冶炼此法为潼关金矿所采用,以钢棉为阴极直接熔炼得金银合质金。由于此法原设计所得合质金,金银不易分离,交售时白银不予计价,钢棉一次使用混入渣,成本太大。现改为水洗电解钢棉,得金银泥,一般品位为22-28%的金,15-20%的银,在金银分离反应时银、铜、铁等渣质进入溶液,而金不溶解,呈红棕色状态存在,而后将金泥水洗、烘干和溶剂一起冶炼。

各种矿石的选矿方法简介

铁矿石 对于单一磁铁矿石,通过湿式弱磁选粗选,精选或者再磨精选一般可以达到精矿要求。 对于磁铁矿赤铁矿都含有的矿石,可以通过弱磁-强磁-重选或者弱磁-强磁-反浮选流程处理。而对于单一的赤铁矿一般通过强磁-反浮选或者强磁-焙烧-弱磁选,但是由于赤铁矿本身磁性弱、嵌布粒度细等特点,通过常规物理选矿往往达不到很好的分选效果。对于含硫高的铁矿石,可以先经过浮选将其中的含硫矿物浮出再磁选。如果硫是以重晶石等状态存在,则可以通过反浮选处理。如果含磷过高,则需对磁选精矿进行脱磷,可以用稀硫酸进行浸出脱磷。铁矿反浮选捕收剂用十二胺、油酸钠、氧化石蜡皂、RA系列捕收剂等,抑制剂用淀粉。阳离子捕收时,用碳酸钠调节pH值,直接浮选。阴离子捕收剂时,一般添加石灰活化石英,NaOH辅助石灰调节pH值,然后用淀粉抑制铁矿,用阴离子捕收剂浮选硅酸盐类脉石。有时候强磁选的精矿中有用矿物和硅酸盐脉石粒度差距比较明显时,可以用高频细筛处理。或者选择性絮凝处理。 铁矿选矿通常是重磁浮联合工艺。干式磁选抛尾,抛尾后作为给矿磨矿,进行湿式弱磁选或者强磁选,甚至结合重选浮选进行处理。 铜铅锌多金属矿 对于简单的低硫铅锌矿,一般在弱碱性条件下用硫酸锌或者配合亚硫酸钠抑制闪锌矿,浮选方铅矿。分离粗选(25#黑药做捕收剂)的精矿进行多次精选后得到最终铅精矿,分离粗选尾矿经过几次扫选后的尾矿添加石灰和硫酸铜、黄药活化浮选闪锌矿。 对于高硫铅锌矿,一般在强碱条件下用石灰和硫酸锌抑制黄铁矿和闪锌矿。分离粗选(25#黑药做捕收剂)的精矿即是铅粗精矿。分离粗选的尾矿扫选几次后的尾矿添加石灰抑制黄铁矿,添加硫酸铜活化闪锌矿。选锌尾矿直接添加硫酸铜活化黄铁矿,如果活化效果弱或者矿浆pH仍然比较高,可以添加硫酸中和石灰,之后添加硫酸铜活化黄铁矿。 铜铅锌硫多金属矿的选矿与铅锌硫多金属矿的选矿流程类似。只不过粗选精矿是铜铅混合粗精矿。铜铅混合粗精矿经过几次精选后得到铜铅混合精矿。铜铅混合精矿脱药(添加活性炭效果很好)后,通过添加CMC、水玻璃、淀粉等(尽量避免使用高毒性的重铬酸钾)抑制方铅锌矿,浮选黄铜矿。铜铅分离的粗精矿精选几次得到最终铜精矿,尾矿扫选几次后最终的尾矿就是铅精矿。铜铅混合浮选时捕收剂使用捕收性能强的S-N9#,铜铅分离捕收剂用Z-200,选锌部分和选硫部分捕收剂均用丁黄药。 因为铜铅锌硫多金属矿有用成分一般比脉石矿物比重大,因此国外很多选矿厂在原矿破碎后用重选法(跳汰分选或者重介质分选,以选矿得到的黄铁矿作为重介质)预处理抛弃大量的脉石矿物,这样大大降低了浮选的处理量,而且降低了药剂用量,提高了作业效率。但是目前中国的选矿很少用重选进行预处理,这恐怕主要是因为中国的研究院进行选矿实验室直接浮选的原因吧。很多研究院对多金属硫化矿石直接进行浮选或者对原矿石进行磨矿后用摇床重选。这显然是不合理的。因为磨矿后矿石粒度很细,用摇床处理很可能因为矿石效率低下而分选效果极不理想,应该在破碎后用跳汰处理。遗憾的是,国内粗粒矿石的重选试验一般只进行重液浮沉试验,而不进行实验室跳汰试验。这就导致中绝大部分硫化矿选矿厂都采用浮选而没有重选预处理方案。真是可悲可叹。 钨锡矿 重磁浮联合工艺。 铬铁矿 重磁联合流程。如果有用矿物跟脉石矿物磁性差距比较小时,采用分级重选工艺,即粗粒跳汰,细粒摇床分选。当然在实验过程中,也要根据实际产品的特性以及粒度关系考虑是否用

锡矿选矿设备100吨工艺流程

锡矿选矿设备100吨工艺流程 锡矿跳汰机工作流程 锡矿跳汰机选矿属于深槽分选作业,他用水作为选矿介质,利用所选矿物于脉石的比重区别,水流通过筛板进入跳汰室,使床层升起并略呈松散状态,密度大的颗粒因局部压强及沉降速度较大而进入底层,密度小的颗粒转移动上层水流下降时,密度大的细小颗粒还通过渐紧密的床层间隙进入下层,锡矿跳汰机多属于隔膜式,冲程,和冲次根据所选矿物的比重灵活调节。该机利用水做介质,按矿物与脉石的比重(密度)差进行分选,其选矿原理基于重力选矿理论。锡矿跳汰机正常工作产生的跳汰周期曲线呈正弦波形,具有上升水流均匀的特点,该系列锡矿跳汰机具有处理量大,回收率高,连续工作等选矿优势。 锡矿跳汰机适用范围: 锡矿跳汰机广泛应用于砂金矿、赤铁矿、褐铁矿、锰矿、钨矿、锡矿、铅矿、,铬铁矿、汞矿、镍矿、硫铁矿、镜铁矿、重晶石、萤石、石榴石、天青石、也可处理:铬渣、硅锰渣、镍渣、铜渣、菱铁渣、等多种冶炼矿渣。 锡矿跳汰机多少钱一台 锡矿跳汰机价格从6-100万的设备都有,主要是要适合客户的使用就行,锡矿跳汰机配 置多大的请咨询焦工,上方有电话锡矿跳汰机分类 卓功机械厂家的锡矿跳汰机粪梯型锡矿跳汰机、大颗粒锡矿跳汰机、下动式锡矿跳汰机,锯齿波锡矿跳汰机、节能复合双动锡矿跳汰 机。 锡矿跳汰机厂家介绍: 郑州卓功机械设备有公司位于河南省巩义市康店工业区 锡矿跳汰机的工作原理: 1、矿粒在锡矿跳汰机中主要是按比重分层。锡矿跳汰机不仅可以分选窄级别的矿粒,而 且也可以有效分选宽级别和不分级的矿粒。 2、在跳汰过程中,介质的比重越高,矿粒间的比重差越大,则分选效率越高。 3、保持床层具有必要的松散度是分层的先决条件。床层松散度不足,则矿粒难以互相转移,因而也就失去了分层的可能性。因此在跳汰过程中尽量延长床层处于松散状态的时间,以提高锡矿跳汰机的处理量和改善分选效果。

铁矿石常用的选矿方法修订稿

铁矿石常用的选矿方法 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

第一章铁矿石常用的选矿方法 第一节磁铁矿选矿流程? 磁铁矿石主要包括单一磁铁矿矿石、钒钛磁铁矿 矿石、含磁铁矿混合矿石和含磁铁矿多金属共生矿石, 磁铁矿属强磁性产物,在磁铁矿选矿中普遍采用以弱 磁选工艺为主的选别流程: 1、单一弱磁选流程:选别作业采用单一弱磁选工艺,适合于矿物组成简单的 易选单一磁铁 矿矿石;可进一步划分为两类:连续磨矿-弱磁选流程、阶段磨矿-阶段选别流程。 1)连续磨矿-弱磁选流程:适用于嵌布粒度较粗或含铁品位较高的矿石。根据 铁矿无的嵌布 粒度,可采用一段磨矿或两段连续磨矿,磨矿产品达到选别要求后进行弱磁选。 2)阶段磨矿-阶段选别流程:适用于嵌布粒度较细的低品位矿石。在一段磨矿 石进行磁选粗 选,抛弃部分合格尾矿,磁选粗精矿在给入二段磨矿(再磨)进行再磨再选。如果能再粗磨条件下,经过选别丢弃大量尾矿,对于减少后续磨矿和分选作业负荷、降低成本是有利的。 2、弱磁选-反浮选流程:主要针对的是某些铁矿石精矿石品位难以提高、铁精 矿中SiO2等

杂质组成偏高的问题,工艺方法包括磁选-阳离子反浮选流程和磁选-阴离子反浮选流程两种。 3、弱磁选-精选流程:这种流程方法是对某些铁矿石精矿品位难以提高、铁精 矿石中SiO2 等杂质组分偏高的问题开发出来的。 4、弱磁-强磁-浮选联合流程:主要用于处理多金属共生铁矿石和混合铁矿石, 分为三类: 1)弱磁选-浮选流程:主要用于处理伴生硫化物的磁铁矿矿石。根据矿石性质 进一步分为先 磁后浮和先浮后磁两种。 2)弱磁-强磁流程:主要用于处理磁性率较低的混合矿石。特点是采用弱磁选 首先分离弱磁 性的磁铁矿,弱磁选尾矿再采用强磁选回收赤铁矿等弱磁性矿物。 3)弱磁-强磁-浮选流程:主要用于处理多金属共生铁矿石。 第二节赤铁矿选矿流程 赤铁矿化学成分为Fe2O3、晶体属三方晶系的氧化物 矿物。与等轴晶系的磁赤铁矿成同质多象。晶体常呈板状; 集合体通常呈片状、鳞片状、肾状、鲕状、块状或土状等。 呈红褐、钢灰至铁黑等色,条痕均为樱红色。 1、焙烧磁选流程:当矿物组成比较复杂而其他选矿方法难以获得良好的选别 指标时,往往

金矿石的选矿工艺

书山有路勤为径,学海无涯苦作舟 金矿石的选矿工艺 金矿石的各种类型因性质不同,采用的选矿方法也有不同,但普遍采用重选、浮选、混汞、氰化及近年来的树脂矿浆法、炭浆吸附法、堆浸法提金新工艺。对某些种类的矿石,往往采用联合提金工艺流程。 用于生产实践的选金流程方案很多,通常采用的有如下几种: 1.单一混汞此流程适于处理含粗粒金的石英脉原生矿床和氧化矿石。混汞法提金是一种古老而又普遍的选金方法。在近代黄金工业生产中,混汞法仍然占有很重要的位置。由于金在矿石中多呈游离状态出现,因此,在各类矿石中都有一部分金粒可以用混汞法回收。实践证明,在选金流程中用混汞法提前回收一部分金粒,可以明显地降低粗粒金在尾矿中的损失。 混汞法提金的理论基础为,汞对金粒能选择性地润湿,然后向润湿的金粒中扩散。在以水为介质的矿浆中,当汞与金粒表面接触时,金与汞形成的接触面代替了原来金与水和汞与水的接触面,从而降低了表面能,亦破坏了妨碍金与汞接触的水化膜。此时汞沿着金粒表面迅速扩散,并使相界面上的表面能降低。随后汞向金粒内部扩散,形成了汞的化合物-汞齐(汞膏)。 混汞提金法又分为内混汞和外混汞两种。所用混汞设备有混汞板、混汞溜槽、捣矿机、混汞筒和专用的小型球磨机或棒磨机。 混汞提金法工艺过程简单,操作容易,成本低廉。但汞是有毒物质,对人体危害很大。所以,采用混汞提金的选矿厂应当严格遵守安全技术操作规程,使汞蒸气和金属汞对人身体的危害限制到最小程度。 2.混汞-重选联合流程此流程分为先混汞后重选和先重选后混汞两个方案。先混汞后重选流程适用于处理简单石英脉含金矿石。先重选后混汞流程适用于处理金粒大,但表面被污染和氧化膜包裹的不易直接混汞的矿石,以及含金量

采矿方法适用条件要点归纳

采矿方法适用条件要点归纳 1)、空场采矿法 适用于开采水平、微倾斜、缓倾斜的矿体。其采矿法不仅能开采薄矿体,更适合于开采厚矿体和极厚矿体。 特征:将矿块划分为规则的矿房和矿柱,并根据矿体的厚度及采矿设备、技术条件的不同,选用浅孔、中深孔或深孔落矿方案进行矿房的回采,因而有浅孔房柱和中深孔房柱之分。 1.浅孔房柱采矿法 (1)主要适用于矿石和围岩稳固与较稳固的矿体。 (2)矿体倾角30°以下。 (3)矿体厚度小于8-10m。 (4)价值不高或品位较低的矿石。 2.中深孔房柱采矿法 (1)矿石稳固和中等稳固。当顶板围岩稳固或中等稳固时,采用不切顶或不预控顶;当顶板不太稳固或局部不稳固时,可采用切顶与预控顶; (2)矿体倾角≤30°; (3)厚度≤6-8m的矿体,采用不切顶房柱法;厚度8-10m的矿体,可采用浅孔切顶房柱法;厚度11-12m的矿体;可采用中深孔切顶房柱法; (4)顶板接触面平整,可采用不切顶房柱法;顶板接触面不平整,可采用切顶房柱法; (5)使用于低品位、价值低、凿岩性较好的矿石中。 2)、全面采矿法 适用于开采矿石围岩均较稳固,矿体厚度小于5-7m的水平至缓倾斜矿体;也适合于开采矿体底板起伏较大或矿体厚度变化较大以及矿石品味不均匀的矿体。 1.普通全面采矿法(又称全面采矿法) (1)一般要求矿岩中等稳固以上;顶板的暴露面积应大于200-500m; (2)矿体倾角≤30°; (3)矿体厚度在5-7m以下,国内大部分矿山开采1.5-3.0m的矿体; (4)一般矿体产状较稳固; (5)该法留有采场内矿柱,最好在贫矿中应用。 2.留矿全面采矿法

(1)矿石和顶板岩石为稳固或中等稳固;矿石不粘结,不自然; (2)矿体倾角由缓倾斜到倾斜(即26°-55°),以倾斜矿体为主; (3)厚度由薄至中厚的矿体,以薄矿体为主; (4)可用于形态较复杂,厚度和品位变化较大,以及底板沿走向和倾斜均有起伏的不稳定矿体。 3)、浅孔留矿采矿法 适用于开采矿石中等稳固和围岩稳固的急倾斜矿体,并要求矿石无自燃性、氧化性,破碎后不易再结块。 1.普通浅孔留矿采矿法 (1)矿岩基本稳固的急倾斜矿体; (2)适用于任何厚度的矿体,但多用于开采2m厚度以上,以及中厚度矿体; (3)极薄矿体多脉合采; (4)要求矿石不结块,不自然。 2.极薄矿脉留矿法 (1)一般用于矿脉平均厚度在0.8m以下的急倾斜矿体; (2)矿石及围岩在中等稳固以上; (3)矿石无氧气、结块及自燃性。 3.无矿柱留矿采矿法 开采矿岩稳固、厚度在2-3m以内的高价矿体,为提高矿石的回采率,可使用无矿柱留矿采矿法。 4.倾斜矿体留矿采矿法 矿体倾角较缓,矿石不能借自重在采场内搬运,此时可用香花岭锡矿电耙耙矿留矿采矿法。 (1)矿石与围岩中等稳固以上,无大的构造与破碎带。矿体的厚度越大对矿岩的稳固性要求越高; (2)矿体厚度原则上可以由极薄到极厚,但主要用于中厚以下矿体,尤以薄与极薄矿体使用留矿采矿法最为有利; (3)矿体倾角应大于55°,这样便于采矿运搬与放矿。当矿体倾角较小时,应用其他搬运设备相配合; (4)矿石无结块性、氧化性与自燃性,不含或少含泥质,含硫量也不宜太高; (5)矿体形态规则,埋藏要素稳定,特别是矿体下盘; (6)矿体无夹石或夹石不多; (7)地表允许陷落。

相关文档
最新文档