表观遗传学

表观遗传学
表观遗传学

1.表观遗传学概念

表观遗传是与DNA 突变无关的可遗传的表型变化,且是染色质调节的基因转录水平的变化,这种变化不涉及DNA 序列的改变。表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传学内容包括DNA 甲基化、组蛋白修饰、染色质重塑、遗传印记、随机染色体失活及非编码RNA 等调节研究表明,这些表观遗传学因素是对环境各种刺激因素变化的反映,且均为维持机体内环境稳定所必需。它们通过相互作用以调节基因表达,调控细胞分化和表型,有助于机体正常生理功能的发挥,然而表观遗传学异常也是诸多疾病发生的诱因。因此,进一步了解表观遗传学机

制及其生理病理意义,是目前生物医学研究的关键切入点。

别名:实验胚胎学、拟遗传学、、外遗传学以及后遗传学

表观遗传学是与遗传学(genetic)相对应的概念。遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。

2.表观遗传学现象

(1)DNA甲基化

是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。

(2)基因组印记

基因组印记是指来自父方和母方的等位基因在通过精子和传递给子代时发生了修饰,使带有亲代印记的等位基因具有不同的表达特性,这种修饰常为DNA甲基化修饰,也包括组蛋白乙酰化、甲基化等修饰。在形成早期,来自父方和母方的印记将全部被消除,父方等位基因在精母细胞形成精子时产生新的甲基化模式,但在受精时这种甲基化模式还将发生改变;母方等位基因甲基化模式在卵子发生时形成,因此在受精前来自父方和母方的等位基因具有不同的甲基化模式。目前发现的大约80%成簇,这些成簇的基因被位于同一条链上的所调控,该位点被称做印记中心(imprinting center, IC)。印记基因的存在反映了性别的竞争,从目前发现的印记基因来看,父方对的贡献是加速其发育,而母方则是限制胚胎发育速度,亲代通过印记基因来影响其下一代,使它们具有性别行为特异性以保证本方基因在中的优势。印记基因的异常表达引发伴有复杂突变和表型缺陷的多种人类疾病。研究发现许多印记基因对胚胎和胎儿出生后

的生长发育有重要的调节作用,对行为和大脑的功能也有很大的影响,印记基因的异常同样可诱发癌症。

(3)非编码RNA在表观遗传学中的作用

功能性在基因表达中发挥重要的作用,按照它们的大小可分为长链非编码RNA和短链非编码RNA。长链非编码在基因簇以至于整个染色体水平发挥顺式调节作用。在果蝇中调节“剂量补偿”的是roX RNA,该RNA还具有反式调节的作用,它和其它的共同构成MSL复合物,在雄性果蝇中调节X染色体活性。在中Xist RNA调节X染色体的失活,其具有特殊的模体可和一些蛋白共同作用实现X染色体的失活。Tsix RNA是Xist RNA的反义RNA,对Tsix 起负调节作用,在X染色体随机失活中决定究竟哪条链失活。air RNA调节一个基因簇的表达,该基因簇含有3个调节生长的基因[38]。长链RNA常在基因组中建立单等位基因表达模式,在核糖核蛋白复合物中充当催化中心,对染色质结构的改变发挥着重要的作用。

短链RNA在基因组水平对基因表达进行调控,其可介导mRNA的降解,诱导染色质结构的改变,决定着细胞的分化命运,还对外源的核酸序列有降解作用以保护本身的基因组。常见的短链RNA为小干涉RNA(short interfering RNA, siRNA)和微小RNA(microRNA, miRNA),前者是RNA干扰的主要执行者,后者也参与RNA干扰但有自己独立的作用机制。

非编码RNA与疾病

非编码RNA对防止疾病发生有重要的作用。染色体着丝粒附近有大量的转座子,转座子可在染色体内部转座导致基因失活而引发多种疾病甚至癌症,然而在着丝粒区存在大量有活性的短链RNA,它们通过抑制转座子的转座而保护基因组的稳定性。在细胞分裂时,短链RNA 异常将导致染色体无法在着丝粒处开始形成异染色质,细胞分裂异常,如果干细胞发生这种情况可能导致癌症的发生。siRNA 可在外来的诱导下产生,通过RNA干扰清除外来的核酸,对预防传染病有重要的作用。RNA干扰已大量应用于疾病的研究为一些重大疾病的治疗带来了新的希望。

非编码RNA不仅能对整个染色体进行活性调节,也可对单个基因活性进行调节,它们对基因组的稳定性、细胞分裂、个体发育都有重要的作用。RNA干扰是研究人类疾病的重要手段,通过其它物质调节RNA干扰的效果以及实现RNA干扰在特异的组织中发挥作用是未来RNA干扰的研究重点。

(4)染色体重塑

染色质重塑复合物依靠水解ATP提供能量来完成染色质结构的改变,根据水解ATP的亚基不同,可将复合物分为SWI/SNF复合物、ISW复合物以及其它类型的复合物。这些复合物及相关的蛋白均与转录的激活和抑制、DNA的甲基化、以及细胞周期相关。

ATRX、ERCC6、SMARCAL1均编码与SWI/SNF复合物相关的ATP酶。ATRX突变引起DNA 甲基化异常导致数种遗传性的智力迟钝疾病如:X连锁α-地中海贫血综合征、Juberg-Ma rsidi综合征、Carpenter-Waziri综合征、Sutherland-Haan综合征和Smith-Fineman-Myers 综合征,这些疾病与核小体重新定位的异常引起的基因表达抑制有关。ERCC6的突变将导致Cerebro-Oculo-Facio-Skeletal综合征和B型Cockayne综合征。前者表现为出生后发育异常、神经退行性变、进行性关节挛缩、夭折;后者表现出紫外线敏感、骨骼畸形、侏儒、神经退行性变等症状。这两种病对紫外诱导的DNA损伤缺乏修复能力,表明ERCC6蛋白在DNA 修复中有重要的作用。SMARCAL1的突变导致Schimke免疫性骨质发育异常,表现为多向性T 细胞免疫缺陷,临床症状表明SMARCAL1蛋白可能调控和细胞增殖相关的基因的表达。BRG1、SMARCB1和BRM编码SWI/SNF复合物特异的ATP酶,这些酶通过改变染色质的结构使成细胞纤维瘤蛋白(Retinoblastoma protein, RB蛋白)顺利的行使调节细胞周期、抑制生长发育以及维持状态的功能,这三个基因的突变可导致肿瘤形成。

染色质重塑异常引发的人类疾病是由于重塑复合物中的关键蛋白发生突变,导致染色质重塑失败,即核小体不能正确定位,并使修复DNA损伤的复合物,等不能接近DNA,从而影响基因的正常表达。如果突变导致抑癌基因或调节细胞周期的蛋白出现异常将导致癌症的发生。

(5)DNA复制相关组蛋白乙酰化、去乙酰化与人类疾病DNA

组蛋白乙酰化与基因活化以及复制相关,组蛋白的去乙酰化和基因的失活相关。乙酰化转移酶(HATs)主要是在组蛋白H3、H4的N端尾上的赖氨酸加上乙酰基,去乙酰化酶(HDACs)则相反,不同位置的修饰均需要特定的酶来完成。乙酰化酶家族可作为辅激活因子调控转录,调节细胞周期,参与,还可作为。去乙酰化酶家族则和、转录调控、基因沉默、、细胞分化和增殖以及相关。

CREB结合蛋白(CREB binding protein,CBP)、E1A结合蛋白p300(E1A binding protein p300,EP300)和锌指蛋白220(zinc finger 220,ZNF220)均为乙酰化转移酶。CBP是cAMP的辅激活蛋白,通过乙酰化组蛋白使和cAMP应答元件作用的启动子开始转录,它的突变导致Rubinstein Taybi综合征,患者智力低下、面部畸形、拇指和拇趾粗大、身材矮小。CBP 和EP300均可抑制肿瘤的形成,在小鼠瘤细胞中确定了CBP的突变,在结肠和乳房瘤细胞系中确定了EP300的突变,另外ZNF220异常和人的急性进行性髓性白血病相关。

如果突变导致错误的激活去乙酰化酶或错误的和去乙酰化酶相互作用,将可能导致疾病的发生。甲基化CpG-结合蛋白-2(methyl cytosine binding protein-2,MeCP2)可募集去乙酰化酶到甲基化的DNA区域,使组蛋白去乙酰化导致染色质浓缩,MeCP2的突变导致,患者出生即发病、智力发育迟缓、伴孤独症。若阻碍去乙酰化酶的功能,则可抑制癌细胞的增殖和分化,可用于急性早幼粒细胞性白血病, 急性淋巴细胞性白血病和的治疗。

乙酰化酶的突变导致正常基因不能表达,去乙酰化酶的突变或一些和去乙酰化酶相关的蛋白的突变使去乙酰化酶错误募集将引发肿瘤等疾病。

3.表观遗传学在抗肿瘤领域的研究现状及前景

(1) DNA甲基化异常与肿瘤发生

① DNA甲基化修饰肿瘤细胞整个基因组中普遍存在低甲基化。染色质结构因为低甲基化的大范围出现而引起改变,通过降低染色的质凝聚程度,可以使基因组的不稳定性增加,从而导致肿瘤的发生。DNA的甲基化是由S2腺苷甲硫氨酸作为甲基供体,使胞嘧啶转化为5-甲基胞嘧啶(mC) 的反应。在一般的状态下,基因启动子区的CpG岛是没有发生甲基化的,如果发生甲基化,就会使基因不发生转录。在这种情况下,一些抑制癌症的基因、DNA修复的基因等等就会失去功用,使正常细胞的培养与调控发生改变以及DNA损害不能被及时复原,从而产生肿瘤。

②组蛋白乙酰化修饰组蛋白是一类小分子碱性基础结构蛋白质,具有五种类型:H1、H2a、H2b、H3、H4,它们能够与DNA中带负电荷的磷酸基团相互作用。组蛋白乙酰化酶(HAT)是组蛋白乙酰化的关键酶,组蛋白的乙酰化程度就是由其决定着,与肿瘤异常基因表达有关。在HAT基因剔除试验中,p300-/-小鼠在妊娠的早期就死亡了,其神经形成、细胞增殖和心脏发育等方面存在很多缺点;p300-/+小鼠的胚胎期的死亡数量非常多,在胚胎分开的细胞中包含特异性的转录缺点与增殖障碍。

③染色质重组染色质重组是指染色质的位置、结构等包括紧缩的染色质丝在核小体连接处松开,从而使染色质发生释放,显出了转录基因启动子区中的顺式作用元件,使其可能与反式作用因子结合[5]。染色质重组能够调节基因的转录,

同时还参与一些最基础的细胞生理过程,与肿瘤发生密切相关。染色质重组的不同能够导致的肿瘤也不不同,由此我们知道这些生理过程通过相互联系而起到作用的。研究表明不同的染色质重组途径之间存在着相互作用[6],但是在肿瘤发生过程中染色质重组途径之间的确切关系,仍然有待于研究人员去进一步地探索。

(2)表观遗传修饰与抗肿瘤作用

① DNA 甲基转移酶抑制物DNA甲基化是一种可逆的过程,因此,抑制DNA甲基转移酶的性能已成为研究抗肿瘤作用的新方法。5-氮杂胞嘧啶核苷(azacytidine)与5-氮杂脱氧胞嘧啶核苷(5-aza-2’-deoxycytidine)是DNA甲基转移酶的有效抑制剂。有资料表明,在使用5-aza-2’-deoxycytidine 后使

用zebularine,能够非常好的地诱导并稳定p16基因的表达。

②组蛋白乙酰化抑制剂染色体结构和基因表达受到组蛋

白的乙酰化修饰的影响,但是该修饰过程是可逆的,这就为肿瘤的治疗提供了的思路。目前,研究最多的是HDAC抑制剂,到现在为止已开发出很多结构不同的HDAC 抑制剂。主要有环状四肽类、羟肟酸衍生物、苯甲酰胺类衍生物、氨基甲酸酯类衍生物及酮类。研究发现用HDAC抑制剂诊治几种类型的白血病和实体瘤,结果非常好,副作用小,传统的化疗药物好很多。

(3)应用前景

研究表观遗传中各种突变致病因子的作用机理,可以帮助我

们阐明表观遗传的机制,为新方案的设计、新药的研制提供科学

的依据。人们可根据表观遗传学信息能被一些化学物品所逆转的

原理, 对疾病治疗进行探讨。如可通过DNA甲基化抑制剂防止肿

瘤的发生, 也可用去甲基化物质使抑癌基因及DNA修善基因的功

用得以恢复, 以达到治疗肿瘤的目的。

西南大学[1194]《生活中的DNA科学》答案

1、下面哪种酶是在重组DNA技术中不常用到的酶() 1.限制性核酸内切酶 2.DNA聚合酶 3.DNA连接酶 4.DNA解链酶 2、长期接触X射线的人群,后代遗传病发病率明显升高,主要原因是该人群生 殖细胞发生() 1.基因重组 2.基因突变 3.基因互换 4.基因分离 3、朊病毒的主要组成成分是:( ) 1.RNA 2.蛋白质 3.多糖 4.DNA 4、Western blot是() 1.检测DNA的方法 2.检测RNA的方法 3.检测蛋白的方法 4.检测酶的方法 5、针对耐药菌日益增多的情况,利用噬菌体作为一种新的抗菌治疗手段的研究 备受关注。下列有关噬菌体的叙述,正确的是() 1.利用宿主菌的氨基酸合成子代噬菌体的蛋白质 2.以宿主菌DNA为模板合成子代噬菌体的核酸 3.外壳抑制了宿主菌的蛋白质合成,使该细菌死亡 4.能在宿主菌内以二分裂方式增殖,使该细菌裂解 6、在真核细胞中肽链合成的终止原因是( ) 1.已达到mRNA分子的尽头 2.具有特异的tRNA识别终止密码子 3.终止密码子本身具有酯酶作用,可水解肽酰与tRNA之是的酯键 4.终止密码子被终止因子(RF)所识别 7、tRNA的作用是( ) 1.将一个氨基酸连接到另一个氨基酸上 2.把氨基酸带到mRNA位置上

3.将mRNA接到核糖体上 4.增加氨基酸的有效浓度 8、“转基因动物”是指( ) 1.含有可利用基因的动物 2.基因组中插入外源基因的动物 3.本身具有抗体蛋白类的动物 4.能表达基因信息的动物 9、a和b是不同顺反子的突变,基因型ab/++和a+/+b的表型分别为() 1.野生型和野生型 2.野生型和突变型 3.突变型和野生型 4.突变型和突变型 10、法医DNA科学涉及的学科有() 1.分子遗传学 2.生物化学 3.生物统计学 4.以上都是 11、下列哪种碱基不属于DNA/RNA的碱基() 1.腺嘌呤 2.鸟嘌呤 3.次黄嘌呤 4.胸腺嘧啶 12、下列哪项不是法医DNA分析技术的衍生技术() 1.RT-PCR 2.SSP - PCR 3.PCR - SSOP 4.MVR – PCR 13、下列哪项不属于现在主要开发研究的微型化DNA分析仪器() 1.微芯片毛细管电泳装置 2.微型热循环仪 3.杂交阵列 4.流式细胞仪 14、不属于质粒被选为基因运载体的理由是() 1.能复制

细胞生物学名词解释整理终版题库

名词解释 1. genome 基因组p235 某一个生物的细胞中储存于单倍染色体组中的总遗传信息,组成该生物的基因组 2. ribozyme 核酶p266 核酶是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。核酶又称核酸类酶、酶RNA、核酶类酶RNA。大多数核酶通过催化转磷酸酯和磷酸二酯键水解反应参与RNA自身剪切、加工过程。与一般的反义RNA相比,核酶具有较稳定的空间结构,不易受到RNA酶的攻击。更重要的是,核酶在切断mRNA后,又可从杂交链上解脱下来,重新结合和切割其它的mRNA分子。 3. signal molecule 信号分子p158 信号分子是细胞的信息载体,包括化学信号如各种激素,局部介质和神经递质以及各种物理信号比如声、光、电和温度变化。各种化学信号根据其化学性质通常可分为3类:1、气体性信号分子,包括NO、CO,可以自由扩散,进入细胞直接激活效应酶产生第二信使cGMP,参与体内众多生理过程。2、疏水性信号分子,这类亲脂性分子小、疏水性强,可穿过细胞质膜进入细胞,与细胞内和核受体结合形成激素-受体复合物,调节基因表达。3、亲水性信号分子,包括神经递质、局部介质和大多数蛋白类激素,他们不能透过靶细胞质膜,只能通过与靶细胞表面受体结合,经信号转换机制,在细胞内产生第二信使或激活蛋白激酶或蛋白磷酸酶的火星,引起细胞的应答反应。 4. house-keeping gene管家基因p319 管家基因是指所有细胞中均表达的一类基因,其产物是维持细胞基本生命活动所需要的,如糖酵解酶系基因等。这类基因一般在细胞周期S期的早期复制。分化细胞基因组所表达的基因大致可分为2中基本类型一类是管家基因,另外一类是组织特异性基因。 5. cis-acting elements顺式作用元件 存在于基因旁侧序列中能影响基因表达的序列。顺式作用元件包括启动子、增强子、调控序列和可诱导元件等,它们的作用是参与基因表达的调控。顺式作用元件本身不编码任何蛋白质,仅仅提供一个作用位点,要与反式作用因子相互作用而起作用。是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通过与转录因子结合而调控基因转录的精确起始和转录效率。 6. epigenetics 表观遗传学p251(重新查!!!1) 表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记,母体效应,基因沉默,核仁显性,休眠转座子激活和RNA编辑等。是在基因组水平上对表观遗传学改变的研究。表观遗传现象包括DNA甲基化、RNA干扰、组织蛋白修饰等 7. Hayflick limitation Hayflick界线 Leonard Hayflick利用来自胚胎和成体的成纤维细胞进行体外培养,发现:胚胎的成纤维细胞分裂传代50次后开始衰退和死亡,相反,来自成年组织的成纤维细胞只能培养15~30代就开始死亡。Hayflick等还发现,动物体细胞在体外可传代的次数,与物种的寿命有关;细胞的分裂能力与个体的年龄有关,由于上述规律是Hayflick研究和发现的,故称为Hayflick 界线。关于细胞增殖能力和寿命是有限的观点。细胞,至少是培养的二倍体细胞,不是不死的,而是有一定的寿命;它们的增殖能力不是无限的,而是有一定的界限,这就是Hayflick 界线。 8. proto-oncogene原癌基因p312 原癌基因是细胞内与细胞增殖相关的基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增

第十六章表观遗传学(答)

第十一章表观遗传学 、名词解释 epige netics; huma n epige nome project,HEP; hist one code 一、A型题 1脆性X综合征是何基因发生重新甲基化而沉默导致?(D) A.H19基因 B. MeCP2基因 C. IGF2基因 D. FMR1 基因 2、对表观遗传的生物学意义的表述错误的是(D) A、补充了“中心法则”,阐明核酸并不是存储遗传信息的唯一载体。 B “表观遗传修饰”可以影响基因的转录和翻译。 C表观遗传学修饰的可遗传性在基因和环境的共同作用中起重要作用。 D“表观遗传修饰”不能在个体世代间遗传。 3、 Prader-Willi ( PW$综合征是由于 __________________ 印记基因缺失引起。(A) A、父源15q11-q13缺失 B 、母源15q11-q13 缺失 C父源和母源15q11-q13缺失 D 、父源11P15.5缺失 4、 Amgelma n (AS)综合征是由于 ________________ 印记基因缺失引起。(B) A、父源15q11-q13缺失 B 、母源15q11-q13 缺失 C父源和母源15q11-q13缺失 D 、父源11P15.5缺失 5、表观遗传学三个层面的含义不包括:(D) A、可遗传性,可在细胞或个体世代间遗传; B、基因表达的可变性; C、无DNA序列的变化。 D、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传; 6、 siRNA相关沉默修饰的作用机制是:(A ) A.与靶基因互补而降解靶基因 B. 抑制靶mRNA翻译 C.去除靶mRNA勺多聚腺苷酸尾巴,使其被 3 '核酸外切酶水解

表观遗传学

表观遗传学 大家晚上好!很高兴有机会和大家交流,我最近看了一些这方面的材料,借这个机会和大家交流一下,讲的不一定对,就是自己的理解,有问题的地方大家可以讨论。我想从以下几个方面进行介绍: 1、表观遗传学概念 2、表观遗传学的研究内容 一、表观遗传学概念 经典遗传学认为遗传的分子基础是核酸, 生命的遗传信息储存在核酸的碱基序列上,碱基序列的改变会引起生物体表现型的改变,而这种改变可以从上一代传递到下一代。然而,随着遗传学的发展,人们发现,,DNA、组蛋白、染色质水平的修饰也会造成基因表达模式的变化,并且这种改变是可以遗传的。这种基因结构没有变化,只是其表达发生改变的遗传变化叫表观遗传改变。表观遗传学是一门研究生命有机体发育与分化过程中,导致基因发生表观遗传改变的新兴学科。 1939年,生物学家Waddington CH 首先在《现代遗传学导论》中提出了epihenetics这一术语,并于1942年定义表观遗传学为他把表观遗传学描述为一个控制从基因型到表现型的机制。 1975年,Hollidy R 对表观遗传学进行了较为准确的描述。他认为表观遗传学不仅在发育过程,而且应在成体阶段研究可遗传的基因表达改变,这些信息能经过有丝分裂和减数分裂在细胞和个体世代间传递,而不借助于DNA序列的改变,也就是说表观遗传是非DNA序列差异的核遗传。 Allis等的一本书中可以找到两种定义,一种定义是表观遗传是与DNA突变无关的可遗传的表型变化;另一种定义是染色质调节的基因转录水平的变化,这种变化不涉及DNA序列的改变。 二、表观遗传学研究内容 从现在的研究情况来看,表观遗传学变化主要集中在三大方面:DNA甲基化修饰、组蛋白修饰、非编码RNA的调控作用。这三个方面各自影响特有的表观遗传学现象,而且它们还相互作用,共同决定复杂的生物学过程。因此,表观遗传学也可理解为环境和遗传相互作用的一门学科。 DNA甲基化 组蛋白共价修饰 染色质重塑 基因组中非编码RNA 微小RNA(miRNA) 反义RNA 内含子、核糖开关等 基因印记 1、DNA甲基化(DNA methylation)是研究得最清楚、也是最重要的表观遗传修饰形式,主要 是基因组DNA上的胞嘧啶第5位碳原子和甲基间的共价结合,胞嘧啶由此被修饰为5甲基胞嘧啶(5-methylcytosine,5mC)。

表观遗传学

课程信息 当前位置:首页 > 教育教学 > 研究生教育 > 课程信息 表观遗传学 061M4021H 学期:2015-2016学年秋| 课程属性:| 任课教师:曹晓风等 教学目的、要求 本课程为遗传与发育生物学专业研究生的专业核心课,同时也可作为细胞生物学、基因组学和分子生物学等相关学科研究生的选修课。表观遗传学是研究非DNA序列改变、可遗传的表达改变的科学,是遗传学的深入和补充,与分子生物学、细胞生物学、生物化学、基因组学和结构生物学相互交融,是后基因组时代重要的生命科学学科之一。表观遗传学机制参与动、植物生长发育调控和环境适应的各个方面,其调控异常会导致人类癌症和其他疾病的发生。本课程将讲授表观遗传学现象和发展简史;详细阐释表观遗传调控的分子机制及相关的生物学过程,重点包括真核基因转录调控、DNA甲基化和去甲基化、组蛋白共价修饰和变体、非编码RNA、染色质重塑、染色质高级结构、表观遗传学与动植物发育/疾病、表观遗传组学、表观遗传继承性的概念、研究进展、新技术和新方法的原理和方法,旨在使研究生系统掌握所在学科的完整知识体系、理论框架、发展历史与现状,为研究生今后从事系统性、基础性和前沿性的科研工作实践提供理论知识,为设计研究课题的技术路线和方案奠定基础。 预修课程 分子生物学,遗传学,生物化学 教材 生命科学学院 主要内容 1. 经典表观遗传学现象(3学时,曹晓风)9月15日 2. 真核基因转录调控(3学时,朱冰)9月22日 3. DNA甲基化(3学时,慈维敏)9月29日 4. DNA去甲基化(3学时,慈维敏)10月8日 5.组蛋白共价修饰(3学时,李国红)10月13日 6. 组蛋白变体(3学时,李国红)10月20日 7. 非编码RNA和RNA修饰(3学时,杨运桂)10月27日 8. 染色质重塑(3学时,李国红)11月3日 9. 染色质结构与功能(3学时,李国红)11月10日10. 染色质高级结构(3学时,朱平)11月

2015年武汉大学885分子生物学研究生入学考试初试真题

一、专业术语翻译与解释(共10小题,每小题4分,共40分) 1.Exon 2.Promoter 3.Proteomics 4.Frame-shift mutation 5.Wobble hypothesis 6.Single-strand binding protein 7.Tandem affinity purification 8.Chromation remodeling 9.Single Nucleotide Polymorphisms 10.Alternative splicing 二、简答题(共5小题,每小题10分,共50分) 1.真核细胞蛋白质磷酸化主要发生在哪三种氨基酸上?催化蛋白质磷酸化和去磷酸化的酶是什么?请举两个例证说明蛋白磷酸化对功能的影响。 2.请简述三种RNA在蛋白质生物合成中的作用。 3.什么是RNA干扰(RNA interference,RNAi)?请简述RNA于扰的作用机制。 4.遗传密码有哪些特点?请简述。 5.什么是表观遗传学?为什么研究与组蛋白乙酸化修饰相关的酶是表观遗传学领域的一个热点?

三、论述题(共3小题,每小题20分,共60分) 1.1953年,沃森和克里克发现了DMA双螺旋的结构,开启了分子生物学时代。请从主链、碱基配对、大沟小沟以及结构参数等多方面介绍DNA双螺旋结构。 2.请从基本结构、作用形式、功能特点等多方面论述原核生物和真核生物mRNA的主要区别。 3.假设你想要分析在果蝇发育过程中基因的表达变化情况。为此,你从果蝇胚胎和成虫中分别提取了总mRNA,并针对果蝇发育过程中必需的基因Z的mRNA序列,利用特异识别该基因编码区中间部分的DNA标记探针进行了Northern Blot杂交实验,结果如图1所示。

浅谈表观遗传学

浅谈表观遗传学 摘要:表观遗传学改变包括DNA甲基化、组蛋白修饰、非编码RNA作用等,产生基因组印记、母性影响、基因沉默、核仁显性、休眠转座子激活等效应。表观遗传变异是环境因素和细胞内遗传物质间交互作用的结果,其效应通过调节基因表达,控制生物学表型来实现。本文则从以上几个方面简述了表观遗传学的改变以及基本原理。 经典遗传学认为,核酸是遗传的分子基础,生命的遗传信息储存在核酸的碱基序列。每个个体内虽然所有细胞所含有的遗传信息是相通的,但由于基因的选择性表达,即不同细胞所表达的基因种类不同,这些来源相同的细胞经过增殖分化后将变成功能形态各不相同的细胞,从而组成机体内不同的组织和器官。几年来发现,在DNA序列不发生改变的情况下,基因表达也可发生能够遗传的改变,这种现象就被定义为表观遗传。它的主要论点是生命有机体的大部分性状是由DNA序列中编码蛋白质的基因传递的,但是DNA序列以外的化学标记编码的表观遗传密码,对于生命有机体的健康及其表型特征,同样也有深刻的影响。 表观遗传学的调节机制主要包括组蛋白修饰、DNA甲基化、非编码RNA作用等,通过这些调节模式,影响基因转录和(或)表达,从而参与调控机体的生长、发育、衰老及病理过程。这些调节模式相比核酸蛋白质的经典遗传途径更容易受环境的影响,因此表观遗传学更加关注环境诱导的表观遗传变异。因为表观遗传的这些调节机制易受环境影响,而任何一种调节机制发生异常都可能导致细胞状态、功能等发生紊乱,进而引起各种疾病,同时又由于许多表观遗传变异是可逆的,导致表观遗传异常引发的疾病相对容易治疗,因此近年来表观遗传学致病的研究成为了热门的话题之一。 组蛋白在DNA组装中发挥了关键作用, 利用核心组蛋白的共价修饰包括组蛋白甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化及特定氨基酸残基N-末端的SUMO化传递表观遗传学信息。修饰的主要靶点是组蛋白氨基末端上的赖氨酸、精氨酸残基,这些组蛋白翻译后修饰对基因特异性表达的调控,是其表观遗传学的重要标志。正常机体内,组蛋白修饰保持着可逆的动态平衡,当平衡打破,组蛋白去乙酰化则使得乙酰基从乙酰化组蛋白转移到乙酰辅酶A上,形成了致密的染色质状态, 从而使基因转录下降或沉默。

基因组学复习资料整理

基因组学 1. 简述基因组的概念和其对生命科学的影响。 基因组:指一个物种的全套染色体和基因。广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。 基因组计划对生命科学的影响: ①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和 研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。 ②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生 物学生理学表观遗传学等 ③物种的起源与进化: Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。 Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。 ④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。 2. Ac/Ds转座因子 Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。不同的Ds因子的长度差异由Ac因子发生不同缺失所致。 Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。 Ac/Ds两因子系统遗传特点: 1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。 2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。 3)Ac对Ds的控制具有负剂量效应。 4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。 5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。(分子生物学79-81) 3. 正向遗传与反向遗传 正向遗传学研究指从突变体开始的遗传学研究,关心的问题是突变体表型的变化是由哪一个基因功能丧失后引起。 反向遗传学研究指从基因序列开始的遗传学研究,关心的问题是基因功能丧失后会使植物的表型产生什么样的变化。

表观遗传学

表观遗传学 比较通俗的讲表观遗传学是研究在没有细胞核DNA序列改变的情况时,基因功能的可逆的、可遗传的改变。也指生物发育过程中包含的程序的研究。在这两种情况下,研究的对象都包括在DNA序列中未包含的基因调控信息如何传递到(细胞或生物体的)下一代这个问题。表观遗传学是与遗传学(genetic)相对应的概念。遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。所谓DNA甲基化是指在DNA 甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。 几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年新的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅可以影响个体的发育,而且还可以遗传下去。这种在基因组的水平上研究表观遗传修饰的领域被称为“表观基因组学(epigenomics)”。表观基因组学使人们对基因组的认识又增加了一个新视点:对基因组而言,不仅仅是序列包含遗传信息,而且其修饰也可以记载遗传信息。 摘要表观遗传学是研究没有DNA 序列变化的可遗传的基因表达的改变。遗传学和表观遗传学系统既相区别、彼此影响,又相辅相成,共同确保细胞的正常功能。表观遗传学信息的改变,可导致基因转录抑制、基因组印记、细胞凋亡、染色体灭活以及肿瘤发生等。 关键词表观遗传学;甲基化;组蛋白修饰;染色质重塑;非编码RNA 调控;副突变 表观遗传学( epigenetics) 是研究没有DNA序列变化的可遗传的基因表达的改变。它最早是在1939 年由Waddington在《现代遗传学导论》一书中提出,当时认为表观遗传学是研究基因型产生表型的过程。1996 年,国内学术界开始介绍epigenetics 研究,其中译名有表遗传学、表观遗传学、表型遗传修饰等10 余种,其中,表观遗传学、表遗传学在科技文献中出现的频率较高。 1 表观遗传学调控的分子机制 基因表达正确与否,既受控于DNA 序列,又受制于表观遗传学信息。表观遗传学主要通过DNA 的甲基化、组蛋白修饰、染色质重塑和非编码RNA 调控等方式控制基因表达。近年发现,副突变也包含有表观遗传性质的变化。 1.1 DNA 甲基化DNA 甲基化是由酶介导的一种化学修饰,即将甲基选择性地添加到蛋白质、DNA 或RNA上,虽未改变核苷酸顺序及组成,但基因表达却受影响。其修饰有多种方式,即被修饰位点的碱基可以是腺嘌呤N!6 位、胞嘧啶的N!4 位、鸟嘌呤的N!7 位和胞嘧啶的C!5 位,分别由不同的DNA 甲基化酶催化。在真核生物DNA 中,5- 甲基胞嘧啶是唯一存在的化学性修饰碱基,CG 二核苷酸是最主要的甲基化位点。DNA 甲基化时,胞嘧啶从DNA 双螺旋突出,进入能与酶结合的裂隙中,在胞嘧啶甲基转移酶催化下,有活性的甲基从S- 腺苷甲硫氨酸转移至胞嘧啶5' 位上,形成5- 甲基胞嘧啶( 5mC)。DNA 甲基化不仅可影响细胞基因的表达,

浙江大学通识课《生命科学》期末考试复习要点课稿

浙江大学2012年秋冬学期生命科学考前复习重点内容 考试(2012年秋冬学期) 简述6 5 论述10 4 单选判断填空 名词解释;区分名词;是非;填空;论述;自由发挥 什么是合成生物学?你所了解的合成生物学10’ 上课要求找的资料: 生物芯片的应用:DNA序列分析;基因表达分析;基因诊断;药物筛选 芯片实验室:在同一芯片上细胞分离、基因扩增及产物电泳等联用装置,实现Lab-on-a-chip 技术 基因芯片:将大量探针分子固定在支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强弱进而判断样品中靶分子的种类和数量 生物芯片(来自百度百科)又称DNA芯片或基因芯片,它们是DNA杂交探针技术与半导体工业技术相结合的结晶。该技术系指将大量探针分子固定于支持物上后与带荧光标记的DNA 样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。 杂交技术:核酸杂交技术 探针标记技术:萤光探针标记法

检测技术:激光共聚焦检测技术 特殊之处:微阵列技术和微点样技术 蛋白芯片:蛋白质芯片是一种高通量的蛋白功能分析技术,可用于蛋白质表达谱分析,研究蛋白质与蛋白质的相互作用,甚至DNA-蛋白质、RNA-蛋白质的相互作用,筛选药物作用的蛋白靶点等。 探针:低密度蛋白质芯片的探针包括特定的抗原、抗体、酶、吸水或疏水物质、结合某些阳离子或阴离子的化学集团、受体和免疫复合物等具有生物活性的蛋白质。 应用:诊断疾病:如传染病、肿瘤、遗传病及心血管疾病等;蛋白质相互作用研究;蛋白质与DNA相互作用研究 1:获取基因的方法有哪些 1.从基因文库中获取目的基因 2.化学合成法。已知目的基因的核苷酸序列,可用DNA合成仪直接合成。 3.用PCR技术扩增技术提取。 4.cDNA文库法(逆转录法):cDNA文库,是指汇集以某生物成熟mRNA为模板逆转录而成的cDNA序列的重组DNA群体。 5.鸟枪法 2:合成生物学 (1)合成生物学是在分子水平上对生命系统的重新设计和改造,基因工程、蛋白质工程等技术是其核心的技术手段。 (2)合成生物学是生物技术在基因组时代的延伸。 (3)它将原有的生物技术上升到工程化、系统化、标准化的工程高度,并正在学科交叉与技术整合的基础上,孕育技术创新飞跃。 (4)主要研究内容:合成新的生物元器件、有目的地对生物元器件进行组装、生产出能满足人类需要的新的生命系统。 (5)合成生物学的目的:从冰箱里取出相应的生物零件,把他们组装起来,成为一个微小

遗传学进展概述(选修课论文)

遗传学进展概述 作者:戴宝生 克隆水稻分蘖的主控基因MOC1 据国家自然科学基金委员会2003年5月23日报道,最近,我国科学家成功分离和克隆了水稻分蘖的主控基因MOC1,该成果是由中国科学院遗传与发育研究所李家洋院士及其合作者在国内独立完成的。该研究结果已发表在Nature,2003,422:618上,这是我国分子遗传学基础研究领域的第一篇源自国内的Nature文章,标志着我国植物功能基因研究取得了重大突破。 分蘖是水稻等禾本科作物在发育过程中的一个重要的分枝现象,也是一个重要的农艺性状,它直接确定作物的穗数并进而影响产量。虽然对水稻分蘖的形态学、组织学及突变体都有过很多描述,但是控制分蘖的分子机制一直没有弄清。自1996年起,在国家科技部、国家自然科学基金委员会和中国科学院的共同资助下,李家洋和中国农业科学院国家水稻研究所的钱前博士等开始进行此方面的研究。经过不懈努力,项目组鉴定了一株分蘖的极端突变体——单杆突变体MOC1。通过遗传图谱定位克隆技术,分离鉴定了在水稻分蘖调控中起重要作用的基因MOC1,它的缺失可造成分蘖的停止。进一步的功能分析表明,该基因可编码一个属于GRAS家族的转录因子,该转录因子主要在腋芽中表达,功能是促进分蘖和促进腋芽的生长。对这一重要基因的深入研究,将有望解释禾本科作物分蘖调控的分子机制,对于水稻高产品种的培育有重要的理论和应用价值 走出“基因决定论”的误区 自从基因一词在20世纪初进入科学家的词汇表以来,它不仅是生物学家最为常用的词汇之一,也成为当今普通大众最为熟悉的科学术语之一。随着遗传学和分子生物学的进步,人们不仅知道了基因的化学性质——DNA序列,而且还认识到了基因的功能——编码蛋白质的氨基酸序列。由此,逐渐形成了一种广为流行的“基因决定论”:生命的各种性质和活动都是受基因控制的,甚至人类的精神活动也在基因的控制之下。不久前,芬兰赫尔辛基大学和瑞典卡罗林斯卡医学院的研究人员在某些患有诵读困难的病人中,发现了一种名为“DYXC1”的基因发生了突变。也就是说,人类的阅读可能受到这种“DYXC1”基因的控制。不可否认,基因对生命具有非常重要的作用,基因的异常通常就会导致生命的异常。但是,作为开放的复杂系统,生命活动从来就不是由一种因素就能完全决定的。当前越来越多的证据,正在向“基因决定论”挑战。科学家正在以一种全新的视野来理解生命现象。 不再是“垃圾” 随着基因组研究的深入,人们发现,在多细胞真核生物的基因组中,基因仅是其全部DNA 序列的一小部分。在人类基因组中,全部基因序列只占基因组的2%左右。基因组内的非基因序列曾一度被研究者称为“垃圾DNA”(junk DNA)。这些“垃圾DNA”中至少有一半是

生物化学名词解释必考期末考试复习

生物化学名词解释(必考)期末考试复习名词解释 1、基因组:单倍体中的全套为一个基因组,或是单倍体细胞中的全部基因为一个基因组。 2、基因簇:中的各成员紧密成簇排列成大串的重复单位,定于的的特殊区域,属于同一个祖先的基因扩增产物。 3、基因家族:真核细胞中,许多相关的基因常按功能成套组合,被称为基因家族。 4、基因探针:带有可检测标记(如同位素、生物素或荧光染料等)的一小段已知序列的寡聚核苷酸。可通过分子杂交探测与其序列互补的基因是否存在。 5、基因敲除:指一种技术,针对某个序列已知但功能未知的序列,改变生物的遗传基因,令特定的基因功能丧失作用,从而使部分功能被屏蔽,并可进一步对生物体造成影响,进而推测出该基因的生物学功能。 6、基因芯片:利用原位合成法或将已合成好的一系列寡核苷酸探针分子以预先设定的排列方法固定在固相支持介质表面,形成高密度寡核苷酸序列,并与样品杂交,通过检测杂交信号的强度及分布来进行分析。 7、断裂基因:在基因内部插入不编码序列使一个完整的基因分隔成不连续的若干区段的基因称为断裂基因。 8、调节基因:编码那些参与基因表达调控的RNA和蛋白质的特异性DNA序列。 9、操纵基因:是操纵子中的控制基因,在操纵子上一般与启动子相邻,通常处于开放状态,使RNA聚合酶能够通过它作用于启动子而启动转录。 10、看家基因:是一类典型的结构基因,维护细胞基本功能所必需,在所有有机体的细胞中表达。其中一部分基因序列比较保守。 11、结构基因:编码蛋白质或RNA的基因。 12、假基因:具有与功能基因相似的序列,但由于有许多突变以致失去了原有的功能,所以假基因是没有功能的基因,常用ψ表示。 13、端粒:线状染色体末端的DNA 。 14、端粒酶:在细胞中负责端粒的延长的一种酶,是基本的核蛋白,可将端粒DNA加至真核染色体末端。 15、反义链:在基因的DNA双链中,转录时作为mRNA合成模板的那条单链。 16、转染:真核细胞由于外源DNA掺入而获得新的遗传物质的过程。 17、转换:发生在或中的点突变,其中一个嘌呤被另一个嘌呤置换或一个被另一个嘧啶置换。在双链核酸中随即有一个与置换以后的互补的嵌入其中,以形成一个新的碱基体。 18、颠换:是指在碱基置换中嘌呤与嘧啶之间的替代.。 19、转导:由噬菌体将细菌基因从供体细胞转移到受体的过程。 20、转座:片段从一个部位到另一个部位而不需要相互该染色体的。这种常是由上的所。

表观遗传学(总结)资料

1.表观遗传学概念 表观遗传是与DNA 突变无关的可遗传的表型变化,且是染色质调节的基因转录水平的变化,这种变化不涉及DNA 序列的改变。表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传学内容包括DNA 甲基化、组蛋白修饰、染色质重塑、遗传印记、随机染色体失活及非编码RNA 等调节。研究表明,这些表观遗传学因素是对环境各种刺激因素变化的反映,且均为维持机体内环境稳定所必需。它们通过相互作用以调节基因表达,调控细胞分化和表型,有助于机体正常生理功能的发挥,然而表观遗传学异常也是诸多疾病发生的诱因。因此,进一步了解表观遗传学机 制及其生理病理意义,是目前生物医学研究的关键切入点。 别名:实验胚胎学、拟遗传学、、外遗传学以及后遗传学 表观遗传学是与遗传学(genetic)相对应的概念。遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。 2.表观遗传学现象 (1)DNA甲基化 是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。 (2)基因组印记 基因组印记是指来自父方和母方的等位基因在通过精子和传递给子代时发生了修饰,使带有亲代印记的等位基因具有不同的表达特性,这种修饰常为DNA甲基化修饰,也包括组蛋白乙酰化、甲基化等修饰。在形成早期,来自父方和母方的印记将全部被消除,父方等位基因在精母细胞形成精子时产生新的甲基化模式,但在受精时这种甲基化模式还将发生改变;母方等位基因甲基化模式在卵子发生时形成,因此在受精前来自父方和母方的等位基因具有不同的甲基化模式。目前发现的大约80%成簇,这些成簇的基因被位于同一条链上的所调控,该位点被称做印记中心(imprinting center, IC)。印记基因的存在反映了性别的竞争,从目前发现的印记基因来看,父方对的贡献是加速其发育,而母方则是限制胚胎发育速度,亲代通过印记基因来影响其下一代,使它们具有性别行为特异性以保证本方基因在中的优势。印记基因的异常表达引发伴有复杂突变和表型缺陷的多种人类疾病。研究发现许多印记基因对胚胎和胎

表观遗传学

表观遗传学Epigenetics 1.达尔文“自然选择”:过度繁殖、生存竞争、遗传和变异、适者生存 2.表观遗传学:没有DNA序列的变化,可发生生物体表现型的可遗传的改变。表观遗传学是在以孟德尔式遗传为理论基石的经典遗传学和分子遗传学母体中孕育的、专门研究基因功能实现的一种特殊机制的遗传学分支学科。表观遗传研究进一步促进了遗传学和基因组学的研究。 3.染色质DNA或蛋白质的各种修饰(染色质水平的基因表达调控) DNA修饰;组蛋白修饰;RNA干扰;基因组印迹;X染色体失活。 4.DNA甲基化(DNA methylation) 甲基化位点:CpG中胞嘧啶第5位碳原子。DNA甲基转移酶。 甲基来源:一碳单位;S-腺苷蛋氨酸;环境和饮食因素:叶酸、B12 1)基因组DNA CpG:70%~80%甲基化状态,CpG甲基化与基因组稳定性相关。 2)CpG岛:CpG双核苷酸局部聚集,形成GC含量较高、CpG双核苷酸相对集中的区域。CpG岛CpG多为非甲基化状态;CpG岛 CpG甲基化与基因表达抑制相关。 3)CpG岛分类:转录起始点附近的CpG岛(TSS–CGIs),正常组织是非甲基化的,肿瘤组织发生甲基化,与转录抑制相关。转 录起始点外的CpG岛(non-TSS CpG),正常组织:通常呈高度的甲基化。肿瘤组织:甲基化程度降低,程度与患病程度相关。 4)CpG岛的分析:长度大于200 bp、GC含量大于50%、CpG含量与期望含量之比大于0.6的区域。 5)DNA甲基化转移酶DNMT: DNMT1:催化子链DNA半甲基化位点甲基化,维持复制过程中甲基化位点的遗传稳定性. DNMT3a和DNMT3b:催化从头甲基化,以非甲基化的DNA为模板,催化新的甲基化位点形成. 6)甲基来源:S-腺苷蛋氨酸(胞嘧啶甲基化供体、蛋氨酸是必需氨基酸),一碳单位 叶酸:参与一碳单位代谢,间接提供甲基。补充S-腺苷蛋氨酸。叶酸摄入不足时可导致DNA低甲基化。 7)DNA甲基化抑制基因转录的机制 ①直接抑制基因表达:启动子区CpG序列甲基化,影响转录激活因子与启动子识别结合。 ②间接抑制基因表达:非启动子区CpG序列甲基化,被甲基结合蛋白家族(MBD)识别结合,影响组蛋白修饰,改变染色质活性。 8)DNA甲基化的生物学意义:调控基因表达, 在胚胎发育、细胞生长分化,衰老,疾病等方面发挥重要作用。维持染色体结构X染色体失活;基因印记;疾病发生发展。 5.组蛋白修饰:乙酰化、甲基化、磷酸化、泛素化、糖基化、ADP核糖基化、羰基化等。 组蛋白含赖氨酸带正电荷,DNA含磷酸带负电荷,组蛋白与DNA通过静电结合。组蛋白乙酰化:形成酰胺键,正电荷减弱,染色质转录加强。组蛋白甲基化:正电荷加强,染色质转录减弱。 1)组蛋白乙酰化,最早发现。修饰位点:核心组蛋白外周结构域,氨基末端Lys残基的NH3。酶:组蛋白乙酰基转移酶HATs, 组蛋白去乙酰化酶HDAC,乙酰化与去乙酰化是一动态过程。 2)组蛋白乙酰化调控基因转录机制:组蛋白乙酰化中和组蛋白赖氨酸正电荷;降低组蛋白与DNA的亲和力;核小体结构 不稳定和解离,染色体结构松散;促进转录因子、RNA聚合酶与DNA结合。常染色质区域乙酰化程度增加,H3、H4尤为明显,是染色质基因表达活性状态的标志。乙酰化具有激活效应. 3)组蛋白甲基化,修饰位点:H3、H4 Lys、Arg残基氨基。单次、两次、三次甲基化。组蛋白甲基转移酶\组蛋白去甲基化酶 4)组蛋白甲基化修饰的作用:具有抑制效应(维持染色质于凝聚状态,阻遏基因表达。) 5)组蛋白密码:组蛋白翻译后修饰产生的识别标志,反映组蛋白与DNA的结合能力,影响染色质的多级折叠、结构和功能。 6.RNA干扰RNAi:RNA抑制基因表达。RNA在基因编码序列没有改变下,能够改变蛋白质的表达,在表观遗传中起重要作用。参与RNAi的RNA分子:非编码RNA。短链非编码RNA(小干扰RNA、微小RNA、Piwi相关RNA)长链非编码RNA 1998年Fire等首次揭示双链RNA具有基因抑制作用,提出RNAi的概念。

遗传模拟题

不想学但还是要继续的遗传学学习; 习题篇。 一、名词解释 1、基因突变 2、组织相容性抗原 3、Ig基因重排 4、表观遗传学 5、结构基因组学 6、基因组印迹 7、母性影响 8、高频重组品系(Hfr) 9、转导 10、顺反测验 二. 填空 1. 基因突变按照发生的细胞类型,可分为突变和突变; 按照突变后氨基酸的变化,可分为突变、突变、突变、突变。 2. 含有F因子的菌株叫菌株,不含F因子的菌株是菌株。 3. 植物的雄性不育性包括、、。 4. 基因是储存遗传信息,具有的DNA片段;基因组是指一个物种数目、总和。 5. 真核生物的顺式作用元件一般包括、、、。 6. C值是指一个物种的DNA含量,C值悖理是指C值和之间没有严格的对应关系,N值悖理是指与其生物结构的复杂性不成比例的现象。 7. 人类基因组计划的内容,可概括为绘制24条染色体DNA的4张图谱,分别是、、、。 8. 根据基因突变的分子基础不同,可将基因突变分为和两类;它们又分别可以分为错误和损伤,以及诱变和诱变。 9. 细菌接合重组发生在部分二倍体中,产生不平衡的线性染色体;只有才能产生平衡的重组子,并且不出现。 10. 转化是细菌通过细胞膜摄取周围外源,通过将其整合到自己染色体的过程。 11. DNA去甲基化包括和两种方式;DNA甲基化酶包括甲基转移酶和甲基转移酶。 12. 免疫球蛋白(Ig)是具有和化学结构与相似的球一类蛋白,人类胚系Ig基因由链和链组成。链包括4个基因片段,:链包括3个基因片段。 13. RNA interference(RNAi)是指与同源的诱导的序列特异性的转录后基因沉默现象。 三. 分析与论述 1.比较转化、接合、性导、转导在细菌遗传物质传递上的异同?

单分子测序技术在靶基因组测序及表观遗传学的应用 第三代测

对未知基因组测序。 以单分子测序系统PacBio RS 为代表的第三代测序技术,是一种模拟天然DNA 复制过程的测序技术,不仅融合了天然DNA 复制高效准确的特点,而且是世界上唯一可以在不影响聚合酶活性的前提下实时观察DNA 合成的测序技术。由于聚合酶的平均反应速度可达1个碱基每秒以上,因而其测序速度比Sanger 测序快了几万倍。参与三代测序技术研发的Korlach 与Turner ,于2009年2月在《Science 》杂志上发表了一篇介绍PacBio 单分子DNA 测序技术的文章,代表了首个第三代测序技术的“原理验证”[2]。其后,他们又利用SMRT 技术,直接测定了DNA 的甲基化,这一发表在2011年5月《Nature Methods 》上的研究成果,相对于目前流行的第二代测序技术显然又前进了一大步 [3] 。PacBio RS 单分子测序系统目前的读长超过1kb ,比第 二代测序要长得多,且不需要常规的PCR 扩增过程,错误率也大大降低,聚合酶动力学的直接观察赋予了PacBio RS 系统在测序之外的更多应用(表1 )。 单分子测序技术在靶基因组测序及表观遗传学的应用 第三代测序技术 DNA测序技术的变革 DNA 测序技术,不仅为基因组计划揭开了基因密码的神秘面纱,同时在诸如肿瘤及遗传性疾病治疗的医药行业、材料科学行业、石油替代物研发的生物燃料行业、产能更高的种植业和畜牧业等领域都有着重要的应用价值。 测序技术最早可以追溯到20世纪50年代,即1954年出现的关于Whitfeld 发明化学降解测序法的早期测序技术报导。但从严格意义上讲,直到1977年Sanger 等的双脱氧核苷酸末端终止法和Gilbert 等的化学降解法的诞生,才标志着第一代测序技术的确立。尽管在完成从噬菌体基因组到人类基因组草图绘制等大量测序工作中,第一代测序技术充分展示了可靠、准确等优点,但其对于电泳分离技术的依赖及成本高、耗时长等局限性也日益显现,试想绘制一张人类基因组图谱需耗费数年时间显然无法满足临床科研的紧迫需要。 进入21世纪,诞生的第二代测序技术(NGS, next generation sequencing ),不仅保持了第一代测序的高准确度,而且大大降低了测序成本并极大地提高了测序速度,可将完成一张人类基因组图谱的时间缩短到一周左右的时间,因而在2007年高票当选《Nature Methods 》生物领域最有影响力技术[1] 。第二代测序技术最大的缺点在于测序读长过短,其产生的大量短测序结果,犹如一堆拼图碎片,往往难以进行拼接以获取测序基因组全貌,多数情况下仍须结合第一代测序技术来进行序列的重新测序和结果拼接。可见,牺牲了读长的高速二代测序技 术更适合对已知序列基因组的重新测序,显然不适用于

表观遗传学考试复习

一、名词解释 表观遗传 DNA序列不发生改变但基因表达却发生了变化的一种有别于传统遗传学的遗传方式,主要原因包括:(1)基因选择性转录表达的调控,包括DNA甲基化,基因印记,组蛋白共价修饰,染色质重塑;(2)基因转录后的调控,包含基因组中非编码的RNA,如miRNA,siRNA等。 剂量补偿效应 在生物的性别决定机制中,性连锁基因在两种性别中有相等或近乎相等的有效剂量的遗传效应,即在雌性和雄性细胞里,由X染色体基因编码产生的酶或其他蛋白质产物在数量上相等或近乎相等。 染色质重塑 基因表达调控过程中所出现的一系列染色质结构变化和位置改变的总称,研究内容包括基因表达的复制和重组等过程中,染色质的包装状态,核小体中的组蛋白以及对应的DNA 分子发生改变的分子机理。 RNA干扰 生物体内通过双链RNA分子在mRNA水平上诱导具有特异性序列的转录后基因沉默的过程(如miRNA,siRNA等),是表观遗传学中的一种重要现象。 CpG 岛 基因组中富含CpG的区域,长度500~ 1000bp,GC含量超过55%,常分布在持家基因和一些组织表达特异性基因的启动子区域,其中70% 的C是甲基化的,但总的来说G+C 丰富的CpG岛是非甲基化的。CpG岛区域序列可以被HpaII酶(CCGG) 切成小片段,因此也叫HTF 岛。CpG岛在基因转录调控过程中有重要作用,例如启动子区CpG被甲基化时转录是受抑制的。 Histone Crosstalk 组蛋白的不同化学修饰之间相互作用,不仅表现为同种组蛋白不同残基的一种修饰能加速或抑制另一修饰的发生,并且在影响其他组蛋白残基的同时,也受到另外组蛋白残基修饰的调节。 泛素化修饰 组蛋白赖氨酸残基与泛素分子羧基末端的甘氨酸相互结合,可能会改变底物的结构,参与内吞作用、组蛋白的活性、DNA 修复等过程等。组蛋白的泛素化修饰则会招募核小体到染色体、参与X染色体失活、影响组蛋白甲基化和基因的转录。 SUMO 修饰 小泛素相关修饰物(small ubiquitin related modifier, SUMO ),是一种ATP依赖的小蛋白的共价修饰,通常发生在赖氨酸(K)上,其生物学功能包括:转录沉默、抑制组蛋白的乙酰化。 组蛋白密码 组蛋白在翻译后的修饰中会发生改变,从而提供一种识别的标志,为其他蛋白与DNA结合产生协同或拮抗效应,这种动态转录调控成分称为组蛋白密码。一种假说认为是通过下游效应蛋白特异的识别和解译这种修饰来完成组蛋白密码的解读,在基因的功能预测与研究中有重要作用。 印记缺失 印记基因簇中某个基因的表达或不表达使得印记基因的表达不再受到抑制从而失去了印记基因的特性,这样的一种现象即称为印记缺失,例如删除DMR 序列将导致Air不表达,从而失去了Air对印记基因的抑制作用,继而印记丢失。

相关文档
最新文档