典型系统的时域响应和稳定性分析

典型系统的时域响应和稳定性分析
典型系统的时域响应和稳定性分析

实验报告

实验名称典型系统的时域响应和稳定性分析

系信息院专业自动化班1205班姓名学号授课老师

预定时间实验时间实验台号

一、目的要求

1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。

二、原理简述

根据系统在二阶三阶下的稳定性不同作该实验研究相关系统的时域响应和稳定性分析1.典型的二阶系统稳定性分析

(1) 结构框图:如图所示。

(2) 理论分析

系统开环传递函数为:

开环增益

2.典型的三阶系统稳定性分析

(1)结构框图:如图所示。

(2) 理论分析

系统开环传递函数为:

系统的特征方程为:

三、仪器设备

PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。

四、线路示图

1.典型的二阶系统稳定性分析

2.典型的三阶系统稳定性分析

五、内容步骤

1.典型的二阶系统稳定性分析

2.实验内容:先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

系统闭环传递函数为:

其中自然振荡角频率:阻尼比:

2.典型的三阶系统稳定性分析

实验内容:实验前由Routh 判断得Routh 行列式为:

为了保证系统稳定,第一列各值应为正数,所以有

实验步骤

1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s 左右。

2. 典型二阶系统瞬态性能指标的测试

(1) 按模拟电路图接线,将1 中的方波信号接至输入端,取R = 10K。

(2) 用示波器观察系统响应曲线C(t),测量并记录超调MP、峰值时间tp 和调节时间tS。

(3) 分别按R = 50K;160K;200K;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标MP、

tp 和tS,及系统的稳定性。并将测量值和计算值进行比较 (实验前必须按公式计算出)。将实验结果填入表中。表中已填入了一组参考测量值,供参照。

3.典型三阶系统的性能

(1) 按图接线,将1 中的方波信号接至输入端,取R = 30K。(2) 观察系统的响应曲线,并记录

波形。(3) 减小开环增益 (R = ;100K),观察响应曲线,并将实验结果填入表中。

表中已填入了一组参考测量值,供参照。

六、数据处理

典型的二阶系统稳定性分析

R=10K

R=50K

R=160K

R=200K

典型的三阶系统稳定性分析

R=30K

R=

R=100K

七、分析讨论

典型二阶系统瞬态性能指标实验参考值表

典型三阶系统在不同开环增益下的响应情况参考值表

通过这次自动控制的实验,我掌握了典型环节模拟电路的构成方法、传递函数及输出时域函数的表达式熟悉了各种典型环节的阶跃响应曲线以及各项参数变化对典型环节的动态特性的影响。能更清楚分析二阶和三阶系统,为之后的学习打下了好的基础。通过自己动手对电路进行搭接、对输出波形进行调试、观察

,加深了对书本上内容的理解,有利于我们更好地掌握知识、消化知识。

自动控制实验一典型环节及其阶跃响应分析

广东工业大学实验报告 分数:实验题目典型环节及其阶跃响应分析 一、实验目的 1、掌握控制模拟实验的基本原理和一般办法。 2、掌握控制系统时域性指标的测量方法。 二、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可以进一步分析参数对系统性能的影响。 三、实验仪器 1、EL-AT-II型自动控制系统实验箱一台 2、计算机一台 四、实验内容 1、比例环节 比例环节的模拟电路及其传递函数如下 当R2=200K时,其输出波形如下图:

由上图可得,实际K=2449/1029=2.37 理论值K=2 误差:y=|k`- k|/ k *100% =|2.37-2|/2*100% =18.5% 当R2=400K时,其输出波形如下图: 由上图可得,实际K=4389/1029=4.27 理论值K=4 误差:y=|k`- k|/ k *100% =|4.27-4|/4*100% =6.75% 数据分析:从图中可以看出,比例环节最大的特点就是时间响应快,一旦有输入信号,输出立即响应。且实际K存在一定误差,分析电路可知,误差是由R1、R2的实际值存在偏差而导致的,同时和放大器的结构参数也有关系。 2、惯性环节

惯性环节的模拟电路及其传递函数如下 G(S)=-K/TS+1 K=R2/R1 T=R2C 当C=1uF 时,其输出波形如下图: 由上图可得,实际T=0.076s 理论值T=0.1s 误差:η1=|T`- T|/ T *100% =|0.076-0.1|/0.1*100% =24% 当C=2uF 时,其输出波形如下图:

自动控制原理_线性系统时域响应分析

武汉工程大学 实验报告 专业 班号 组别 指导教师 姓名 学号 实验名称 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2++++= s s s s K s G

试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。 三、实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 14647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 方法一:用step( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0::10; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)') Unit-step Response of G(s)=s 2+3s+7/(s 4+4s 3+6s 2+4s+1) t/s (sec) c (t ) 方法二:用impulse( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 0 1 3 7 ]; den=[1 4 6 4 1 0]; t=0::10; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Response of G(s)/s=s^2+3s+7/(s^5+4s^4+6s^3+4s^2+s)')

matlab实验二线性系统时域响应分析

武汉工程大学实验报告 专业班号 组别01 教师 姓名同组者(个人)

2222)(n n n s s s G ωζωω++= (1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。 (2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 (3)系统的特征方程式为010532234=++++s s s s ,试用二种判稳方式判别该系统的稳定性。 (4)单位负反馈系统的开环模型为 )256)(4)(2()(2++++= s s s s K s G 试分别用劳斯稳定判据和赫尔维茨稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。 三、 实验结果及分析 1.可以用两种方法绘制系统的阶跃响应曲线。 (1)用函数step( )绘制 MATLAB 语言程序: >> num=[ 0 0 1 3 7]; >> den=[1 4 6 4 1 ]; >>step(num,den); >> grid; >>xlabel('t/s');ylabel('c(t)');title('step response');

MATLAB运算结果: (2)用函数impulse( )绘制 MATLAB语言程序: >> num=[0 0 0 1 3 7]; >> den=[1 4 6 4 1 0]; >> impulse(num,den); >> grid; >> xlabel('t/s');ylabel('c(t)');title('step response');MATLAB运算结果:

北航自动控制原理实验报告- 一、二阶系统的电子模拟及时域响应的动态测试

成绩 北京航空航天大学 自动控制原理实验报告 学院机械工程及自动化学院 专业方向机械工程及自动化 班级 学号 学生姓名刘帆 自动控制与测试教学实验中心

实验一 一、二阶系统的电子模拟及时域响应的动态测试 实验时间2014年11月15日 实验编号 同组同学 一、实验目的 1、 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2、 学习在电子模拟机上建立典型环节系统模型的方法。 3、 学习阶跃响应的测试方法。 二、实验内容 1、 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的跃响应曲线,并测定其过渡过程时间T s 。 2、 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间T s 。 三、实验原理 1、一阶系统阶跃响应性能指标的测试 系统的传递函数为:()s ()1 C s K R s Ts φ=+()= 模拟运算电路如下图 : 其中2 1 R K R = ,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.2,0.51,1.0。记录实验数据,测量过度过程的性能指标,其中取正负5%误差带,按照经验公式取3s t T =

2、二阶系统阶跃响应性能指标的测试 系 统 传递函数为: 令ωn=1弧度/秒,则系统结构如下图: 二阶系统的 模拟电路图如下: 在实验过程中,取22321,1R C R C ==,则 442312R R C R ζ==,即42 12R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,0.707,1;记录所测得的实验数据以及其性能指标,取正负5%误差 带,其中当ζ<1时经验公式为2 1 3.5 %100%,s n e t ζσζω- -=?= ,当ζ=1时经验公式 为n 4.75 ts ω= 四、试验设备: 1、HHMN-1型电子模拟机一台。 2、PC 机一台。 3、数字万用表一块。 4、导线若干。

典型环节及其阶跃响

自动控制原理实验 典型环节及其阶跃相应 .1 实验目的 1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 3. 学习用Multisim 、MATLAB 仿真软件对实验内容中的电路进行仿真。 .2 实验原理 典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下, 典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。 1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器: (1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零; (2) 电压增益为∞: (3) 通频带为∞: (4) 输入与输出之间呈线性特性: 2.实际模拟典型环节: (1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。 (2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间内达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。 (3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。 3.各典型环节的模拟电路及传递函数 (1) 比例环节的模拟电路如图.1所示,及传递函数为: 1 2)(R R S G -=

.1 比例环节的模拟电路 2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1 2R R K = T=R 2 C 图.2 惯性环节的模拟电路 3. 积分环节的模拟电路如图.3所示,其传递函数为: 1 11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS R Z Z S G

实验三 二阶系统频率响应

实验三 二阶系统频率响应 一、实验目的 (1)学习系统频率特性响应的实验测试方法。 (2)了解二阶闭环系统中的对数幅频特性和相频特性的计算。 (3)掌握根据频率响应实验结果绘制波特图的方法。 (4)掌握欠阻尼二阶闭环系统中的自然频率、阻尼比对谐振频率、谐振峰值和带宽的影响及对应的计算。 二、实验设备 (1)XMN-2型学习机; (2)CAE-USE 辅助实验系统 (3)万用表 (4)计算机 三、实验内容 本实验用于观察和分析二阶系统瞬态响应的稳定性。 二阶闭环系统模拟电路如图3-1所示,它由两个积分环节(OP1和OP2)及其反馈回路构成。 图3-1 二阶闭环系统模拟电路图 OP1和OP2为两个积分环节,传递函数为s T s G i 1 )(-=(时间常数RC T i =)。二阶闭环系统等效结构图如图3-2所示。 图3-2 二阶闭环系统等效结构图 该二阶系统的自然振荡角频率为RC T n 11==ω,阻尼为i f R R K 22= =ζ。 四、实验步骤 (1)调整Rf=40K ,使K=0.4(即ζ=0.2);取R=1M ,C=1μ,使T=1秒(ωn=1/1)。 (2)输入信号位)sin(t X ω=,改变角频率使ω分别为 0.2,0.6,0.8,0.9,1.0,1.2,1.6,2.0,3.0rad/s 。稳态时,记录下输出响应)sin(φω+=t Y y 五、数据采集及处理 输出信号幅值Y 输出信号初相φ L(ω) φ(ω) ω(rad/s) T 0.2 0.6 0.8 0.9 1.0 1.2

1.6 2.0 3.0 六、实验报告 1、绘制系统结构图,并求出系统传递函数,写出其频率特性表达式。 2、用坐标纸画出二阶闭环系统的对数幅频、相频曲线(波特图)。 3、其波特图上分别标示出谐振峰值(Mr)、谐振频率(ωr)和带宽频率(ωb)。 4、观察和分析曲线中的谐振频率(ωr)、谐振峰值(Mr)和带宽(ωb),并与理论计算值作对比。

典型环节及其阶跃响应

自动控制原理实验 典型环节及其阶跃相应 .1 实验目的 1. 学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2. 学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 3. 学习用Multisim、MATLAB仿真软件对实验容中的电路进行仿真。 .2 实验原理 典型环节的概念对系统建模、分析和研究很有用,但应强调典型环节的数学模型是对各种物理系统元、部件的机理和特性高度理想化以后的结果,重要的是,在一定条件下,典型模型的确定能在一定程度上忠实地描述那些元、部件物理过程的本质特征。 1.模拟典型环节是将运算放大器视为满足以下条件的理想放大器: (1) 输入阻抗为∞。流入运算放大器的电流为零,同时输出阻抗为零; (2) 电压增益为∞: (3) 通频带为∞: (4) 输入与输出之间呈线性特性: 2.实际模拟典型环节: (1) 实际运算放大器输出幅值受其电源限制是非线性的,实际运算放大器是有惯性的。 (2) 对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间的长短(对于积分或比例积分环节),不使其输出工作在工作期间达到饱和值,则非线性因素对上述环节特性的影响可以避免.但对模拟比例微分环节和微

分环节的影响则无法避免,其模拟输出只能达到有限的最高饱和值。 (3) 实际运放有惯性,它对所有模拟惯性环节的暂态响应都有影响,但情况又有较大的不同。 3.各典型环节的模拟电路及传递函数 (1) 比例环节的模拟电路如图.1所示,及传递函数为: 1 2)(R R S G -= .1 比例环节的模拟电路 2. 惯性环节的模拟电路如图.2所示,及传递函数为: 其中1 2R R K = T=R 2C 1 11R /1/)(21212212+-=+-=+-=-=TS K CS R R R CS R CS R Z Z S G

典型二阶系统的时域响应与性能分析

实验二 典型二阶系统的时域响应与性能分析 一、实验目的 1、研究二阶系统的特征参量(ζ, ωn )对过渡过程的影响。 2、研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 二、实验设备 PC 机一台,TD-ACS 教学实验系统一套。 三、实验原理 典型二阶系统开环传递函数为:) 1()1()(101101 += += s T s T K s T s T K s G ;其中,开环放大系数01K K = 。系统方块图与模拟电路如图2-1与图2-2所示。 图2-1典型二阶系统方块图 图2-2模拟电路图 先算出临界阻尼、欠阻尼、过阻尼时电电阻R 的理论值,再将理论值应用于模拟电路

中,观察二阶系统的动态性能及稳定性。 设R T K K s T T s T 200,2.0,10 1 10== ===, 系统闭环传递函数为: 2 222 221)()(n n n s s T K s T s T K K s Ts K s R s C ωζωω++=+ +=++= 其中,自然振荡频率:R T K n 10 10 == ω 阻尼比:4 102521R T K T n = = = ωζ 典型二阶系统的瞬态性能指标: 超调量:2 1%ζζπ δ--=e 峰值时间:2 1ζ ωπ-= n p t 峰值时间的输出值:2 11)(ζζπ -=+=e t C p 调节时间: 1)欠阻尼10<<ζ,???????=?=?≈5324 ,,t n n s ζωζω 2)临界阻尼1=ζ,???????=?=?≈575.4284 .5,,t n n s ωω 3)过阻尼1>ζ,? ??=?=?≈532 411,p ,p t s ,1p -与2p -为二阶系统两个互异的 负实根12 2,1-±-=-ζ ωζωn n p ,21p p ->>-,过阻尼系统可由距离虚轴较近的极点 1p -的一阶系统来近似表示。

MATLAB线性系统时域响应分析实验

实验报告 实验名称 线性系统时域响应分析 一、 实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、 实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标 ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2 ++++= s s s s K s G 试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

三、 实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 方法一: num=[1 3 7]; den=[1 4 6 4 1]; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Respinse of G(s)=(s^2+3s+7)/(s^4+4s^3+6s^2+4s+1)') 方法二: num=[1 3 7]; den=[1 4 6 4 1 0]; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Respinse of G(s)/s=(s^2+3s+7)/(s^5+4s^4+6s^3+4s^2+s)')

自动控制原理实验-典型环节及其阶跃响应

大学学生实验报告 开课学院及实验室:实验中心 2013 年 11 月4日 学 院 机电 年级、专业、班 学号 实验课程名称 成绩 实验项目名称 典型环节及其阶跃响应 指导 教师 一、实验目的 二、实验原理(实验相关基础知识、理论) 三、实验过程原始记录(程序界面、代码、设计调试过程描述等) 四、实验结果及总结 一、实验目的 1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。 2.学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。 二、实验原理及电路图 (一) 用实验箱构成下述典型环节的模拟电路,并测量其阶跃响应。 1.比例环节的模拟电路及其传递函数如图2-1。 图2-1 G(S)= -R 2 /R 1 2.惯性环节的模拟电路及其传递函数如图2-2。

图2-2 G(S)=-K/(TS+1) K=R 2 /R 1 , T=R 2 C 3.积分环节的模拟电路及其传递函数如图2-3。 图2-3 G(S)=-1/TS T=RC 4.微分环节的模拟电路及其传递函数如图2-4。

图2-4 G(S)=-RCS 5.比例+微分环节的模拟电路及其传递函数如图2-5。 图2-5 G(S)=-K(TS+1) K=R 2 /R 1 ,T=R 2 C 6.比例+积分环节的模拟电路及其传递函数如图2-6。 图2-6 G(S)=K(1+1/TS) K=R 2 /R 1 , T=R 2 C

实验截图 1.比例环节 2.惯性环节

3.积分环节 4.微分环节 5.比例+微分环节

二阶系统的瞬态响应

3.3 二阶系统的瞬态响应 凡用二阶微分方程描述的系统称为二阶系统。标准形式的二阶系统的微分方程是 (3.27) 或 (3.28) 上两式中,T称为系统的时间常数。称为系统的阻尼系数或阻尼比,称为系统的无阻尼自然振荡频率或自然频率。K为放大系数。 图3.9是标准二阶系统的结构图。 图3.9 二阶系统的结构图 标准形式二阶系统的闭环传递函数为 (3.29) 二阶系统的状态空间表达式为 (3.30) (3.31)

在式(3.30)和式(3.31)中,设K=1,u(t)为输入函数。 二阶系统是控制系统中应用最广泛、最具代表性的系统。同时,二阶系统的分析方法也是分析高阶系统的基础。 3.3.1 二阶系统的单位跃阶响应 二阶系统的特征方程为 (3.32) 特征方程的二个根为 (3.33) 这也是二阶系统的闭环极点。 从式(3.33)可以看出,二阶系统的参数,是变化的,取值不同,特征方程的根(即闭环极点)可能是复数,也可能是实数。系统的响应形式也因此会有较大的区别。 在单位阶跃函数输入下,二阶系统的输出为 (3.34) 下面分几种不同的情况来讨论二阶系统的单位阶跃响应。 1. 无阻尼状态(=0) 当二阶系统的阻尼比时,我们称二阶系统处于无阻尼状态或无阻尼情况。 时,二阶系统特征方程的根是共轭纯虚数根 闭环极点在s平面上的分布如图3.10所示。随变动,闭环极点的位置沿虚轴变化。系统的单位阶跃响应为 (3.35) 响应的时域表达式为 (3.36)

这是一个等幅的正弦振荡。这说明在无阻尼状态下系统不可能跟踪单位阶跃输入的变化。的变化曲线如图3.15所示。 图3.10 时特征根分布 图3.11 欠阻尼状态下的闭环极点 2. 欠阻尼状态() 当二阶系统的阻尼系数时,我们称二阶系统的单位阶跃响应是欠阻尼情况或者说二阶系统处于欠阻尼状态。 当时,二阶系统特征方程的根是一对共轭复数根: (3.37)

典型环节及其阶跃响应

典型环节及其阶跃响应 一、实验目的 1. 掌握控制系统模拟实验的基本原理和一般方法。 2. 掌握控制系统时域性能指标的测量方法。 3. 加深典型环节的概念在系统建模、分析、研究中作用的认识。 4. 加深对模拟电路——传递函数——响应曲线的联系和理解。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、实验原理 1.模拟实验的基本原理 根据数学模型的相似原理,我们应用电子元件模拟工程系统中的典型环节,然后加入典型测试信号,测试环节的输出响应。反之,从实测的输出响应也可以求得未知环节的传递函数及其各个参数。 模拟典型环节传递函数的方法有两种:第一种方法,利用模拟装置中的运算部件,采用逐项积分法,进行适当的组合,构成典型环节传递函数模拟结构图;第二种方法将运算放大器与不同的输入网络、反馈网络组合,构成传递函数模拟线路图,这种方法可以称为复合网络法。本节介绍第二种方法。 采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络构成相应的模拟系统。将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 图1-1 模拟实验基本测量原理 模拟系统以运算放大器为核心元件,由不同的R-C输入网络和反馈网络组成的各种 典型环节,如图1-2所示。图中Z1和Z2为复数阻抗,它们都是由R、C构成。 基于图中A点的电位为虚地,略去流入运放的电流,则由图1-2得:

1 21 0)(Z Z u u s G - =-= 由上式可求得由下列模拟电路组成典型环节的传递函数及其单位阶跃响应。 2.一阶系统时域性能指标s r d t t t ,,的测量方法: 利用软件上的游标测量响应曲线上的值,带入公式算出一阶系统时域性能指标。 d t :响应曲线第一次到达其终值∞ y 一半所需的时间。 r t :响应曲线从终值∞y %10上升到终值∞ y % 90所需的时间。 s t :响应曲线从0到达终值∞y 95%所需的时间。 3.实验线路与原理(注:输入加在反相端,输出信号与输入信号的相位相反) 1.比例环节 K R R Z Z s G -=- =- =1 21 2)( 比例环节的模拟电路及其响应曲线如图1-3。 K ——放大系数。K 是比例环节的特征量,它表示阶跃输入后,输出与输 入的比例关系,可以从响应曲线上求出。改变1R 或2R 的电阻值便可以改变比例 图1-2 运放的反馈连接 t K -1 图1-3 比例环节的模拟电路及其响应曲线

实验一、典型环节及阶跃响应

实验一、典型环节及其阶跃响应 一、实验目的 1. 掌握控制模拟实验的基本原理和一般方法。 2. 掌握控制系统时域性能指标的测量方法。 二、实验设备 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 2.时域性能指标的测量方法: 超调量ó %: 1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 2)检查USB线是否连接好,在实验项目下拉框中选中任实验,点击按 钮,出 现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表 示通信 正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续 进行实验。 3)连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1 输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。 4)在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应] 。 5)鼠标单击按钮,弹出实验课题参数设置对话框。在参数设置对话框 中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结 果。 6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调 量:

%100%max ?-=∞ ∞Y Y Y σ T P 与T S : 利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P 与T S 。 四、实验内容 构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1. 比例环节的模拟电路及其传递函数如图1-1。 G (S )= -R2/R1 2. 惯性环节的模拟电路及其传递函数如图1-2。 G (S )= - K/TS+1 K=R2/R1,T=R2C 3. 积分环节的模拟电路及传递函数如图1-3。 G (S )=1/TS T=RC 4. 微分环节的模拟电路及传递函数如图1-4。 G (S )= - RCS 5.例+微分环节的模拟电路及传递函数如图1-5(未标明的C=0.01uf )。 G (S )= -K (TS+1) K=R2/R1,T=R2C

线性系统的时域分析与校正习题及答案

第三章 线性系统的时域分析与校正习题及答案 3-1 已知系统脉冲响应t 25.1e 0125.0)t (k -=,试求系统闭环传递函数)s (Φ。 解 [])25.1s /(0125.0)t (k L )s (+==Φ 3-2 设某高阶系统可用下列一阶微分方程)t (r )t (r )t (c )t (c T +τ=+? ? 近似描述,其中,1)T (0<τ-<。试求系统的动态性能指标s r d t ,t ,t 。 解 设单位阶跃输入s s R 1)(= 当初始条件为0时有: 1 Ts 1 s )s (R )s (C ++τ= 1Ts T s 1s 11Ts 1s )s (C +τ--=?++τ= ∴ T /t e T T 1)t (h )t (c -τ--== T )0(h τ=,1)(h =∞,20T T )]0(h )(h [05.0τ -=-∞=? 1) 当 d t t = 时 2T T e T T 1)]0(h )(h [5.0)0(h )t (h t /t d τ += τ--=-∞+=- T /t d e 2 1 -= ; 693T .0t d = 2) 求r t (即)t (c 从1.0)(h ∞到9.0)(h ∞所需时间) 当T /t 2e T T 1)0(h )]0(h )(h [9.0)t (h -τ-- =+-∞=; 当T /t 1e T T 1)0(h )]0(h )(h [1.0)t (h -τ--=+-∞=; )T 1(.0T ln T t 2τ+τ-=, τ +τ -=)T 9(.0T ln T t 1 则 2T .29ln T t t t 12r ==-= 3) 求 s t T /t s s e T T 1)0(h )]0(h )(h [95.0)t (h -τ-- =+-∞= 3T 05.ln0T t s ==∴ 3-3 一阶系统结构如图所示。要求系统闭环增益2k =Φ,调节时间4.0t s ≤s ,试确定参数21k ,k 的值。 解 由结构图写出闭环系统传递函数 1k k s k 1k k s k s k k 1s k )s (212211211 +=+=+ =Φ

典型环节与及其阶跃响应

实验一: 典型环节与及其阶跃响应 一、实验目的 1、掌握控制模拟实验的基本原理和一般方法。 2、掌握控制系统时域性能指标的测量方法。 二、实验仪器 1、EL-AT-III 型自动控制系统实验箱一台 2、计算机一台 三、实验原理 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输 入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起 来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测 量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数, 还可进一步分析研究参数对系统性能的影响。 四、实验内容 构成下述典型一阶系统的模拟电路,并测量其阶跃响应 1、比例环节的模拟电路及其传递函数 G(S)= ?R2/R1

2、惯性环节的模拟电路及其传递函数 G(S)= ?K/TS+1 K=R2/R1 T=R2C 3、积分环节的模拟电路及传递函数 G(S)=1/TS T=RC 4、微分环节的模拟电路及传递函数 G(S)= ?RCS 5、比例+微分环节的模拟电路及传递函数 G(S)= ?K(TS+1) K=R2/R1 T=R1C 五、实验结果及分析 (注:图中黄色为输入曲线、紫色为输出曲线)1、比例环节 (1)模拟电路图:

(2)响应曲线: 2、惯性环节 (1)模拟电路图:

(2)响应曲线: (3)传递函数计算: 实验值:X1=1029ms=1.029s=4T T=0.257s K=Y2/1000=2.017 G(S)=-2.017/(0.257S+1) 理论值:G(S)=-2/(0.2S+1) 结论:实验值与理论值相近。 3、积分环节 (1)模拟电路图:

二阶系统瞬态响应和稳定性

二阶系统瞬态响应和稳定性

————————————————————————————————作者: ————————————————————————————————日期: ?

3.1.2 二阶系统瞬态响应和稳定性 一.实验目的 1. 了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标 准式。 2. 研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影 响。 3. 掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标Mp 、tp 、t s 的计 算。 4. 观察和分析Ⅰ型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶 跃信号输入时的动态性能指标Mp 、t p 值,并与理论计算值作比对。 二.实验原理及说明 图3-1-13是典型Ⅰ型二阶单位反馈闭环系统。 图3-1-13 典型Ⅰ型二阶单位反馈闭环系统 Ⅰ型二阶系统的开环传递函数: ) 1()(+= TS TiS K S G (3-1-1) Ⅰ型二阶系统的闭环传递函数标准式:2222) (1)()(n n n S S S G S G s ωξωωφ++= += (3-1-2) 自然频率(无阻尼振荡频率):TiT K =n ω 阻尼比:KT Ti 2 1=ξ (3-1- 3) 有二阶闭环系统模拟电路如图3-1-14所示。它由积分环节(A2单元)和惯性环节(A 3单元)的构成,其积分时间常数Ti =R 1*C 1=1秒,惯性时间常数 T=R 2*C 2=0.1秒。 图3-1-14 Ⅰ型二阶闭环系统模拟电路 模拟电路的各环节参数代入式(3-1-1),该电路的开环传递函数为: R k R R K S S K TS TiS K S G 100) 11.0()1()(2== += += 其中 模拟电路的开环传递函数代入式(3-1-2),该电路的闭环传递函数为: K S S K S S s n n n 1010102)(2 2 22++=++=ωξωωφ 模拟电路的各环节参数代入式(3-1-3),阻尼比和开环增益K 的关系式为:

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 【 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 @ 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 & (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s ! 解:(a )稳定; (b )稳定; (c )不稳定。

实验报告1典型环节及其阶跃响应分析

实验一典型环节及其阶跃响应分析 一、实验目的 1、掌握控制模拟实验的基本原理和一般方法。 2、掌握控制系统时域性能指标的测量方法。 二、实验仪器 1、EL-AT-Ⅱ型自动控制系统试验箱一台 2、计算机一台 三、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 四、实验内容 1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节 和比例积分微分环节。 2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关 系。 3、在运算放大器上实现各环节的参数变化。 五、实验步骤 六、实验步骤 1. 启动计算机,在桌面“信号、自控文件夹”中双击图 标,运行软件。 2. 测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使 通信正常后才可以继续进行实验。 3. 连接典型环节的模拟电路,电路的输入U1接A/D、D/A卡的DA1输出,电路的输 出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。 4. 在实验项目的下拉列表中选择[一、典型环节及其阶跃响应] ,鼠标单击按 钮,弹出实验课题参数设置对话框。在参数设置对话框中设置相应的实验参数 后用鼠标单击确定,等待屏幕的显示区显示实验结果. 5. 观测计算机屏幕显示出的响应曲线及数据,记录波形及数 七、实验结果 1、比例环节 K=2

【实验报告】一、二阶系统的电子模拟及时域响应测试

实验名称:一二阶系统的电子模拟及时域响 应测试 课程名称:自动控制原理实验

目录 (一)实验目的 (3) (二)实验内容 (3) (三)实验设备 (3) (四)实验原理 (3) (五)一阶系统实验结果 (3) (六)一阶系统实验数据记录及分析 (7) (七)二阶系统实验结果记录 (8) (八)二阶系统实验数据记录及分析 (11) (九)实验总结及感想............................................................................错误!未定义书签。 图片目录 图片1 一阶模拟运算电路 (3) 图片2 二阶模拟运算电路 (3) 图片3 T=0.25仿真图形 (4) 图片4 T=0.25测试图形 (4) 图片5 T=0.5仿真图形 (5) 图片6 T=0.5测试图形 (5) 图片7 T=1仿真图形 (6) 图片8 T=1测试图形 (6) 图片9 ζ=0.25s仿真图形 (8) 图片10 ζ=0.25s测试图形 (8) 图片11 ζ=0.5s仿真图形 (9) 图片12 ζ=0.5s测试图形 (9) 图片13 ζ=0.8s仿真图形 (10) 图片14 ζ=0.8s测试图形 (10) 图片15 ζ=1s仿真图形 (11) 图片16 ζ=1s测试图形 (11) 表格目录 表格1 一阶系统实验结果 (7) 表格2 二阶系统实验结果 (11) 一二阶系统的电子模拟及时域响应测试

(一)实验目的 1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2.学习在电子模拟机上建立典型环节系统模型的方法。 3.学习阶跃响应的测试方法。 (二)实验内容 1.建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。 2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其 超调量σ%及过渡过程时间TS。 (三)实验设备 HHMN电子模拟机,实验用电脑,数字万用表 (四)实验原理 一阶系统:在实验中取不同的时间常数T,由模拟运算电路,可得到不同时间常数下阶跃响应曲线及不同的过渡时间。一阶系统结果预期:时间常数T越小,调节时间t越小,响应曲线很快就接近稳态值,一阶系统无超调量。模拟运算电路原理图如下: 图片 1 一阶模拟运算电路 二阶系统:δ取不同的值,将会形成不同的阶跃响应曲线及不同的超调量δ%、过渡时间及其它参数指标。二阶系统结果预期:δ为阻尼比,当0<δ<1时,系统时间响应具有振荡特性,为欠阻尼状态;当δ=1时,为临界阻尼,无振荡;当δ>1时,为过阻尼状态,无振荡。模拟运算电路图如下: 图片 2 二阶模拟运算电路 (五)一阶系统实验结果

典型环节的单位阶跃响应

实验二 典型环节的单位阶跃响应 一、实验目的 1、根据对象的单位阶跃响应特性,掌握和深刻理解几种典型环节的特性以及它们特性参数的含义。 2、研究对象传递函数的零极点对系统动态特性的影响。 3、学习Matlab 的基本用法 ――求取阶跃响应、脉冲响应(step, impulse) ――基本做图方法(hold, plot) 二、实验内容 1、比例环节 求取K s G )(在不同比例系数K 下的单位阶跃响应,说明比例系数对系统动态过程的影响。 0.10.20.30.40.50.60.70.80.91 G(s)=K,在不同比例系数K 下的单位阶跃响应 Time (sec) A m p l i t u d e 由上图可以看出: 因为G (s )=K ,所以被控对象是一个单纯的比例系统。随着K 的增加,系统的终值是输入信号的K 倍。 2、一阶惯性环节

(1) 求取1 )(+= Ts K s G 的单位阶跃响应,其中放大倍数K =2,时间常数T =2。 1)(+= Ts K s G 的单位阶跃响应如下图: 0.20.40.60.811.2 1.41.61.82G(s)=2/(2s+1)的单位阶跃响应 Time (sec) A m p l i t u d e

(2) 求取1 22 )(+= s s G 的单位脉冲响应,可否用step 命令求取它的脉冲响应? 122 )(+= s s G 的单位脉冲响应如下图: 0.10.20.30.40.50.6 0.70.80.91G(s)=2/(2s+1)的单位m 脉冲响应 Time (sec) A m p l i t u d e 把传递函数乘以s 再求其单位阶跃响应,就可获得乘s 前的传递函数的脉冲响应。如下图: 0.10.20.30.40.50.6 0.70.80.91G(s)=2*s/(2s+1)的单位m 阶跃响应 Tim e (sec) A m p l i t u d e

相关文档
最新文档