研究性课题 多面体欧拉公式的发现

研究性课题 多面体欧拉公式的发现
研究性课题 多面体欧拉公式的发现

研究性课题 多面体欧拉公式的发现

【教材分析】

教材结合9.8节关于多面体的分类而编,目的在于以学生主动参与的发现式学习活动,培养他们通过观察发现规律并证明所得猜想的能力。 【学情分析】

该公式的证明较抽象,前后知识的联系较少,学生理解上有较大难度。但在前面立

几教学中学生已有将空间问题转化为平面问题来研究的降维思想和转化策略的基础,所以本节课采用多媒体辅助教学,降低空间想象的难度,突破降维过程中的变与不变的难点,从而达到降低教学难度的目的。 【教学目标】

1、知识目标:培养学生观察,归纳,大胆猜想的能力,了解欧拉公式的发现及其

法。

2、能力目标 掌握公式证明体现的思想方法。使学生领悟转化、化归思想,从空

间到平面的降维策略,学会从一般到特殊和特殊到一般的分析问题和解决问题的方法,增强学生应用数学知识解决实际问题的的意识和能力。

3、情意目标 通过教学使学生了解和感知欧拉公式发现的历程,激发学生热爱科学

勤奋学习热情,培养学生勇于探索的创新意识。

【教学重点】

欧拉公式和它的证明,证明的思想方法是重点。 【教学难点】

证明过程是难点。 【教学过程】

问题1:下面6个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表1。

(1) (2) (3)

(4) (5) (6) D 1

C 1

B 1A 1

A B

C

D B 1D 1

C 1E 1

A 1A

B

C

D

E

观察表1中各组数据,猜想V 、F 、E 之间的规律:___________。 是否任意一个多面体都有上述规律吗?

问题是数学的心脏。创设问题情境,让学生在解决问题的过程中去观察、猜想、探索;让学生以类似或模拟科学研究的方式进行学习,使学生形成探究性学习的习惯,培养和锻炼学生的探究能力。

问题2:下面3个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表2。

(7) (8) (9)

简单直观的问题情景能一下子激发学生探索的兴趣。学生进入问题情景,发现问题,在问题的驱动下,进入探究性活动。

问题3:比较前面问题1和问题2中的图形,如果这些多面体的表面都是用橡皮膜制成的,并且可以向它们的内部充气,那么其中哪些多面体能够连续(不破裂、不粘连)变形,最后其表面可变为一个球面?哪些能变为一个环面?哪些可变为两个对接球面?

教师向学生提供材料,学生收集证据。观察、实验、调查、分析处理,教师引导学生大胆质疑,提出问题,提出各种猜想和假设。

引入“简单多面体”的概念:

假设多面体的表面是橡皮膜制成的,可以向它们的内部充气,那么能够连续(不破裂、不粘连)变形,表面能变为一个球面的多面体,叫做简单多面体。

猜想:观察表中各组数据,对于简单多面体,V 、F 、E 之间的关系是______。

教师引导学生将具体现象定性抽象为一般的现象或结论。使学生在探究过程中提高质疑和批判能力,使学生的创新探究能力和良好的科学品质得到升华。

这个公式称为欧拉(L.Euler )公式

(多媒体演示欧拉生平,展示科学家的丰采)

欧拉(Léonard Euler ,1707~1783)著名数学家、物理学家和天文学家。生于瑞士巴塞尔,1720年进入巴塞尔大学学习神学和希伯来语,而以数学才能受到约翰·贝努利的赏识与特别指导。曾获得硕士学位。1727年应邀到俄国讲学。

1733年任彼得堡科学院数学教授。1741年移居柏林,任柏林科学院物理数学所所长。1766

1783

欧拉19岁开始发表论文,半个多世纪里始终以充沛的精力,不倦地工作。他28岁是右眼失明,59岁后左眼也视力减退,渐至失明。在失明的十多年里,欧拉以惊人的毅力,凭着记忆和心算,仍然坚持富有成果的研究,直到生命的最后一刻。欧拉的工作涉及数学的各个领域,他是历史上最多产的数学家之一,后人计划出版他的全集多达72卷。 欧拉是变分法的奠基人和研究复变函数的先驱者,对牛顿、莱布尼茨的微积分学和傅立叶级数的发展起了相当大的推动作用。

科学家研究自然并不是因为它有用,他研究它是因为他喜爱它,他喜爱它是因为它美。构建课堂文化氛围,让学生感受数学美。

问题4:上面图(6)表示任意一个简单多面体,假设它们的表面是橡皮膜制成的,将它们压缩到其底面所在的平面,如何画出压缩后的平面图形?

(多媒体演示压缩的动态过程,感知降维后的效果)

问题5:在压缩前后哪些量发生了变化,而哪些量没有发生变化?

采用CAI 教学方式,能强化学生多种感官对数学问题的感知,提高课堂效益。 问题6:怎样用棱数E 和面数F 表示多面体所有多边形的内角和?

①在图(6)中设多面体的F 个面分别是1n 2n 3n F n 边形,则各个面的内 角和是________________________________。

②其中1n +2n +3n +F n 和多面体的棱数E 的关系为_______________。

____________________________________。

问题7:怎样用顶点数V 表示平面图形中所有多边形的内角和? 在

10

_____________________________________。

(10)

00360)2(360)(?-=?-V F E 由此得到欧拉公式V+F-E=2。

学习者不应是信息的被动接受者,而应是适应知识获取的主动参与者。让学生在主动参与获取知识的过程中获得挫折和成功的体验,并且在这一过程中培养了耐挫力和探索的兴趣,积累成功的经验。教师的主导体现在适时地启发、引导、点拨,鼓励学生体验。

请大家回忆下证明过程,体会一下所用到的数学思想方法。

课堂小结:本节课采用降维思想和转化策略将空间问题转化为平面问题来研究,这种处理问题的方法是立几中的重要思想方法,在降维和升维(如翻折)过程中关健要弄清不变量与变量,而转化策略是解决数学问题的主要方法之一,如何转化是关健。

通过小结,让学生掌握 本课所学的知识结构,并使所学知识嵌入到已有的知识结构中去。教学中注重突出对数学思想方法和反思和概括,进而达到把这种的研究方式上升为学生的研究能力。

【教后反思】

1、如何使问题更有启发性、探索性、研究性?如何更多地让学生自己动手,有待进一步研究。

2、本节课可根据学生实际考虑集中讲解简单多面体,CAI 课件可考虑正方体模型,而将环体、对接球和图8安排到下一节上,这样更有利于学生的自主探究。

D 1

E 1A 1

B 1

C 1A

B

C

D E

B 1

D 1C 1

E 1

A 1

A

B

C

D E

多面体欧拉公式的发现(一)

●教学时间 第九课时 ●课题 §9.9.1 研究性课题:多面体欧拉公式的发现(一) ●教学目标 (一)教学知识点 1.简单多面体的V、E、F关系的发现. 2.欧拉公式的猜想. 3.欧拉公式的证明. (二)能力训练要求 1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律. 2.使学生能通过进一步观察验证所得的规律. 3.使学生能从拓扑的角度认识简单多面体的本质. 4.使学生能通过归纳得出关于欧拉公式的猜想. 5.使学生了解欧拉公式的一种证明思路. (三)德育渗透目标 1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求. 2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力. ●教学重点 欧拉公式的发现. ●教学难点 使学生从中体会和学习数学大师研究数学的方法. ●教学方法 指导学生自学法 首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识从中寻找规律,问题2让学生作进一步观察、验证得出规律,问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明. 以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法. ●教具准备 投影片三张 第一张:课本P56的问题1及表1(记作§9.9.1 A) 第二张:课本P57的问题2及表2(记作§9.9.1 B) 第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C) ●教学过程 Ⅰ.课题导入 瑞士著名的数学家,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方 程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别

欧拉函数公式及其证明

欧拉函数公式及其证明 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n)。 完全余数集合:定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然|Zn|=φ(n)。 有关性质:对于素数p,φ(p)=p-1。对于两个不同素数p,q,它们的乘积n=p*q满足φ(n)=(p-1)*(q-1)。 这是因为Zn={1,2,3,...,n-1}-{p,2p,...,(q-1)*p}-{q,2q,...,(p-1)*q},则φ(n)=(n-1)-(q-1)-(p-1)=(p-1)*(q-1)=φ(p)*φ(q)。 欧拉定理:对于互质的正整数a和n,有aφ(n)≡1m o d n。 证明:(1)令Zn={x1,x2,...,xφ(n)},S={a*x1mo d n,a*x2m o dn,...,a*xφ(n)m od n},则Z n=S。 ①因为a与n互质,x i(1≤i≤φ(n))与n互质,所以a*x i与n互质,所以a*x i modn∈Zn。 ②若i≠j,那么x i≠x j,且由a,n互质可得a*x i m o d n≠a*x j m o d n(消去律)。

(2)aφ(n)*x1*x2*...*xφ(n)m o d n ≡(a*x1)*(a*x2)*...*(a*xφ(n))m o d n ≡(a*x1m o d n)*(a*x2m o d n)*...*(a*xφ(n)m o d n)m o d n ≡x1*x2*...*xφ(n)m o d n 对比等式的左右两端,因为x i(1≤i≤φ(n))与n互质,所以aφ(n)≡1modn(消去律)。 注:消去律:如果g c d(c,p)=1,则a c≡b c m o d p?a≡b m o d p。 费马定理:若正整数a与素数p互质,则有a p-1≡1m o d p。证明这个定理非常简单,由于φ(p)=p-1,代入欧拉定理即可证明。 ******************************************************************** ********* 补充:欧拉函数公式 (1)p k的欧拉函数 对于给定的一个素数p,φ(p)=p-1。则对于正整数n=p k, φ(n)=p k-p k-1 证明: 小于p k的正整数个数为p k-1个,其中 和p k不互质的正整数有{p*1,p*2,...,p*(p k-1-1)}共计p k-1-1个

高二数学欧拉公式-word文档

高二数学欧拉公式 教学目标: 1、了解简单多面体的概念,掌握多面体的欧拉公式。 2、会用欧拉公式解题,了解欧拉公式的证明方法。 3、通过学生的主动参与,培养他们观察发现规律并证明所得猜想的能力 教学重点:简单多面体的欧拉公式 教学难点:简单多面体概念,欧拉公式的应用 教学过程 复习引入 ⑴什么是多面体?多面体的面?多面体的棱?多面体的顶点? 问题1:课本P52有5个多面体,试分别写出它们的顶点数V,面数F和棱数E ⑶观察上述数据,写出你发现的规律 二.新课讲解 欧拉公式 问题2:从上看出有V+E-F=2,再看课本P57表格上方的几个多面体,分别写出它们的顶点数V,面数F和棱数E,并回答它们是否满足上面的规律。 问题3:若上面的多面体的表面都是用橡皮簿膜制作的,并且可以向它们的内部充气那么那些多面体能够连续变形,最后其表面可变为一个球面?那些变为环面?那些变为对接的

球面? 简单多面体:在连续的变形中,表面可变为一个球面的多面体,叫做简单多面体 思考:前面的多面体中那些是简单多面体?棱锥,棱柱,正多面体,凸多面体是不是简单多面体? 将问题1、2、3联系起来,能得出什么猜想?用式子表示你的猜想? V+F﹣E=2此公式叫做欧拉公式 二、欧拉公式的证明 ⑴将多面体转化为由多边形组成的平面图形 ⑵变形中的不变量 ⑶计算多边形的内角和 ①设多面体的F个面分别是n1,n2,nF边形,各个面的内角总和是多少? ②n1+n2++nF和多面体的棱数E有什么关系? ③设图中的最大的多边形为m边形,则它的内角和是多少?它的内部包含的其他多边形的顶点数是多少?所有其他多边形内角总和是多少? ④图中所有多边形的内角总和是多少?它是否等于 (V-2)360? 从上有(E-F)360=(V-2)360 所以V+F-E=2

研究性多面体欧拉定理的发现(一)

9.10研究性多面体欧拉定理的发现(一) 教学目的: 1.了解多面体与简单多面体的概念、发现欧拉公式. 2.培养学生发现问题、探究问题、归纳总结能力. 教学重点:欧拉公式的发现过程. 教学难点:欧拉定义及其证明. 授课类型:新授课. 课时安排:3课时. 教具:多媒体、实物投影仪. 内容分析: 本节为研究性课题.通过研究欧拉定理的发现过程,让学生了解欧拉公式及其简单应用,扩大学生的知识面,培养学生学习数学的兴趣. 教学过程: 一、复习引入: 1.欧拉生平事迹简说:欧拉(Euler),瑞士数学家及自然科学家.1707年4月15日出生于瑞士巴塞尔的一个牧师家庭,自幼受父亲的教育,13岁入读巴塞尔大学15岁大学毕业,16岁获硕士学位,1783年9月18日于俄国彼得堡去逝.(详细资料附后) 2.多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线.3.凸多面体:把多面体的任一个面展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫凸多面体.如图的多面体则不是凸多面体. 4.凸多面体的分类:多面体至少有四个面,按照它的面数分别叫四面体、五面体、六面体等. 二、讲解新课: 1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它就会连续(不破裂)变形,最后可变为一个球面.如图:象这样,表面经过连续变形可变为球面的多面体,叫做简单多面体. 说明:棱柱、棱锥、正多面体等一切凸多面体都是简单多面体.

⑹ 发现:它们的顶点数V 、面数F 及棱数E 有共同的关 系式:2V F E +-=. 上述关系式对简单多面体都成立. 3.欧拉公式的探究 1.请查出图⑹的顶点数V 、面数F 、和棱数E ,并计算V +F -E =6+6-10=2 2.查出图⑺中的顶点数V 、面数F 、和棱数E ,并验证上面公式是否还成立? 3.假如图⑸→图⑻的多面体表面是像皮膜,向内充气则⑸⑹将变成一个球面,图⑺将变成两个紧贴的球面,图⑻将变成一个环面. 可以验证:只有像⑸⑹这样,经过连续变形,表面能变为一个球面的多面体才满足公式V +F -E =2.这个公式称为欧拉公式,这样的多面体称为简单多面体. 4.欧拉定理(欧拉公式):简单多面体的顶点数V 、面数F 及棱数E 有关系式: 2V F E +-=. 证明:(方法一 ) (10) D D ⑴如图⑽:将多面体的底面ABC DE 剪掉,抻成平面图形,其顶点、棱数,面数(剪掉面用右图中ABC DE 表示)均没有变,故所有面的内角总和不变. ⑵设左图中共有F 个面,分别是12,,,F n n n 边形,顶点数为V ,棱数为E,则122F n n n E +++=. 左图中,所有面的内角总和为 ?-++?-+?-180)2(180)2(180)2(21F n n n =?-+++180)2(21F n n n F =?-180)22(F E ()360E F =-? ⑶右图中,所有面的内角总和为 V 360V 2180V 2180()????下下上+(-)+(-)剪掉的底面内角和 =0V V 2360(2)360V ?=-上上(+-)

欧拉公式

欧拉公式 欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式,即将复数、指数函数与三角函数联系起来。拓扑学中的欧拉多面体公式。初等数论中的欧拉函数公式。欧拉公式描述了简单多面体顶点数、面数、棱数特有的规律,它只适用于简单多面体。常用的欧拉公式有复数函数e^ix=cosx+isinx,三角公式d^2=R^2-2Rr ,物理学公式F=fe^ka 等。 复变函数 e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。 欧拉公式 e^ix=cosx+isinx的证明: 因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…… cos x=1-x^2/2!+x^4/4!-x^6/6!…… sin x=x-x^3/3!+x^5/5!-x^7/7!…… 在e^x的展开式中把x换成±ix. (±i)^2=-1, (±i)^3=?i, (±i)^4=1 …… e^±ix=1±ix/1!-x^2/2!?ix^3/3!+x^4/4!…… =(1-x^2/2!+……)±i(x-x^3/3!……) 所以e^±ix=cosx±isinx 将公式里的x换成-x,得到: e^-ix=cosx-isinx,然后采用两式相加减的方法得到: sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x 取作π就得到: 恒等式 e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式” 那么这个公式的证明就很简单了,利用上面的e^±ix=cosx±isinx。那么这里的π就是x,那么e^iπ=cosπ+isinπ =-1 那么e^iπ+1=0 这个公式实际上是前面公式的一个应用。 分式 分式里的欧拉公式:

多面体欧拉公式的发现(二)共9页

●教学时间 第十课时 ●课题 §9.9.2 研究性课题:多面体欧拉公式的发现(二) ●教学目标 (一)教学知识点 1.欧拉公式的证明. 2.欧拉公式的应用. (二)能力训练要求 1.使学生能理解多面体欧拉公式的证明过程并能叙述其证明思路. 2.使学生掌握多面体欧拉公式并灵活地将其应用于解题中. (三)德育渗透目标 继续培养学生寻求规律、发现规律、认识规律、并利用规律解决问题的能力. ●教学重点 欧拉公式的应用. ●教学难点 欧拉公式的证明思路. ●教学方法 学导式 本节课继续上节课对欧拉公式的研究活动,遵循寻求规律——发现规律——认识规律——应用规律的学习过程,对上节课已猜想出的欧拉公式

进一步深入研究,探索它的证明思路,让学生了解这种证明思想,进而达到熟练掌握欧拉公式的目标,以便于学生得心应手地将欧拉公式应用到各种问题的解决中. ●教具准备 投影片三张 问题5(1)(2)(记作§9.9.2 A) 第一张:课本P 59 第二张:本课时教案例1(记作§9.9.2 B) 第三张:本课时教案例2(记作§9.9.2 C) ●教学过程 Ⅰ.课题导入 [师]上节课我们已经猜想出了欧拉公式并且同学们也已自学了它的证明过程,这节课我们继续对它的证明方法及其重要应用进行学习和探讨. Ⅱ.讲授新课 的欧拉公式的证明进行了自学,那么,[师]上节课我们已对课本P 58 谁能说一下课本中的证明思路和关键是什么? [生]将立体图形转化为平面图形. [师]好,前面,我们经常使用把不在同一平面中的几何图形的问题转化为同一平面中图形的问题,所以此处如果能把求一个简单多面体的V、F、E三者之间的关系问题,转化为平面中的问题就会前进一大步了. 那么课本中是怎样实现转化的呢? [生]把多面体想成是用橡皮膜做成的,即课本P 图9—85的多面体, 58

欧拉函数公式及其证明

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n)。 完全余数集合: 定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然|Zn|=φ(n)。 有关性质: 对于素数p,φ(p)=p-1。 对于两个不同素数p,q,它们的乘积n=p*q满足φ(n)=(p-1)*(q-1)。 这是因为Zn={1,2,3,...,n-1}-{p,2p,...,(q-1)*p}-{q,2q,...,(p-1)*q},则φ(n)=(n-1)-(q-1)-(p-1)=(p-1)*(q-1)=φ(p)*φ(q)。 欧拉定理: 对于互质的正整数a和n,有aφ(n)≡1modn。 证明: (1)令Zn={x1,x2,...,xφ(n)},S={a*x1modn,a*x2modn,...,a*xφ(n)modn}, 则Zn=S。 ①因为a与n互质,x i(1≤i≤φ(n))与n互质,所以a*x i与n互质,所以a*x i modn∈Zn。 ②若i≠j,那么x i≠x j,且由a,n互质可得a*x i modn≠a*x j modn(消去律)。 (2)aφ(n)*x1*x2*...*xφ(n)modn

≡(a*x1)*(a*x2)*...*(a*xφ(n))modn ≡(a*x1modn)*(a*x2modn)*...*(a*xφ(n)modn)modn ≡x1*x2*...*xφ(n)modn 对比等式的左右两端,因为x i(1≤i≤φ(n))与n互质,所以aφ(n)≡1modn(消去律)。 注: 消去律:如果gcd(c,p)=1,则ac≡bcmodp?a≡bmodp。 费马定理: 若正整数a与素数p互质,则有a p-1≡1modp。 证明这个定理非常简单,由于φ(p)=p-1,代入欧拉定理即可证明。 ****************************************************** *********************** 补充:欧拉函数公式 (1)p k的欧拉函数 对于给定的一个素数p,φ(p)=p-1。则对于正整数n=p k, φ(n)=p k-p k-1 证明: 小于p k的正整数个数为p k-1个,其中 和p k不互质的正整数有{p*1,p*2,...,p*(p k-1-1)}共计p k-1-1个 所以φ(n)=p k-1-(p k-1-1)=p k-p k-1。 (2)p*q的欧拉函数 假设p,q是两个互质的正整数,则p*q的欧拉函数为 φ(p*q)=φ(p)*φ(q),gcd(p,q)=1。 证明: 令n=p*q,gcd(p,q)=1

多面体欧拉公式的发现1

【课题】研究性课题:多面体欧拉公式的发现(1)【教学目标】 1、能通过观察具体简单多面体的V、E、F从中寻找规律. 2、能通过进一步观察验证所得的规律. 3、能从拓扑的角度认识简单多面体的本质. 4、能通过归纳得出关于欧拉公式的猜想. 【教学重点】欧拉公式的发现. 【教学难点】从中体会和学习数学大师研究数学的方法. 【教学过程】 一、复习引入 欧拉是瑞士著名的数学家,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支。比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方程、欧拉常数、欧拉方法、欧拉猜想等。其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别代表一简单多面体的顶点、棱和面的数目,这就是我们今天要学习的欧拉定理。 二、讲解新课 (一)简单多面体 1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它就会连续(不破裂)变形,最后可变为一个球面如图:象这样,表面经过连续变形可变为球面的多面体,叫做简单多面体 说明:棱柱、棱锥、正多面体等一切凸多面体都是简单多面体。

(二)五种正多面体的顶点数、面数及棱数: 发现:它们的顶点数V 、面数F 及棱数E 有共同的关系式:2V F E +-=. 上述关系式对简单多面体都成立 欧拉定理:简单多面体的顶点数V 、面数F 及棱数E 有关系式: 2V F E +-= 证明1:以四面体ABCD 为例来说明: 将它的一个面BCD 去掉,并使其变为平面图形,四面体的顶点数V 、棱数E 与剩下的面数()111F F F =-变形后都没有变。因此,要研究V 、E 和F 的关系,只要去掉一个面,将它变形为平面图形即可。 对平面图形,我们来研究: (1)去掉一条棱,就减少一个面。例如去掉BC ,就减少一个面ABC 。同理,去掉棱CD 、 BD ,也就各减少一个面ACD 、ABD 。 所以1F E -、V 的值都不变,因此1V F E +-的值也不变 (2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点。例如去掉CA ,就减少一个顶点C .同理,去掉DA 就减少一个顶点D ,最后剩下AB (如图)。

欧拉函数公式及其证明

欧拉函数公式及其证明 Prepared on 22 November 2020

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n)。 完全余数集合: 定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然|Zn|=φ(n)。 有关性质: 对于素数p,φ(p)=p-1。 对于两个不同素数p,q,它们的乘积n=p*q满足φ(n)=(p-1)*(q-1)。 这是因为Zn={1,2,3,...,n-1}-{p,2p,...,(q-1)*p}-{q,2q,...,(p-1)*q},则φ(n)=(n-1)-(q-1)-(p-1)=(p-1)*(q-1)=φ(p)*φ(q)。 欧拉定理: 对于互质的正整数a和n,有aφ(n)≡1modn。 证明: (1)令Zn={x1,x2,...,xφ(n)},S={a*x1modn,a*x2modn,...,a*xφ(n)modn}, 则Zn=S。 ①因为a与n互质,x i(1≤i≤φ(n))与n互质,所以a*x i与n互质,所以a*x i modn∈Zn。 ②若i≠j,那么x i≠x j,且由a,n互质可得a*x i modn≠a*x j modn(消去律)。 (2)aφ(n)*x1*x2*...*xφ(n)modn

≡(a*x1)*(a*x2)*...*(a*xφ(n))modn ≡(a*x1modn)*(a*x2modn)*...*(a*xφ(n)modn)modn ≡x1*x2*...*xφ(n)modn 对比等式的左右两端,因为x i(1≤i≤φ(n))与n互质,所以aφ(n)≡1modn(消去律)。 注: 消去律:如果gcd(c,p)=1,则ac≡bcmodpa≡bmodp。 费马定理: 若正整数a与素数p互质,则有a p-1≡1modp。 证明这个定理非常简单,由于φ(p)=p-1,代入欧拉定理即可证明。 ****************************************************** *********************** 补充:欧拉函数公式 (1)p k的欧拉函数 对于给定的一个素数p,φ(p)=p-1。则对于正整数n=p k, φ(n)=p k-p k-1 证明: 小于p k的正整数个数为p k-1个,其中 和p k不互质的正整数有{p*1,p*2,...,p*(p k-1-1)}共计p k-1-1个

多面体欧拉定理的发现共21页

研究性课题:多面体欧拉定理的发现 第一课时欧拉定理(一) 教学目标: (一)教学知识点 1.简单多面体的V、E、F关系的发现. 2.欧拉公式的猜想. 3.欧拉公式的证明. (二)能力训练要求 1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律. 2.使学生能通过进一步观察验证所得的规律. 3.使学生能从拓扑的角度认识简单多面体的本质. 4.使学生能通过归纳得出关于欧拉公式的猜想. 5.使学生了解欧拉公式的一种证明思路. (三)德育渗透目标 1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求. 2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力. 教学重点欧拉公式的发现.

教学难点使学生从中体会和学习数学大师研究数学的方法. 教学方法指导学生自学法 首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识从中寻找规律,问题2让学生作进一步观察、验证得出规律,问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明. 以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法. 教学过程 情境设置 欧拉瑞士著名的数学家,科学巨人,师从数学家约翰·伯努利,有惊人的记忆力,是数学史上的最多产的数学家,他所写的著作达865部(篇),28岁右眼失明,1766年,左眼又失明了,1771年,圣彼得堡一场大火,秧及欧拉的住宅,欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬。种种磨难,并没有把欧拉搞垮。大火以后他立即投入到新的创作之中。资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究。他总是把推理过程想得很细,然后口授,由他的长子记录。他用这种方法又发表了论文4

多面体的欧拉公式

多面体的欧拉公式 在数学历史上有很多公式都是欧拉(Leonhard Euler)发现的,它们都叫做欧拉公式,分散在各个数学分支之中。 欧拉13岁进入瑞士巴塞尔大学读书,15岁获得学士学位,16岁又获得巴塞尔大学哲学硕士学位,轰动了当时的科学界。但是,他的父亲却希望他去学神学。直到小欧拉19岁时获得了巴黎科学院的奖学金之后,父亲才不再反对他读数学。欧拉是一位创作性超群的数学家,后来从瑞士转赴俄国和德国工作,因此三个国家都声称他是本国的科学家。 有许多关于欧拉的传说。比如,欧拉心算微积分就像呼吸一样简单。有一次他的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉创作文章的速度极快,通常上一本书还没有印刷完,新的手稿就写好了,导致他的写作顺序与出版顺序常常相反,让读者们很郁闷。而且,收集这些数量庞大的手稿也是一件困难的事情。瑞士自然科学会计划出一部欧拉全集,这本全集编了将近100年,终于在上个世纪90年代基本完成,没想到圣彼得堡突然又发掘出一批他的手稿,使得这本全集至今仍未完成。欧拉28岁时一只眼睛失明了,后来另一只眼睛也看不见了,据说是因为操劳过度,也有一说是因为观察太阳所致。尽管如此,他仍然靠心算完成了大量论文。 下面来看看欧拉公式中最著名和优美的一个。 拓扑学的欧拉公式描述了多面体顶点(Vertex),边(Edge)和面(Face)之间的关系: V - E + F = X 其中,V是多面体的顶点个数,E是多面体的棱的条数,F是多面体的面数, X是多面体的欧拉示性数(Euler characteristic)。 X是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。X 的值依赖于几何物体的形态和曲面的取向。 可定向性——大部分我们在物理世界中遇到的曲面是可定向的。例如平面,球面与环面是可定向的。但是莫比乌斯带(M?bius strip)不可定向,它在三维空间中看起来都只有一“侧”。假设一只蚂蚁在莫比乌斯带上爬行,它可以在不穿过边界的情况下爬到曲面的另一侧。 亏格(Genus)——可定向曲面的亏格是一个整数。如果沿一个几何曲面的任意一条简单闭合曲线切开,都能把曲面切断,那么这个曲线的亏格就是0。如果存在一条简单闭合曲线在切开后,曲面没有分成两个部分,那么亏格就是1。进一步的在亏格为1的曲面上切开一条曲线后,还能再找到一条这样的曲线,那么亏格为2。依次类推。

数论中的一些公式【整理】

数论中的一些公式【整理】 以下等式或者不等式均可以用数学归纳法予以证明! 1 + 3 + 5 + ... + (2n - 1) = n^2 1*2 + 2*3 + 3*4 + ... + n*(n + 1) = n*(n + 1)*(n + 2) / 3 1*1! + 2*2! + 3*3! + ... + n*n! = (n + 1)! - 1 1^2 + 2^2 + 3^2 + ... + n^2 = n*(n + 1)*(2n + 1) / 6 1^2 - 2^2 + 3^2 -... + (-1)^n * n^2 = (-1)^(n + 1) * n * (n + 1) / 2 2^2 + 4^2 + ... + (2n)^2 = 2n*(n+1)*(2n+1) / 3 1/2! + 2/3! + ... + n/(n+1)! = 1 - 1/(n+1)! 2^(n + 1) < 1 + (n + 1)2^n 1^3 + 2^3 + 3^3 + ... + n^3 = (n*(n + 1) / 2)^2 1/(2*4)+1*3/(2*4*6)+1*3*5/(2*4*6*8)+...+(1*3*5*...*(2n-1))/(2*4*6*... *(2n+2)) = 1/2 - (1*3*5*...*(2n+1))/ (2*4*6*...*(2n+2)) 1/(2^2-1) + 1/(3^2-1) + .. + 1 / ((n+1)^2 - 1) = 3/4 - 1/(2*(n+1)) - 1/(2*(n+2)) 1/2n <= 1*3*5*...*(2n-1) / (2*4*6*...*2n) <= 1 / sqrt(n+1) n=1,2... 2^n >= n^2 , n=4, 5,... 2^n >= 2n + 1, n=3,4,... r^0 + r^1 + ... + r^n < 1 / (1 - r), n>=0, 0=1, 0=1 (a(1)*a(2)*...*a(2^n))^(1/2^n) <= (a(1) + a(2) + ... + a(2^n)) / 2^n, n = 1, 2, ... a(i)是正数注:()用来标记下标

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

多面体欧拉公式的发现

研究性课题:多面体欧拉公式的发现 一、教学目标 1、认知目标:了解简单多面体有关概念,探索多面体的欧拉公式。 2、能力目标:培养学生观察、归纳的能力 3、情感目标:让学生学会合作、交流,体会学习和研究数学的方法。 4、创新素质:激发学生对体验式学习的兴趣,增强创新意识。 二、教材分析与处理 1、重点: 探索公式,体验数学公式的发现过程。 2、难点: 欧拉公式的发现过程。 3、德育点: 实践出真知,激发学生对数学、对科学的热爱。 4、空白点: 课前让学生做模型,寻找有关欧拉事迹资料,课后反思小结,让学生回忆公式的探索过程。 5、创新点: 课前让学生做模型,课堂上让学生体验公式的发现过程。 三、教学内容 9.9 多面体欧拉公式的发现 简单多面体欧拉公式 教学具选择:多媒体课件、自制多面体实物模型 四、教学过程 学生课前做多面体模型,寻找资料。三人一组(创新点,合作学习)。 1、创设情境,提出目标,提供信息和条件 (1)多媒体演示多面体实物,如金字塔、三棱镜,最后定格在图形C60上。(创新点,学习背景化)

(2)提供信息条件。 师:每个多面体由若干个顶点、棱和面构成,它们之间有没有关系?是什么样的规律?板书课题(创新点,利用设疑导课技术切入课题) (3)一名同学介绍欧拉的有关资料,其它同学进行补充(实施德育点,略停几秒钟,让学生回味,采用留白技术,以增加学生对数学史的了解)。 以下环节通过教师引导—提示—设疑;学生观察—归纳—猜想—再观察,借以突破难点,掌握重点。 2、学生研究探索 师:数学家的探索过程是什么样的? (1)各组展示模型,初步观察、研究,填表见板书(一人记录、一人观察、一人检查)。教师巡视,提示把结果记准确。 (2)用表格的形式展示实验结果。 (3)小组分析讨论,写出发现的规律。 (4)引导学生发表不同意见:有的图形不符合规律。 (5)把不符合规律的图形集中展示,观察讨论它们的共同点,捕捉学生思维的闪光点,并渗透拓扑变换思想。 师:大家想知道欧拉是怎样研究多面体的吗? 观念上创新,把多面体的表面看成用橡皮薄膜制的,方法上创新,向它的内部充气,那么它就会连续(不破裂)变形,把平面变成曲面。 (6)想象或讨论:不符合规律的图形和符合规律的图形内部充气后各有什么不同,(7)多媒体分别演示图9-83内部充气的图形(加深体验技术)。 问题:上述多面体表面经过连续变形能变为一个球面的是哪些?哪些变为环面?哪些变为两个对接球面? (8)符合规律的图形有什么共同特点?(变成球)得出简单多面体的概念。 (9)每组再观察多面体模型,哪些是简单多面体?哪些不是?哪些符合规律?哪些不符合? 3、交流信息,合作成功 问题:根据我们对多面体的分类,结合上面的研究你能得出什么猜想?(创新点,如果学生的猜想与答案不完全一致,引导学生回忆实验过程,不要急于给出结论)(1)用式子表示: (2)用语言叙述:

欧拉函数积性公式证明

欧拉函数积性公式证明 定义:两个整数相除N/m一定可以表示为N=m·u+r,在初等数论中称m为模,r为剩余,如果r为非负整数那么r∈ {0,1,2,...,m-1}中一个。表示式可简化为N≡r modm;模m 对应的剩余集记rmodm。 欧拉发现剩余集中的元素其中与模m互质的个数非常有意义,并从“若m与N互质,则r与m也互质”启发,找到了计算方法。为了纪念他以他的名字称谓欧拉函数φ(m)。如8的剩余集为{0,1,2,...,7}八个元素,但与8互质的为{1,3,5,7}只有4个,即φ(8)=4。 定理1:若q与p互质,则φ(q·p)= φ(q)·φ(p)。 证明:设a,b分别是模q和p互质的剩余集(记Z q和Z p)的元素,根据中国剩余定理,即联立不定方程N≡a modq,N≡b modp 的解→N≡r modq·p,r是唯一的,r≡(ap·p-1+bq·q-1) modq·p,p-1是p的逆,p·p-1≡1modq。且对于不同的a或b,集合{(ap·p-1+bq·q-1) modq·p}的元素两两不相交,否则△a·p p-1≡△b·qq-1 modq·p,由于△a<q、△b<p,故等式不成立。于是根据乘法原理对于不同的a或b 集合Z q×Z p与Z qp一一对应,故φ(q·p)=φ(q)·φ(p)。 定理2:p j(j=1,2,...)均为不同的素数,欧拉函数可以表示为

φ(m)=m·∏(1-1/p j) (j 为 m 的素因子的个数)。 证:根据算数基本定理任何整数可以表示为m= ∏p j k j ,以及φ(p k)=p k- p k-1(与p k有公约数的剩余个数)=(p-1)p k-1,两式结合就得到上述著名的欧拉函数公式。

研究性课题 多面体欧拉公式的发现

研究性课题 多面体欧拉公式的发现 【教材分析】 教材结合9.8节关于多面体的分类而编,目的在于以学生主动参与的发现式学习活动,培养他们通过观察发现规律并证明所得猜想的能力。 【学情分析】 该公式的证明较抽象,前后知识的联系较少,学生理解上有较大难度。但在前面立 几教学中学生已有将空间问题转化为平面问题来研究的降维思想和转化策略的基础,所以本节课采用多媒体辅助教学,降低空间想象的难度,突破降维过程中的变与不变的难点,从而达到降低教学难度的目的。 【教学目标】 1、知识目标:培养学生观察,归纳,大胆猜想的能力,了解欧拉公式的发现及其 法。 2、能力目标 掌握公式证明体现的思想方法。使学生领悟转化、化归思想,从空 间到平面的降维策略,学会从一般到特殊和特殊到一般的分析问题和解决问题的方法,增强学生应用数学知识解决实际问题的的意识和能力。 3、情意目标 通过教学使学生了解和感知欧拉公式发现的历程,激发学生热爱科学 勤奋学习热情,培养学生勇于探索的创新意识。 【教学重点】 欧拉公式和它的证明,证明的思想方法是重点。 【教学难点】 证明过程是难点。 【教学过程】 问题1:下面6个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表1。 (1) (2) (3) (4) (5) (6) D 1 C 1 B 1A 1 A B C D B 1D 1 C 1E 1 A 1A B C D E

观察表1中各组数据,猜想V 、F 、E 之间的规律:___________。 是否任意一个多面体都有上述规律吗? 问题是数学的心脏。创设问题情境,让学生在解决问题的过程中去观察、猜想、探索;让学生以类似或模拟科学研究的方式进行学习,使学生形成探究性学习的习惯,培养和锻炼学生的探究能力。 问题2:下面3个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表2。 (7) (8) (9) 简单直观的问题情景能一下子激发学生探索的兴趣。学生进入问题情景,发现问题,在问题的驱动下,进入探究性活动。 问题3:比较前面问题1和问题2中的图形,如果这些多面体的表面都是用橡皮膜制成的,并且可以向它们的内部充气,那么其中哪些多面体能够连续(不破裂、不粘连)变形,最后其表面可变为一个球面?哪些能变为一个环面?哪些可变为两个对接球面? 教师向学生提供材料,学生收集证据。观察、实验、调查、分析处理,教师引导学生大胆质疑,提出问题,提出各种猜想和假设。 引入“简单多面体”的概念: 假设多面体的表面是橡皮膜制成的,可以向它们的内部充气,那么能够连续(不破裂、不粘连)变形,表面能变为一个球面的多面体,叫做简单多面体。

多面体欧拉公式与球

第 48 讲 多面体、欧拉公式与球 (第课时) 多面体、欧拉公式与球 ????? ????? ? ? ?? ? ? ????? ????? ???????多面体的内切球 体积面积计算球面距离截面球的性质球的概念球正多面体的概念欧拉公式多面体的概念 多面体 2.欧拉公式;3.球的概念和性质。 2.了解多面体的欧拉公式;3.了解球的概念,掌握球 2.有关球的考查一般以小题出现。 围成多面体的各个多边形叫做面,两个面的公共边叫棱,棱的端点叫顶点,不在同一个面内的两个顶点间的线段叫对角线。有n 个面的多面体叫n 面体(4≥n )。 凸多面体:若把一个多面体的任意一个面沿展成平面,其余各面都在这个平面的同侧时,则称这个多面体为凸多面体。 简单多面体:表面能通过连续变形变为球面的多面体,叫做简单多面体。 2.欧拉公式 对于简单多面体,有: 顶点数(V )+面数(F)-棱数(E )= 2 。 例.一个正n 面体共有8个顶点,每个顶点处共有3条棱,则n 等于 ( ) A . 4 ; B . 5 ; C . 6 ; D . 7 。 分析: 先计算正n 面体的棱数,然后应用欧拉公式来解。

解:由题意有 8=V ,122 8 3=?= E ,则 682122=-+=-+=V E F ,故选C 。 例.已知铜的单晶的外形是简单几何体,单晶铜有三角形和八边形两种晶面,如果铜的单晶有24个顶点,每个顶点处都有3条棱,计算单晶铜的两种晶面的数目。 解 设:三角形晶面有x 个,八边形晶面有y 个。 3.正多面体 ⑴ 定义:每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体,叫做正多面体。 ⑵ 名称 面的形状 每个顶点的棱 顶点数(V ) 面数(F) 棱数(E) 正四面体 正三角形 3 4 4 6 正六面体 正方形 3 8 6 12 正八面体 正三角形 4 6 8 12 正十二面体 正五边形 3 20 12 30 正二十面体 正三角形 5 12 20 30 4.球 ⑴ 定义 ① 球面: 半圆绕它的直径旋转一周所生成的曲面叫做球面。 ② 球: 球面围成的几何体叫球。 ③球面距离:经过球面两点的大圆在这两点间的劣弧的长叫做这两点的球面距离。 ⑵ 性质 ① 球的任意截面都是圆。其中过球心的截面叫大圆,不过球心的截面叫小圆。 ② 球心和截面圆心的连线垂直于截面,并且球心到截面的距离 2 2 r R d -= ,其中R 是球半径,r 是截面半径。 ⑶ 面积公式 球面的面积:等于球的大圆面积的4倍,即 24R S π=球面 ,其中R 是球半径。 ⑷ 体积公式 球的体积:等于三分之四乘以3R π,即 33 4 R V π=球 ,其中R 是球半径。 ⑸ 球的直观图的画法 ① 如图,画三条坐标轴x 、y 、z ;

多面体欧拉定理发现教案

多面体欧拉定理的发现(1) 齐鲁石化五中翟慎佳 2003.3 【目的与要求】 1.理解简单多面体的定义 2.理解并熟记欧拉公式 3.会运用欧拉公式及相关知识进行计算及推理 【教学思路】 正多面体5种→认识欧拉 →拓扑变形→简单多面体概念 →研究正多面体V、F、E的关系 →欧拉定理→证明 →欧拉定理的意义 【教学过程】

1.(1) 什么叫正多面体?特征? 正多面体是一种特殊的凸多面体,它包括两个特征: ①每个面都是有相同边数的正多边形;②每个顶点都有相同数目的棱数。 (2) 正多面体有哪几种?展示5种正多面体的模型。为什么只有5种正多面体? 着名数学家欧拉进行了研究,发现了多面体的顶点数、面数、棱数间的关系。 2. 介绍数学家欧拉 欧拉(1707~1783)瑞士数学家,大部分时间在俄国和法国度过。他16岁获硕士学位,早年在数学天才贝努里赏识下开始学习数学,并毕生研究数学,是数学史上最“高产”的数学家,在世发表700多篇论文。 他的研究论着几涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉还是数学符号发明者,如用f (x)表示函数、∑表示连加、i表示虚数单位、π、e等。在多面体研究中首先发现并证明了欧拉公式,今天我们沿着他的足迹探索这个公式。

3.通过模型研究正多面体V、F、E的关系 发现关系:V+F-E=2。是不是所有多面体都有这样的关系呢?如何去研究呢?需要观念和方法上的创新。 4.多面体拓扑变形与简单多面体的概念 考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如

果充以气体,那么它会连续(不破裂)变形,最后可变成一个球面。 像这样,表面经过连续变形可变为球面的多面体,叫做简单多面体。 5.欧拉定理 定理简单多面体的顶点数V、棱数E及面数F间有关系 V+F-E=2 公式描述了简单多面体中顶点数、面数、棱数之间特有的规律

相关文档
最新文档