湖北襄阳市第五中学高考数学数列的概念专题复习(专题训练)百度文库

湖北襄阳市第五中学高考数学数列的概念专题复习(专题训练)百度文库
湖北襄阳市第五中学高考数学数列的概念专题复习(专题训练)百度文库

一、数列的概念选择题

1.已知数列{}n a 的前n 项和为n S ,若*1

n S n N n

=∈,,则2a =( ) A .12

-

B .16-

C .

16

D .

12

2.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1

B .3

C .2

D .3-

3.设数列{}n a 的前n 项和为n S 已知(

)*

123n n a a n n N

++=+∈且1300n

S

=,若

23a <,则n 的最大值为( )

A .49

B .50

C .51

D .52

4.已知数列{}n a 的前n 项和为n S ,且2

1n S n n =++,则{}n a 的通项公式是( )

A .2n a n =

B .3,1

2,2n n a n n =?=?≥?

C .21n a n =+

D .3n a n =

5.已知数列{}n a 的前n 项和为(

)*

22n

n S n =+∈N ,则3

a

=( )

A .10

B .8

C .6

D .4

6.数列{}n a 满足 112

a =,11

1n n a a +=-,则2018a 等于( )

A .

1

2

B .-1

C .2

D .3

7.在数列{}n a 中,()11

11,1(2)n

n n a a n a --==+

≥,则5a 等于

A .

3

2

B .

53 C .85

D .

23

8.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072

B .2073

C .2074

D .2075

9.

3

,则 ) A .第8项

B .第9项

C .第10项

D .第11项

10.设数列{},{}n n a b 满足*172

700,,105

n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >

B .43

C .33>a b

D .44

11.已知数列{}n a 满足12n n a a n +=+,且133a =,则

n

a n

的最小值为( )

A .21

B .10

C .

212

D .

172

12.定义:在数列{}n a 中,若满足

21

1n n n n

a a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则2020

2018

a a 等于( )

A .4×20162-1

B .4×20172-1

C .4×20182-1

D .4×20182

13.数列{}n a 满足1

111,(2)2

n n n a a a n a --==≥+,则5a 的值为( )

A .

18

B .

17 C .

131

D .

16

14.数列1111

,,,

57911

--,…的通项公式可能是n a =( ) A .1(1)32

n n --+

B .(1)32

n n -+

C .1(1)23

n n --+

D .(1)23

n

n -+

15.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648

B .722

C .800

D .882

16.已知数列{}n a 满足2122

11

1,16,2

n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92

B .102

C .

81

82

D .112

17.设数列{}n a 的通项公式为2

n n a n

+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6

B .7

C .8

D .9

18.已知数列{}n a 满足1N a *

∈,1,2+3,n

n n n n a a a a a +??=???为偶数为奇数

,若{}n a 为周期数列,则1a 的

可能取到的数值有( ) A .4个

B .5个

C .6个

D .无数个

19.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则20

1

k

k a

=∑的值不可能是( ) A .2

B .4

C .10

D .14

20.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数

之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174

B .184

C .188

D .160

二、多选题

21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:

1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列

数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数

C .202020182022

3a a a =+

D .123a a a +++…20202022a a +=

22.已知数列{}n a 满足0n a >,121

n n n a n

a a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )

A .11a =

B .121a a =

C .201920202019S a =

D .201920202019S a >

23.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =

C .135********a a a a a +++

+=

D .

222

122019

20202019

a a a a a +++= 24.(多选题)已知数列{}n a 中,前n 项和为n S ,且2

3

n n n S a +=,则1n n a a -的值不可能为

( ) A .2

B .5

C .3

D .4

25.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足111

40(2),4

n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n

= B .数列{}n a 的通项公式为1

4(1)

n a n n =+

C .数列{}n a 为递增数列

D .数列1

{

}n

S 为递增数列 26.已知数列{}n a 满足:

12a =,当2n ≥时,)

2

12n a =

-,则关于数列

{}n a 的说法正确的是 ( )

A .27a =

B .数列{}n a 为递增数列

C .2

21n a n n =+-

D .数列{}n a 为周期数列

27.已知等差数列{}n a 的前n 项和为,n S 且15

11

0,20,a a a 则( )

A .80a <

B .当且仅当n = 7时,n S 取得最大值

C .49S S =

D .满足0n S >的n 的最大值为12

28.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =

C .95S S >

D .6S 与7S 均为n S 的最大值

29.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911

111

a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <

30.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =

C .95S S >

D .67n S S S 与均为的最大值

31.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ?<

B .22

415

4

a a +≥

C .15

11

1a a +> D .1524a a a a ?>?

32.已知数列{}n a 的前n 项和为,n S 2

5,n S n n =-则下列说法正确的是( )

A .{}n a 为等差数列

B .0n a >

C .n S 最小值为214

-

D .{}n a 为单调递增数列

33.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-

B .23n a n =+

C .2

23n S n n =-

D .2

4n S n n =+

34.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )

A .2

n S n =

B .2

23n S n n =-

C .21n a n =-

D .35n a n =-

35.已知数列{}n a 满足:13a =,当2n ≥时,)

2

11n a =

-,则关于数列

{}n a 说法正确的是( )

A .28a =

B .数列{}n a 为递增数列

C .数列{}n a 为周期数列

D .2

2n a n n =+

【参考答案】***试卷处理标记,请不要删除

一、数列的概念选择题 1.A 解析:A 【分析】

令1n =得11a =,令2n =得2121

2

S a a =+=可解得2a . 【详解】 因为1n S n =

,所以111

11

a S ===, 因为21212S a a =+=,所以211

122

a =-=-. 故选:A

2.C

解析:C 【分析】

根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得

2019a 的值.

【详解】

数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--=

由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=?+ 所以201932a a == 故选:C 【点睛】

本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.

3.A

解析:A 【分析】

对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n

S =,发现不存在这样的偶数能满

足此式,当n 为奇数时,可得21+34

2

n n n S a -=+,再结合23a <可讨论出n 的最大值.

【详解】

当n 为偶数时,12341()()()n n n S a a a a a a -=++++???++

(213)(233)[2(1)3]n =?++?++???+-+ 2[13(1)]32n n =?++???+-+?2+32

n n

=,

因为22485048+34850350

1224,132522

S S ?+?====,

所以n 不可能为偶数;

当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++???++

1(223)(243)[2(1)3]a n =+?++?++???+-+

2134

2

n n a +-=+

因为24911493494

12722S a a +?-=+=+,

25111513514

13752

S a a +?-=+=+,

又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】

此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.

4.B

解析:B

根据11,1

,2n n

S n a S S n -=?=?-≥?计算可得;

【详解】

解:因为2

1n S n n =++①,

当1n =时,2

11113S =++=,即13a =

当2n ≥时,()()2

1111n S n n -=-+-+②,

①减②得,()()2

2

11112n n n n n n a ??++--+-+=?

=?

所以3,1

2,2n n a n n =?=?≥?

故选:B 【点睛】

本题考查利用定义法求数列的通项公式,属于基础题.

5.D

解析:D 【分析】

根据332a S S =-,代入即可得结果. 【详解】

()()3233222224a S S =-=+-+=.

故选:D. 【点睛】

本题主要考查了由数列的前n 项和求数列中的项,属于基础题.

6.B

解析:B 【分析】

先通过列举找到数列的周期,再求2018a . 【详解】

n=1时,234511

121,1(1)2,1,121,22

a a a a =-=-=--==-

==-=- 所以数列的周期是3,所以2018(36722)21a a a ?+===-. 故选:B 【点睛】

本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.

7.D

【解析】

分析:已知1a 逐一求解2345122323a a a a ====,,,. 详解:已知1a 逐一求解234512

2323

a a a a ==

==,,,.故选D 点睛:对于含有()1n

-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.

8.C

解析:C 【分析】

由于数列2

2

2

2

1,2,3,2,5,6,7,8,3,45?共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】

∵2452025=,2462116=,20202025<,所以从数列2

2

2

2

1,2,3,2,5,6,7,8,3,45?中去掉45个平方数,

因为331217282025132197=<<=,所以从数列2

2

2

2

1,2,3,2,5,6,7,8,3,45?中去掉

12个立方数,

又66320254<<,所以在从数列2

2

2

2

1,2,3,2,5,6,7,8,3,45?中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列2

2

2

21,2,3,2,5,6,7,8,3,45?中去掉平方数和立方数后还有

20254512+31971--=项,此时距2020项还差2020197149-=项,

所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】

本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列2

2

2

2

1,2,3,2,5,6,7,8,3,45?去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.

9.D

解析:D 【解析】 【分析】

根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】

根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-?=+

而=

所以4541n =+ 解得11n = 故选:D 【点睛】

本题考查了等差数列通项公式的求法及简单应用,属于基础题.

10.C

解析:C 【分析】 由题意有13

28010

n n a a +=+且6400=a ,即可求34,a a ,进而可得34,b b ,即可比较它们的大小. 【详解】 由题意知:13

28010

n n a a +=

+,6400=a , ∴345400a a a ===,而700n n a b +=, ∴34300b b ==, 故选:C 【点睛】

本题考查了根据数列间的递推关系比较项的大小,属于简单题.

11.C

解析:C 【分析】

由累加法求出2

33n a n n =+-,所以

331n a n n n

,设33

()1f n n n

=

+-,由此能导出5n =或6时()f n 有最小值,借此能得到

n

a n

的最小值. 【详解】

解:()()()112211n n n n n a a a a a a a a ---=-+-+?+-+

22[12(1)]3333n n n =++?+-+=+-

所以

331n a n n

n

设33

()1f n n n

=

+-,由对勾函数的性质可知,

()f n

在(

上单调递减,在

)

+∞上单调递减,

又因为n ∈+N ,所以当5n =或6时()f n 可能取到最小值. 又因为56536321,55662

a a ===, 所以

n a n

的最小值为62162a =.

故选:C. 【点睛】

本题考查了递推数列的通项公式的求解以及对勾函数的单调性,考查了同学们综合运用知识解决问题的能力.

12.C

解析:C 【分析】

根据“等差比”数列的定义,得到数列1n n a a +??

????

的通项公式,再利用202020202019201820192019a a a a a a =?求解. 【详解】 由题意可得:

3

23a a =,211a a = ,3221

1a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +??

????

是首先为1,公差为2的等差数列,

则()1

11221n n

a n n a +=+-?=-, 所以20202019220191220181a a =?-=?+,2019

2018

220181a a =?-, 所以

()()2202020202019

201820192019

220181220181420181a a a a a a =?=?+?-=?-. 故选:C 【点睛】

本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.

13.C

解析:C 【分析】

根据条件依次算出2a 、3a 、4a 、5a 即可. 【详解】

因为1

111,(2)2

n n n a a a n a --==

≥+,

所以211

123a =

=+,31131723a ==+,4117

11527a ==+,51

115131215

a ==+ 故选:C 14.D

解析:D 【分析】

根据观察法,即可得出数列的通项公式. 【详解】

因为数列1111

,,,

, (57911)

--可写成 ()()()()234

2322311111,1,1,12,..24.333

-?

-?-?+?+?+?+-?, 所以其通项公式为(1)(1)23213

n

n

n a n n -=-=

++?. 故选:D.

15.C

解析:C 【分析】

由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:2

22n a n =,即可得

出. 【详解】

由0,2,4,8,12,18,24,32,40,50…,可得偶数项的通项公式:2

22n a n =.

则此数列第40项为2220800?=. 故选:C

16.B

解析:B 【分析】

本题先根据递推公式进行转化得到21

112n n n n a a a a +++=.然后令1n n n

a b a +=,可得出数列{}n b 是等比数列.即11322n

n n a a +??

= ???

.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二

次函数的知识可得数列{}n a 的最大项. 【详解】

解:由题意,可知:

21

112n n n n

a a a a +++=. 令1n n n a

b a +=,则11

2

n n b b +=. 2

11

16a b a =

=, ∴数列{}n b 是以16为首项,

1

2

为公比的等比数列. 1

11163222n n

n b -??

??

∴== ?

???

??

∴11322n

n n a a +??

= ???

. ∴1

211322a

a ??

= ???

, 2

3

21322a a ??

= ???

1

11322n n n a a --??

= ???

各项相乘,可得: 1

2

1

11

111(32)222n n n

a a --??????=? ? ? ???????

(1)

2

511()22n n n --??= ???

2115(1)

22

1122n n n ---????= ? ?????

211

5522

12n n n --+??= ???

2

1(1110)2

12n n -+??= ???

令2()1110f n n n =-+,

则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-?+=-,()2661161020f =-?+=-,

()f n ∴的最小值为20-.

∴2

11

(1110)(20)10

2

2

101112222n n -+?--??

????=== ? ? ???

??

??

∴数列{}n a 的最大项为102.

故选:B . 【点睛】

本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;

17.C

解析:C 【分析】

先求出数列{}n a 的前n 项的乘积为n D ,令0n D >解不等式,结合*n N ∈,即可求解. 【详解】

记数列{}n a 的前n 项的乘积为n D ,则

()()12

11245

1232312

n n n n n n n D a a a a n n -++++=??=???

?

?=- 依题意有

()()12362

n n ++>

整理得()()2

3707100n n n n +-=-+> 解得:7n >,

因为*n N ∈,所以min 8n =, 故选:C

18.B

解析:B 【分析】

讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】

已知数列{}n a 满足1N a *

∈,1,2

+3,n

n n n n a a a a a +??=???为偶数为奇数

. ①若11a =,则24a =,32a =,41a =,54a =,

,以此类推,可知对任意的

n *∈N ,3n n a a +=,此时,{}n a 为周期数列;

②若12a =,则21a =,34a =,42a =,51a =,

,以此类推,可知对任意的

n *∈N ,3n n a a +=,此时,{}n a 为周期数列;

③若13a =,则26a =,33a =,46a =,

,以此类推,可知对任意的n *∈N ,

2n n a a +=,此时,{}n a 为周期数列;

④若14a =,则22a =,31a =,44a =,52a =,

,以此类推,可知对任意的

n *∈N ,3n n a a +=,此时,{}n a 为周期数列;

⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意

的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,

,以此类推,可知对任意的n *∈N ,

2n n a a +=,

此时,{}n a 为周期数列;

⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2

n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2

n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.

下面说明,当19a ≥且1N a *

∈时,数列{}n a 不是周期数列.

(1)当(

34

12,2a ?∈?

且1N a *

∈时,由列举法可知,数列{}n a 不是周期数列; (2)假设当(

()1

12,23,k k a k k N +*?∈≥∈?

且1N a *∈时,数列{}n a 不是周期数列,那么当(

()1

212

,23,k k a k k N ++*

?∈≥∈?

时. 若1a 为正偶数,则(11

22,22

k k a a +?=

∈?,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则(

(1

213

2132

3,232,2k k k k a a ++++??=+∈++???且2a 为偶数,

由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.

综上所述,当19a ≥且1N a *

∈时,数列{}n a 不是周期数列.

因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】

本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.

19.B

解析:B

【分析】

先由题中条件,得到2

12

21i i i a a a +-=+,由累加法得到

20

2211

221k k a a ==-∑

,根据00a =,()11i i a a i +=+∈N ,逐步计算出221a 所有可能取的值,即可得出结果.

【详解】

由11i i a a +=+得()2

221121i i i i a a a a +=+=++,

则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,

……,

2202022121a a a -=+,

以上各式相加可得:()21120

2

21

0221

2 (20202)

k

k a a a a a a

=-

=+++++=∑,

所以20

22121

1220

k k a a a ==--∑

又00a =,所以2

12

0211a a a =++=,则20

2211

221

k k a a ==-∑

因为()11i i a a i +=+∈N ,00a =,则0111a a =+=,所以11a =±,则2110a a =+=或

2,

所以20a =或2±;则3211a a =+=或3,所以31a =±或3±;则4310a a =+=或2或4,所以42a =±或4±或0;则5411a a =+=或3或5,所以51a =±或3±或5±;……,

以此类推,可得:211a =±或3±或5±或7±或9±或11±或13±或15±或17±或19±或

21±,

因此221a 所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21,

所以22112

2a -所有可能取的值为10-,6-,2,14,30,50,74,102,134,

170,210;

20

1

k

k a

=∑所有可能取的值为10,6,2,14,30,50,74,102,134,170,210,

即ACD 都有可能,B 不可能. 故选:B. 【点睛】 关键点点睛:

求解本题的关键在于将题中条件平方后,利用累加法,得到20

22121

1220

k k a a a ==--∑

,将问题

转化为求221a 的取值问题,再由条件,结合各项取值的规律,即可求解.

20.A

解析:A 【分析】

根据已知条件求得11n n n a a -=--,利用累加法求得19a . 【详解】 依题意:

3,4,6,9,13,18,24,1,2,3,4,5,6,

所以11n n n a a -=--(2n ≥),且13a =,

所以()()()

112211n n n n n a a a a a a a a ---=-+-+

+-+

()()12213n n =-+-+

+++

()()()1111332

2

n n n n -+--=+=+.

所以191918

31742

a ?=+=. 故选:A 【点睛】

本小题主要考查累加法,属于中档题.

二、多选题 21.AC 【分析】

由该数列的性质,逐项判断即可得解. 【详解】

对于A ,,,,故A 正确;

对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加

解析:AC 【分析】

由该数列的性质,逐项判断即可得解. 【详解】

对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确;

对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;

对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,

32121,a a a a a ???=+=,

各式相加得()2022202120202021202020192012182a a a a a a a a a ++???+=+++???++, 所以202220202019201811a a a a a a =++???+++,故D 错误. 故选:AC. 【点睛】

关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.

22.BC 【分析】

根据递推公式,得到,令,得到,可判断A 错,B 正确;根据求和公式,得到,求出,可得C 正确,D 错. 【详解】 由可知,即,

当时,则,即得到,故选项B 正确;无法计算,故A 错; ,所以,则

解析:BC 【分析】

根据递推公式,得到11n n n

n n a a a +-=-,令1n =,得到121

a a =,可判断A 错,B 正确;

根据求和公式,得到1

n n n

S a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】

由121n n n a n a a n +=+-可知2111

n n n n n a n n n a a a a ++--==+,即11n n n

n n a a a +-=-, 当1n =时,则12

1

a a =

,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321

111102110n n n n n n n n n n S a a a a a a a a a a a a +++??????-=++

+=-+-+

+-=-= ? ? ???????,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:

由递推公式求通项公式的常用方法:

(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;

(2)累乘法,形如

()1

n n

a f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通

项时,常需要构造成等比数列求解;

(4)已知n a 与n S 的关系求通项时,一般可根据11,2

,1n n n S S n a a n --≥?=?=?求解.

23.ABD 【分析】

根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】

依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不

解析:ABD 【分析】

根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,

342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正

确;根据2121a a a =,222312312()a a a a a a a a =-=-,2

33423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,

,2

20192019202020182019202020182019()a a a a a a a a =-=-,

累加可知D 正确. 【详解】

依题意可知,11a =,21a =,21n n n a a a ++=+,

312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以

712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;

由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,

可得

13572019a a a a a ++++

+=242648620202018a a a a a a a a a +-+-+-++-2020a =,

故C 不正确;

2121a a a =,222312312()a a a a a a a a =-=-,2

33423423()a a a a a a a a =-=-,

244534534()a a a a a a a a =-=-,,2

20192019202020182019202020182019()a a a a a a a a =-=-,

所以

2222

2

12342019

a a a a a ++++

+122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,

所以

222

122019

20202019

a a a a a +++=,故D 正确. 故选:ABD. 【点睛】

本题考查了数列的递推公式,考查了累加法,属于中档题.

24.BD 【分析】

利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,

由于数列单调递减, 可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本

解析:BD 【分析】 利用递推关系可得12

11

n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵2

3

n n n S a +=

, ∴2n ≥时,1121

33

n n n n n n n a S S a a --++=-=-, 化为:

112

111n n a n a n n -+==+--, 由于数列21n ??

?

?-??

单调递减,

可得:2n =时,2

1

n -取得最大值2. ∴

1

n

n a a -的最大值为3. 故选:BD . 【点睛】

本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.

25.AD 【分析】

先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】

因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;

解析:AD 【分析】

先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】

11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 1

1104n n n S S S -≠∴

-= 因此数列1{

}n S 为以1

1

4S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n

=+-=∴=,即A 正确; 当2n ≥时1111

44(1)4(1)

n n n a S S n n n n -=-=

-=--- 所以1,141,24(1)n n a n n n ?

=??

=??-≥-??

,即B ,C 不正确;

故选:AD 【点睛】

本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.

相关主题