非线性控制系统分析

非线性控制系统分析
非线性控制系统分析

第八章非线性控制系统分析

教学目的:

通过学习本章,使学生掌握秒素函数法与相平面法分析非线性系统的理论基础与应用。

教学要求:

(1)认识非线性系统区别于线性系统的运动过程特点.

(2)掌握描述函数法和相平面法的特点及应用范围.

(3)明确函数的定义及相关概念,熟悉典型非线性的妙描述和负倒描述函数

特性,掌握用描述函数法分析非线性系统的稳定性和分析自振,计算自振参数的方法.

教学课时:12学时

教学重点: (1) 非线性的相关概念.

(2) 典型系统的相平面表示.

(3) 典型非线性系统的描述函数形式.

教学难点:

非线性系统的描述函数求法;

利用负倒数法分析系统稳定性.

本章学时: 12学时

主要内容:

8.1 非线性系统的概述

8.2 描述函数法

8.3 相平面法分析线性控制系统

8.4 利用非线性特性改善系统的控制性能

8.1非线性系统的概述

8.1.1 非线性模型

㈠组成

---------x-------非线性环节---------线性环节------------

组成:非线性环节+线性环节

㈡. 分类

①从输入输出关系上分:单值非线性

非单值非线性

1,从形状特性上分:饱和

死区

回环

继电器

㈢特点

稳定性与结构,初始条件有关;响应

㈣分析方法

注意: 不能用叠加原理

1. 非线性常微分方程没有同意的求解方法,只有同意求近似解的方法:

a. 稳定性(时域,频域):由李亚普洛夫第二法和波波夫法判断

b. 时域响应:相平面法(实际限于二阶非线性系统)较精确,因高阶作用太复杂

描述函数法:近似性,高阶系统也很方便

研究非线性系统并不需求得其时域响应的精确解,而重要关心其时域响应的性质,如:稳定性,自激震荡等问题,决定它的稳定性范围,自激震荡的条件,震荡幅度与频率等。

2

3

8.2 描述性函数

X0(S)

一 描述性函数的定义

非线形元件的输入为正弦波时,将起输出的非正弦波的一次谐波(基波)与输入正

弦波的复数比,定义为给非线形环节的描述性函数。 输入:

输出:) y=f(Asinwt)

=y0+∑x(t)=Asinwt (Bksinkwt +Ckcoskwt)

假设输出为对称奇函数,y0=0;只取基波分量(假设具有低通滤波特性,高次谐波忽略),则y(t)=B1sinwt+C1coswt=y(sinwt+¢)

二典型非线形特性的描述函数

1,计算方法设非线形特性为:y=f(x)

令X=Asinwt,则y(t)由富式级数展开为:Y(t)=Ao+∑(A n cosnwt+B nsinnwt)

=Ao+∑Ynsin(nwt+¢)

式中:An=

如果非线性特性是中心对称的,则y(t)具有奇次对称性,Ao=0,谐波线性略去高次谐波,只取基波,具有低通滤波特性。

Y1=A1coswt+B1sinwt=Y1sin(wt+¢1)

N(A)=Y1/A×exp(j¢1)=Y1/Acos¢1+jY1/Asin¢1

=B1/A+jA1/A=b(A)+ja(A)

与频率材料比较,方式形式类似,相当于用一个等效线性元件代替原来非线性元件,而等效线性元件幅相特性N(a)是输入信号A的函数。

2.举例求饱和限幅特性的描述函数(固有非线性)

X ωt

x(t)

y(t)具有奇次对称性,Ao=0

A1=1/π∫y(t)coswtd(wt)=0

B1=1/π∫y(t)sinwtd(wt)=2/π∫y(t)sinwtd(wt)

= 2/π(∫y(t)sinwtd(wt)+∫y(t)sinwtd(wt)+∫y(t)sinwtd(wt))

若A>0,y(t)=Kasinwt 0<=wt

kc=B a<=wt<=

Kasinwt

比较线性系统特征方程G(jω)=–1

线性系统,(–1,j0)点是判断稳定的关键点。

非线性系统,判断稳定性不是点(–1,j0),而是一条线–1∕N。(A∕d)。

由线形部分与描述函数负侧特性之间相对位置可以判断非线性系统的稳定及自激振荡,即可利用奈奎斯稳定判据进行分析。

3.判据内容:

在开环幅相平面上,G(jω)条件,最小位相,无右极点。

1)若K。G(jω)轨迹不包围时线性负侧特性–1∕N。(A∕d),则此非线性系统稳定。

2)若K。G(jω)轨迹包围–1∕N。(A∕d),则非线性系统不稳定。

3)若K。G(jω)与–1∕N。(A∕d)相交,则在交点处,系统处于临界稳定,可能产生周期持续震荡,这种持续震荡可以用正弦振荡来近似,其振荡的振幅和频率可以分别用交点处–1∕N。(A∕d)轨迹上的A 值K。G(jω)曲线上对应的ω值来表征。

工程设计中,通常在线性部分加入校正,改变K。G(jω)与–1∕N。(A∕d)的相对位置,以消除持续振荡,提高系统稳定性。

例2.判定自振点并求自振参数

解:理想继电器的描述函数

N(A)=4B∕лA (B=π∕2) N(A)=2∕A

–1∕N。(A∕d)=–A∕2 K。—非线性环节的传递函数(K。=1)

K。G(jω)与–1∕N。(A∕d)两曲线交于M点,稳定自振点。

交点坐标由K 。G(j ω)=–1∕N 。(A ∕d )亦可求出。 10 ∕j ω(j ω+1)(j ω+3)

=10∕–ωω

+ j ω(3-ωω)= -A ∕2 虚部=0 j ω(3-ωω)=0 所以ω=0 (舍去) ω=1.732 实部≠0 ω=1.732 代入原式 -10∕4ωω=-A ∕2 A=1.7 故自振点ω=1.732∕s A=5∕3 稳定运行区为初始值大于5∕3 →∞ 大初始值能稳定 小初始值不能稳定

例:

试分析系统K 的运动情况,并求K=10时的自振参数 解:

1. 化为典型结构 两个非线性串联,逐点分析求等效 Xc

饱和与理想三位继电器═>理想三位继电器 2. 作负侧描述函数,查表7-1

R

3. 线性部分:

穿越负实轴幅值为

4. 运动状态讨论

8.3 相平面法分析线性控制系统

一、相平面法基本概念

指导思想,要完全地描述二阶的系统时域行为,至少要用两个变量(状态变量)。可选x(t) 和x ?(t)作为状态变量。

1. 相平面:以横坐标表示X ,以纵坐标x ?构成一个直角坐标系,则该坐标平面成为相平面

系统某一时刻的状态可以用相平面上的一个点来描述。

2.相轨迹:相平面上的点随时间变化描绘出来的曲线称为相轨迹。

如果把系统在各种出始条件下的相轨迹都画出来,则可在相平面上的到一个想轨迹曲线簇,(描述系统各种可能的运动)。

3.相平面图:相平面和想轨迹曲线簇构成相平面图。清楚的表示系统在各种初始条件下的运动过程。

4.想平面法:用相图表示非线性二阶系统过程的方法成相平面法,可分析系统的动态过程。

5.与描述函数法不同

指数函数法实质是令系统线性部分不动,而将其非线性部分线性化。

想平面法是令系统非线性部分原封不动,而将高阶系统线性部分简化为二阶。

所以上述两种方法各有侧重,互补长短,若同时用两种方法分析一个系统,则分析结果更加全面。

6.相平面发局限性

在于只适用在定常系统,系统输入只适限于阶跃和斜坡。

7.相平面法归结为两个问题

(1)绘制相平面。

(2)由相轨迹线来理解系统过程。

二.相轨迹绘制

(一) 基本方法:

解析法

图解法

实验法

应用相平面法分析非线性系统的前提就是要绘制相轨迹。

Ⅰ.解析法:

1.解析法就是用求解微分方程的方法找出x?(t)和x(t)的关系,从而在相平面撒谎能够绘制相轨迹。

2.应用场合:当描述系统运动的微分方程比较简单,或者可以分段线性化时,应用分析法比较方便。

3.具体方法:消去变量 t法

直接积分法

消去参变量,即直接解方程x??=f(x,x?) 求出x(t) ,通求导得到x?(t) ,在x(t) 和 x?(t) 的表达式中消去参变量t ,就得到直接积分法。

因为x??=dx?/dt= dx?/dx* dx/dt=x?dx?/dx

则二阶系统微分方程的一般式x??=f(x,x?)

可以写成 x?dx?/dx=f(x,x?)

若该式可以分解为g(x?)*dx?=h(x)dx

则由∫g(x?)dx?=∫h(x)dx

可直接找出x?--x的关系。Xo?,Xo为出始条件。

举例:

8.1某弹簧——质量运动系统。 m—质量,

k—弹性系数

初始条件:x(0)=Xo

x?0)=0

试绘制系统自由运动的相轨迹。

解:描述系统运动的微分方程为:

∑ma=0

mx??+kx=0(m=1 ,k=1)

x??+x=0

法一:第一种消去变量法求,根据初始条件可求的微分方程的解为 x(t)=Xocost

则x?(t)=--Xosint

从以上两个方程中消去t可得到相轨迹方程x2(t)+x?2(t)=xo2

总以原点为圆心,以xo为半径的一簇同心圆。

法二:直接微分法。

方程x??+x=0 可写成

x?dx?/dx=--x

分离变量x?dx=--xdx 代入初始条件

∫x?dx?=--∫xdx

即 x+x=Xo 与上法结果相同。

分析:等幅振荡特性可以用相轨迹表征,相轨迹为闭合曲线。

Ⅱ.图解法

1.图解法是一种不必求出微分方程的解,而是通过各种逐步作图的方法,直接在相平面上画出相轨迹的方法。

2.适用场合

3.当微分方程用解析法求解比较复杂,困难甚至不可能时,对于非线性系统,图解法尤为重要。

注: 工程上图解法: 等倾线法和写函数法

在此只介绍等倾线法。

基本思想:光绘出相轨迹的切线方向场,然后从初始条件出发,沿方向场绘制相轨迹.

二阶时不变系统一般可用常微分方程描述

x``+f(x,x`)=0

f(x,x`)是x`,x的解析式函数,可以是线形也可以是非线形的.可写为x`=dx`/dx*dx/dt=x`dx`/dx dx`/dx=-f(x,x`)/x` 该方程的解:x`=g(x)

此方程中包含着初始条件.对于不同初始条件,它确定了不同的相轨迹.

由相轨迹方程dy/dx=-f(x,y)/y

给出在相轨迹在点(x,y)即(x,x`)上的切线的斜率dy/dx=α(相轨迹上某一点斜率)

把相轨迹上具备有等斜率点的连线称为等倾线.

-f(x,y)/y=α等倾线方程.

若在相平面里作出足够多的等倾线,并在每跟等倾线上用短线标明和相轨迹通过该线的方向(切线方向)称方向场.按方向场从起点到终点,则可绘出相轨迹.

令α为不同常数在相平面上根据等倾线方可绘出若干等倾

4.举例

用等倾线法绘出质量与动系统相轨迹

解:以知系统微分方程x``+x=0

相轨迹方程dx`/dx=-x/x` dx`/dx=α

等倾线方程-x/x`=αx`=-x/α=β

等倾线是通过相平面坐标原点的直线,其斜率β=-1/αα—等倾线上相轨迹的斜率

β—等倾线的斜率

α是斜率值,而不是角度值

令α为不同值,可求出不同的β值

根据不同β值,绘出不同斜率的一簇等倾线

在每条等倾线上写出相应的α短线

所有的短线的总体就形成了相轨迹的切线方向场

假设初始条件x(0)=X0

x`(0)=0 则可以起点(x,0)出发

沿方向场绘出系统相轨迹,仍是一个圆与解析法相同

5.说明

用等倾线法绘制相轨迹时,应该注意以下几点:

1):x轴与x`轴比例尺应当一致,这样α值才与相轨迹切线的几何斜率相同

2):相平面上半平面x`>0故向轨迹走向应沿着x增加的方向从左向右,顺时针. 相同的特征

Ⅲ特殊点

一.奇点

1.定义:相轨迹方程dx`/dx为不定值的点

2. 含义x`=0即状态变化率=0,表明系统不再运动,处于平衡状态

线形系统奇点唯一

非线形系统多个奇点

3.计算

dy/dx=0/0 4.奇点类型1) 稳定焦点

X

X

2)

(-1<ζ<0) 相轨迹从原点向外发散,自由运动不收敛平衡点,是周期性增幅振荡

3)稳定节点

4)

5)鞍点

6)中心点ζ

?

?

t

二. 极限环分类

.

极限环表示对应于时域中有确定振幅和频率的振荡 极限环包括 稳定极限环 不稳定极限环 半稳定极限环

1) 稳定极限环

都渐进趋向于这个极限环,任何 较小的扰动使系统离开极限环 后,最后人回到环上 2) 不稳定极限环

x 3) 半稳定极限环 不能产生自振荡,环内 相轨迹发散原理极限 环外相轨迹收拢极限环

例: 已知 非线形系统微分方程式 x``+0.5x`+2x+x2=0

求 系统的奇点,并绘出系统的相平面图 解: 由已知方程得相轨迹微分方程

dx`/dx+-0.5x`-2x-x2/x`

令dx`/dx=0/0 0.5x`+2x+x2=0

x`=0

求出系统两个奇点x1=0 x2=-2

x1`=0 x2`=0

在奇点附近描述系统的方程为

x``+δf(x,x`)/δx*x+δf(x,x`)/δx*x`=0

δf(x,x`)/δx=2 f(x,x`)=0.5x`+2x+x2

δf(x,x`)/δx=0.5

δf(x,x`)/δx=-2

f(x,x`)/δx`=0.5

即在奇点(0,0)领域内,可将原方程线形化为

x``+0.5x`+2x=0

x``+δf(x,x`)/δx*x`+δf(x,x`)/δx*x=0

此线形化方程的特征根S1,2=-0.25+-j1.39

故该奇点是稳定的焦点

对于奇点(-2,0)的领域内,方程线形化为

x``+0.5x`-2x=0

线性化方程的特征根

S1,2=1.19和S2=-1.69

该棋点是鞍点

进入鞍点(-2,0)的两条相轨迹起分隔线的作用,将相平面划分为两个不

同运动类型的区域.

在稳定区凡初始条件在此区域内的相轨迹收敛于原点,系统放能达到平衡稳定状态. 在发散区初始条件在此内均不稳定.

讨论:只要确定了奇点的位置和类型,以及相平面上的分隔线,就可以根据相平面图确定所有可能的运动性质,并不需要做所有的相轨迹,进一步证明,稳定性与初始条件有关.

(三) 由相平面图求时间响应

相平面图虽然清楚地描述了系统的全部运动状态,但没有给出时间信息,为了分析系统的时域性能,往往还需要再由相轨迹求出系统的过渡过程,并绘出过渡过程曲线X(t),由相平面图绘出系统的过渡过程曲线可用增量法圆弧法和积分法

1.增量法

相平面上,状态由A点转移到B点的平均速度为Xab`=△Xab/△tab

当△Xab=Xb-Xa

很小,Xab`可认为上(-)在A,B两带内处的平均值.

XXab`=Xa`+Xb`/2

又系统状态沿相轨迹由A转移到B所需要的时间△tab可求得△tab=△Xab/Xab`

同理可得从A—B—C……需时间的近似值

△tbc=△Xab/Xbc △ted=△Xcd/Xcd`

即可求得系统的时间响应曲线x(t)

2. 圆弧法

基本思想:用圆心位于X轴上的一系列小圆弧来近似表示所研究的相轨迹段,则运动所需时间等于沿这些小圆弧运动所需时间之和

AD段相轨迹,是用X轴上P,Q,R点为圆心,以|PA|,|QB|,|RC|为半径的小圆弧AB,BC,CD来近似的.则相轨迹从A点转移到D点所需要的时间Tad=Tab+Tbc+Tcd而经过每段小圆弧所需要的时间,可以方便地计算出来

以Tab为例,在A点有

x`=|PA|sinΦa

x=|PA|cosΦa+|OP|

又因为x`=dx/dt,相点在相轨迹上从坐标为()的点移动到坐标为X0的点所需的时间

T1-T0=∫-|PA|sinΦadΦ/|PA|sinΦa=Φa-Φb=Φab

表明能够,Tab在数值上等于ab所对应的中心角Φab,用圆弧度来度量的数值.

二.相品面法分析非线形系统

㈠分析步骤:

1)首先根据非线性特性的分段情况,用几条分界线将相划分为

几个现行区域

2)然后按照系统的结构图分别列写各区域的线性微分方程式

3)并应用线性系统相平面分析的方法和结论,绘出各区域的相轨

4)根据系统状态变化的连续性,在各区域的交界线上,将响轨迹彼

此衔接成连续曲线,即构成完整的线性系统相图

(二) 关键术语

1.开关线或转换线

将各线性区域的分界线称为开关线

2.转换点

开关线撒谎能够相轨迹发生改变的点

3. 室奇点

每个区域内有一个奇点,如果这个奇点在本区域之内,这种奇

点称实奇点

4. 虚奇点

如果奇点落在本区域之外,称虚奇点

表明该区域相轨迹不可能汇集于虚奇点. 二阶非线性系统中,只可能有一个实奇点,而与这个实奇点所在区域邻接的所有其它区域都可能有虚奇点

㈢控制系统分析

例: 饱和特性的非线性控制系统(如下图)

试用相平面法分析系统的阶跃响应和斜坡响应

解:系统线性部分

c(s)/x(s)=0.25/s(0.55+1) 0.5c``+c`\0.25x e=r-c

非线性部分

10e |e|<1

x= 10 e>1

-10 e<-1

阶跃响应

r=Rx1(t)

当t>0+时r``(t)=r`(t), r=R

e`=-c`, e``=-c``

描述系统误差的方程为

0.5e``+e`+0.25x=0

x=10e |e|<=1

x=10 e>1

x=-10 e>1

即为方程线性方程,在相平面上,e=+-1的两条直线把相平面划分为三个区域,

实验八 非线性控制系统分析

实验八非线性控制系统分析 【实验目的】 1.掌握二阶系统的奇点在不同平衡点的性质。 2.运用Simulink构造非线性系统结构图。 3.利用Matlab绘制负倒描述函数曲线,运用非线性系统稳定判据进行稳定性分析,同 时分析交点处系统的运动状态,确定自振点。 【实验原理】 1.相平面分析法 相平面法是用图解法求解一般二阶非线性系统的精确方法。它不仅能给出系统稳定性信息和时间特性信息,还能给出系统运动轨迹的清晰图像。 设描述二阶系统自由运动的线性微分方程为 分别取和为相平面的横坐标与纵坐标,并将上列方程改写成 上式代表描述二阶系统自由运动的相轨迹各点处的斜率。从式中看出在及,即 坐标原点(0,0)处的斜率。这说明,相轨迹的斜率不能由该点的坐标值单值的确定,相平面上的这类点成为奇点。 无阻尼运动形式()对应的奇点是中心点; 欠阻尼运动形式()对应的奇点是稳定焦点; 过阻尼运动形式()对应的奇点是稳定节点; 负阻尼运动形式()对应的奇点是不稳定焦点; 负阻尼运动形式()对应的奇点是不稳定节点; 描述的二阶系统的奇点(0,0)称为鞍点,代表不稳定的平衡状态。2.描述函数法 设非线性系统经过变换和归化,可表示为非线性部分与线性部分相串联的典型反馈结构如图所示。 从图中可写出非线性系统经谐波线性化处理线性化系统的闭环频率响应为

由上式求得图中所示非线性系统特征方程为 ,还可写成 其中 称为非线性特性的负倒描述函数。若有 使上式成立,便有 或 ,对应着一个正弦周期运动。若系统扰动后,上述周期运 动经过一段时间,振幅仍能恢复为 ,则具有这种性质的周期运动,称为自激振荡。 可见自激振荡就是一种振幅能自动恢复的周期运动。周期运动解 可由特征方程式 求得,亦可通过图解法获得。 由等式在复数平面上分别绘制 曲线和 曲线。两曲线的 交点对应的参数 即为周期运动解。有几个交点就有几个周期运动解。至于该解是 否对应着自激振荡状态,取决于非线性系统稳定性分析。 【实验内容】 1. 相平面分析法 (1)二阶线性系统相平面分析不同奇点的性质 例8-1 设一个二阶对象模型为 2 2 2 ()2n n n G s s s ωξωω= ++ 绘制2,n ωζ=分别为0.5、-0.5、1. 25、0时系统的相平面图及2 4()4 G s s = -的相平面图。 图8-1 当2,0.5n ωζ==时,系统的单位阶跃响应曲线和相平面图

城轨列车网络控制系统第3次作业 -

一、不定项选择题(有不定个选项正确,共7道小题) 1. 程控数字电话交换机的组成包括()[不选全或者选错,不算完成] (A) 控制系统; (B) 数字交换网络; (C) 用户接口卡; (D) 外围设备。 正确答案:A B D 解答参考: 2. 数字交换网络的数字接线器包括以下哪些类型?()[不选全或者选错,不算完成] (A) 空分接线器; (B) 时分接线器; (C) 时空接线器; (D) 总线接线器 正确答案:A B C 解答参考: 3. 常规广播是在列车的正常运营过程中所使用的广播,包括()[不选全或者选错,不算完成] (A) 离开广播; (B) 运营延误; (C) 到达广播; (D) 故障延误。 正确答案:A C 解答参考: 4. 紧急广播为在运营中出现紧急情况时列车使用的广播信息,包括()[不选全或者选错,不算完成] (A) 区间清客; (B) 疏散乘客; (C) 紧急撒离; (D) 故障延误。 正确答案:A B C 解答参考: 5. 旅客信息系统按控制功能划分为:()[不选全或者选错,不算完成] (A) 信息源; (B) 中心播出控制层; (C) 车站车载播出控制层;

(D) 车站车载播出显示终端设备。 正确答案:A B C D 解答参考: 6. 旅客信息系统按结构划分为四部分:()[不选全或者选错,不算完成] (A) 中心子系统; (B) 车站子系统; (C) 网络子系统; (D) 车载子系统。 正确答案:A B C D 解答参考: 7. 实现多址连接的无线通信多址方式有()[不选全或者选错,不算完成] (A) 频分多址(FDMA); (B) 时分多址(TDMA); (C) 空分多址(SDMA); (D) 码分多址(CDMA)。 正确答案:A B C D 解答参考: 二、判断题(判断正误,共18道小题) 8. 在旅客信息系统中,紧急灾难信息的优先级最高,然后依次是列车服务信息、旅客导向信息、站务信息、公共信息和商业信息。() 正确答案:说法正确 解答参考: 9. 在旅客信息系统中,高优先级的信息可中断低优先级信息的播出,低优先级的信息也可中断高优先级信息的播出。() 正确答案:说法错误 解答参考: 10. 二级母钟自动接收标准时间信号,校准自身的时间精度,并分配精确时间给一级母钟。() 正确答案:说法错误 解答参考: 11. 当一级母钟不能正常接收GPS信号时,则通过自身高稳晶振运作提供时间信号给二级母钟等终端用户,以满足地铁运营的要求。() 正确答案:说法正确 解答参考:

自动化文献综述

文献综述 前言 从20世纪40年代起,特别是第二次世界大战以来,自动化随着工业发展和军事技术需要而得到了迅速的发展和广泛的应用。如今,自动控制技术不仅广泛应 用于工业控制中,在军事、农业、航空、航海、核能利用等领域也发挥着重要的 作用。例如,电厂中锅炉的温度或压力能够自动恒定的不变,机械加工中数控 机床按预定程序自动地切削工件,军事上导弹能准确地击中目标,空间技术中人 造卫星能按预定轨道运行并能准确地回收等,都是应用了自动控制技术的结果。 自动控制,是指在没有人直接参与的情况下,利用控制装置对机器设备或生产过程进行控制,使之达到预期的状态或性能要求。 双容水箱液位控制系统就是自动控制技术在液位控制方面的应用。其在化工,能源(电厂)等工业工程控制中得到了广泛应用。 过程控制的发展历程 随着过程控制技术应用范围的扩大和应用层次的深入,以及控制理论与技术的进步和自动化仪表技术的发展,过程控制技术经历了一个由简单到复杂,从低 级到高级并日趋完善的过程。 1过程控制装置的发展 1.1基地式控制阶段(初级阶段) 20世纪50年代,生产过程自动化主要是凭借生产实践经验,局限于一般的控制元件及机电式控制仪表,采用比较笨重的基地式仪表(如自力式温度 控制器、就地式液位控制器等),实现生产设备就地分散的局部自动控制。在设 备与设备之间或同一设备中的不同控制系统之间,没有或很少有联系,其功能往 往限于单回路控制。其过程控制的主要目的是几种热工参数(温度、压力、流量 及液位)的定值控制,以保证产品质量和产量的稳定。 1.2单元组合仪表自动化阶段 20世纪60年代出现了单元组合仪表组成的控制系统,单元组合仪表有电动和气动两大类。所谓单元组合,就是把自动控制系统仪表按功能分成若干 单元,依据实际控制系统结构的需要进行适当的组合。单元组合仪表之间用标准 统一的信号联系,气动仪表(QDZ系列)信号为0.02~0.1MPa气压信号,电动 仪表信号为0~10mA直流电流信号(DDZ-II系列)和4~20mA直流电流信号 (DDZ-III系列)因此单元组合仪表使用方便、灵活。由于电流信号便于远距离 传送,因而实现了集中监控和集中操纵的控制系统,对于提高设备效率和强化生 产过程有所促进,适应了工业生产设备日益大型化于连续化发展的需要。

CRA型动车组和CRA型动车组列车网络控制系统的技术特点

CRH2A型动车组和CRH1A型动车组列车网络控制系统的技术特点 一、CRH2A型动车组网络控制系统: 1、网络控制概述: CRH2动车组列车网络控制系统采用贯穿全车的总线来传送信息,从而减轻了列车的重量,并且通过对列车运行以及车载设备动作的运行信息进行集中管理,可以有效地实现对司机和乘务员的辅助作用,加强对设备的保养和提高对乘客的服务质量。 2、网络控制系统的组成: CRH2动车组列车网络控制系统由监控器和控制传输部分两部分组成。硬件一体化装置,但各自独立构成网络,系统为自律分散型。 控制传输部分为双重系统,确保系统的冗余性。通信采用ARCNET网络标准。头车设置的中央装置为双重系统构成,确保其可靠性。前后中心的控制单元采用母线仲裁。 CRH动车组网络控制系统中引用额车载信息装置和类车信息终端装置构成,同时还有监控显示器以及显示控制器、车内信息显示器、IC读卡器等附属设施。 3、网络控制系统的功能: 1)牵引、制动指令传输; 2)设备启动、关闭指令的传输;3)显示灯/蜂鸣器控制指令传输;4)乘务员支持信息传输;5)服务设备控制信息传输;6)数据记录功能;7)车上试验;8)自我诊断传送线;9)远程装载功能;10)列车信息装置的自我诊断功能;11)信息显示功能。 4、网络控制系统的拓扑结构: CRH2动车组网络控制系统采用列车和车辆两级网络结构。列车网络为连接编组各车辆的通信网络,以列车运行控制为目的,以光纤和双绞线为传输介质,连接各中央装置和终端装置,采用双重环结构。车辆级网络结构为连接车厢内设备的通信网络,主要传输介质为光纤和电流环传输线。 1)列车总线 列车总线有两种类型:其一为列车信息传输线,以光纤为传输介质,连接所有中央装置和终端装置,采用ARCNET协议,传送速度为2.5Mb/s;其二为自我诊断传输网,以双绞线作为传输介质,连接中央装置和终端装置,采用HLC作为通信协议。 列车总线的设备由中央装置、终端装置、显示器、显示控制装置、IC卡架以及车内信息显示器构成。在光纤网中,中央装置和终端装置由双重环形构成的光纤连接,采用不易发生故障的双向环形网络方式。它具有向左和向右两条线路,是一种分散型的系统。如果在一个方向的环绕中检测到没有应答的情况,就向另一个方向的环绕传送,即使在2处以上的线路发生故障,环路网络断开时,也可以继续有其他连接着的正常线路进行传送,避开故障部位。 2)车辆总线: 车辆总线是指中央装置/终端装置与车辆内设备之间信息交换通道。各车的中央/终端装置与车辆设备之间的接口以光传送、电流环传送,DIO等形式传送,他们构成信息网络节点与车载设备的联系通道,车载设备与网络控制系统节点之间爱用点对点通信方式,有多种通信规格,总结如下: 终端装置——设备(牵引变流器/制动控制装置)之间的传送: ①通过点对点连接进行的光纤2线式半双工传送; ②轮询方式; ATC检查记录部和车内引导显示器、空调显示器、自动播放装置、辅助电源装置—监视器部之间的传送。

非线性控制系统分析

3描述函数法一.本质非线性特性的谐波线性化 1.谐波线性化具有本质非线性的非线性元件在正弦输入作用下在其非正弦周期函数的输出响应中假设只有基波分量有意义从而将本质非线性特性在这种假设下视为线性特性的一种近似 3.应用描述函数法分析非线性系统的前提 a 非线性特性具有奇对称心 b非线性系统具有图a所时的典型结构 c非线性部分输出xt中的基波分量最强 d非线性部分Gs的低通滤波效应较好 b非线性特性的描述函数的求取方法二.典型非线性特性的描述函数 1饱和特性的描述函数 2死区特性描述函数 3间隙特性的描述函数 1 引言第七章非线性控制系统分析非线性指元件或环节的静特性不是按线性规律变化非线性系统如果一个控制系统包含一个或一个以上具有非线性静特性的元件或环节则称这类系统为非线性系统其特性不能用线性微分方程来描述一.控制系统中的典型非线性特性下面介绍的这些特性中一些是组成控制系统的元件所固有的如饱和特性死区特性和滞环特性等这些特性一般来说对控制系统的性能是不利的另一些特性则是为了改善系统的性能而人为加入的如继电器特性变增益特性在控制系统中加入这类特性一般来说能使系统具有比线性系统更为优良的动态特性非线性系统分析饱和特性 2死区特性危害使系统输出信号在相位上产生滞后从而降低系统的相对稳定性使系统产生自持振荡危害使系统输出信号在相位上产生滞后从而降低系统的相对稳定性使系统产生自持振荡 4继电器特性功能改善系统性能的切换元件 4继电器特性特点使系统在大误差信号时具有较大的增益从而使系统响应迅速而在小误差信号时具有较小的增益从而提高系统的相对稳定性同时抑制高频低振幅噪声提高系统响应控制信号的准确度本

神经网络实现非线性系统设计范本

神经网络实现非线性系统设计

毕业设计(论文) 中文题目神经网络实现非线性系统设计英文题目 Neural Network Nonlinear System 院系: 年级专业: 姓名: 学号: 指导教师: 职称: 月日

【摘要】神经网络具有极强的非线性及自适应自学习的特性,常被用来模拟判断、拟合和控制等智能行为,成功渗透了几乎所有的工程应用领域,是一个在人工智能方向迅速发展的具有重大研究意义的前沿课题。 本文前两章主要介绍了神经网络的发展背景和研究现状,还有BP 网络的结构原理及相关功能。然后,对如何利用GUI工具和神经网络原理设计非线性系统的基本流程进行了详细的阐述。最后,经过利用Matlab软件进行编程,以及是经过对BP神经网络算法及函数的运用,研究其在函数逼近和数据拟合方面的应用,并分析了相关参数对运行结果的影响。 【关键词】BP网络,GUI,非线性系统 【ABSTRACT】Neural network has a strong nonlinear and adaptive self-organizing properties, often used to simulate the behavior of intelligent decision-making, cognitive control, and the successful penetration of almost all engineering applications, is a rapid development in the direction of artificial intelligence

列车网络系统

目录 列车网络控制系统 (2) 一、列车网络控制系统概述 (2) 1. 列车网络系统的发展 (2) 2. 列车网络控制系统的功能 (4) 二、我国城市轨道交通列车网络控制系统的应用 (5) 1. SIBAS系统 (5) 2. MITRAC.系统 (6) 3. AGATE系统 (9) 4. TIS信息系统 (13) 5. DETECS系统 (15)

列车网络控制系统 一、列车网络控制系统概述 列车网络控制系统是列车的核心部件,它包括以实现各功能控制为目标的单元控制机、实现车辆控制的车辆控制机和实现信息交换的通信网络。列车网络系统的发展过程从系统功能来看经历了由单一的牵引控制到车辆(列车)控制,再到现在已经进入分布式控制系统的发展阶段。 1. 列车网络系统的发展 70年代末至80年代初,车载微机的雏形分别在西门子公司和BBC公司出现。开始仅仅是用于传动装置的控制,随着控制、服务对象的增多,人们把铁道系统依次划分为 6 个层次:公司管理、铁路运营、列车控制、机车车辆控制、传动控制和过程驱动,于是列车通信网络在初期的串行通信总线的基础上应运而生,并从原来不同公司的企业标准推向国际标准,逐步形成了列车通信与控制系统的标准化、模块化的硬件系列和全方位的开发、调试、维护、管理软件工具。 1988年IEC第9 技术委员会TC9成立了第22工作组WG22,其任务是制订一个开放的通信系统,从而使得各种铁道机车车辆能够相互联挂,车上的可编程电子设备能够互换。 1992年6 月, TC9WG22以委员会草案CD(committee Draft)的形式向各国发出列车通信网TCN(Train Communication Network)的征求意见稿。该稿分成4个部分:第1 部分总体结构,第 2 部分实时协议,第 3 部分多功能车辆总线MVB,第4部分绞式列车总线WTB。 总体结构把列车通信网规定为由多功能车辆总线MVB和绞式列车总线WTB 组成。MVB的传输介质可以是双绞线,也可以是光纤。在后一种场合,其跨距为2000m,最多可连接256个职能总线站。数据划分为过程数据、消息数据和监管数据。对过程数据的传输作了优化。发送的基本周期是lms或2ms。 WTB的传输介质为双绞线,最多可连接32个节点,总线跨距860m。WTB 具有列车初运行和接触处防氧化功能。发送的基本周期是25ms。 1994年5 月至1995年9 月,欧洲铁路研究所(ERRI)耗资300万美元,在瑞士的Interlaken至荷兰的阿姆斯特丹的区段,对由瑞士SBB、德国DB、意大利FS、荷兰NS的车辆编组成的运营试验列车进行了全面的TCN试验。 1999年6 月,TCN标准草案正式成为国际标准,即IEC61735。该标准对列

非线性控制系统研究2

一. 问题描述 锅炉气温状态变反馈控制系统 主气温控制对象4221) 8.151(45.2)141(589.1)()()(s s s W s W s W o o O ++== 已知燃烧扰动通道:2) 125(1)(+=s s W d (1)对电站锅炉气温PID 控制系统加入死区模块。 (2)比较非线性参数变化后对系统的影响。 二. 理论方法分析 在实际中,几乎所有的控制系统中都存在非线性元件,或者是部件中含有非线性。在一些系统中,人们甚至还有目的地应用非线性部件来改善 系统性能。 自动控制系统的非线性特性,主要是由受控对象、检测传感元件、执行机构、调节机构和各种放大器等部件的非线性特性所造成的。在一个控制系统中,只有包含有一个非线性元件,就构成了非线性控制系统。在自动控制系统中经常遇到的典型非线性特性有饱和特性、死区(即不灵敏区)特性、间隙特性、摩擦(即阻尼)特性、继电器特性和滞环特性等。这些非线性特性一般都会对控制系统的正常工作带来不利的影响。但是,在有些情况下,也可以利用某些非线性特性(例如继电器特性、变放大系数特性等)来改善控制系统,是指比纯线性系统具有更为优良的动态性能。下面就三种典型非线性特性,及非别对自动控制系统的影响。 饱和特性的特点是当输入信号x 的绝对值超过线性部分的宽度时,其输出信号y 不再随输入的变化而变化,将保持为一个常数值。这相当于通过这一饱和非线性元件或环节的平均放大系数(增益)下降了。这就是放大器的饱和输出特性。试验研究表明,它可能是系统的过程时间家常和稳态误差增加,也可能使系统的振荡性减弱(振幅下降,振荡频率降低)。对于发散振荡的系统,由于饱和特性的影响,可以转化为自激荡的系统。 死区特性的特点是当输入信号x 的绝对值不超过死区宽度时,死区非线性元件或环节将无信号输出,只有当输入信号大于死区宽度后,才会有输出信号,并与输入信号呈线性关系。死区对控制系统的影响,首先是造成系统的稳定误差。一般不会加强过度过程中的振荡性,振荡强度下降,从而增加了系统的稳定性,

机电系统非线性控制方法的发展方向

机电系统非线性控制方法的发展方向 摘要 控制理论的发展经过了经典控制理阶段和现代控制理论阶段。但是两者所针对的主要是线性系统。然而,实际工程问题中所遇到的系统大多是非线性的,采用上述两种理论只能是对实际系统进行近似线性化。在一定范围内采用这种近似现行化的方法可以达到需要的精度。但是在某些情况下,比如本质非线性就无法采用前述方法。这种情况下就必须采用非线性控制理论。 非线性控制的经典方法主要有相平面法,描述函数法,绝对稳定性理论,李亚普诺夫稳定性理论,输入输出稳定性理论。但是这些经典理论存在着局限性,不够完善。 随着非线性科学的发展,一些新的方法随之产生。最新的发展成果主要有:微分几何法,微分代数法,变结构控制理论,非线性控制系统的镇定设计,逆系统方法,神经网络方法,非线性频域控制理论和混沌动力学方法。这些新成果对于解决非线性系统的控制问题,完善非线性系统理论具有重要作用,也是今后非线性系统控制的发展方向。 关键词非线性控制;最新发展成果;发展方向

引言 迄今为止,控制理论的发展经过了经典控制理论和现代控制理论阶段。经典控制阶段主要针对的是单输入单输出(SISO)线性系统,通过在时域和频域内对系统进行建模实现对系统的定量和定性分析,经典控制理论在工程界得到了广泛的应用,而且经典控制方法已经形成了完善的理论体系。然而,随着科学技术的发展,经典控制方法也暴露出了其自身的缺陷,经典控制方法并不关心系统内部的状态变化,而只是局限于将被控对象看作一个整体,并不能准确了解系统内部的状态变化。为了克服经典控制方法的这种缺陷,现代控制方法产生了。现代控制理论只要是在时域内对系统进行建模分析,通过建立系统的状态方程,了解系统内部的状态变化,对系统的了解更加全面透彻。该理论主要针对多输入多输出(MIMO)的线性系统。经典控制理论和现代控制理论的结合使得控制理论在线性问题的控制上达到了完善的地步,在工程界得到了广泛的应用。 然而,经典控制论和现代控制论所针对的是线性系统,实际问题大多是非线性系统,早期的处理方法是将非线性问题线性化,然后再应用上述两种理论。这种方法在一定的范围和精度内可以很好的满足工程需要。随着科学技术的发展,上述两种方法遇到了挑战,例如本质非线性问题,这种问题无法进行局部线性化。因此,要解决这类问题就必须要有一套相应的非线性控制理论。 本文通过阐述控制理论的发展过程中各种理论的应用范围和局限性,特别是针对非线性问题的处理方法,介绍了非线性控制理论要解决的问题,非线性控制的经典方法和最新发展成果,并阐述了非线性控制理论的发展方向。

自动控制原理论文

自动控制 摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。 自动控制理论是自动控制科学的核心。自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年 代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制 理论。经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实 际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。 1自动控制理论发展概述 自动控制是指应用自动化仪器仪表或自动控制装置代替人 自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控制操作,自动控制显得尤其重要。 自动控制理论是与人类社会发展密切联系的一门学科,是自动控制科学的核心。自从19世纪M a x w e ll对具有调速器的蒸汽发动

自动化综述范文

HEFEI UNIVERSITY 电子信息工程专业综述报告 题目自动化专业综述报告 系别电子信息与电气工程系 班级 XX级电子系(X)班 姓名 XXX 完成时间 2011年4月XX日

目录 1.自动化起源............................ 错误!未定义书签。 2.自动化专业简介........................ 错误!未定义书签。 3.我校本专业情况如下.................... 错误!未定义书签。 4.主干学科.............................. 错误!未定义书签。 5.主要课程.............................. 错误!未定义书签。 6.专业方向.............................. 错误!未定义书签。 7.就业方向(部分)...................... 错误!未定义书签。 8.未来学习计划.......................... 错误!未定义书签。 9.总结.................................. 错误!未定义书签。

1.自动化起源 古代人类在长期生产和生活中﹐为了减轻自己的劳动﹐逐渐产生利用自然界动力代替人力畜力﹐以及用自动装置代替人的部分繁难的脑力活动的愿望﹐经过漫长岁月的探索﹐他们互不相关地造出一些原始的自动装置。 近代自动装置17世纪以来﹐随着生产的发展﹐在欧洲的一些国家相继出现了多种自动装置﹐其中比较典型的有﹕法国物理学家B.帕斯卡在1642年发明能自动进位的加法器﹔荷兰机械师C.惠更斯于1657年发明钟表﹐提出钟摆理论﹐利用锥形摆作调速器﹔英国机械师E.李1745年发明带有风向控制的风磨﹐利用尾翼来使主翼对准风向﹔俄国机械师И.И.波尔祖诺夫1765年发明浮子阀门式水位调节器﹐用于蒸汽锅炉水位的自动控制。 社会的需要是自动化技术发展的动力。自动化技术是紧密围绕着生产﹑军事设备的控制以及航空航天工业的需要而形成和发展起来的。工业上的应用,是以瓦特的蒸汽机调速器作为正式起点。1788年﹐瓦特为了解决工业生产中提出的蒸汽机的速度控制问题﹐把离心式调速器与蒸汽机的阀门连接起来﹐构成蒸汽机转速调节系统﹐使蒸汽机变为既安全又实用的动力装置。此时的自动化装置是机械式的,而且是自力型的。 2.自动化专业简介 自动化专业主要研究的是自动控制的原理和方法,自动化单元技术和集成技术及其在各类控制系统中的应用。它以自动控制理论为基础,以电子技术、电力电子技术、传感器技术、计算机技术、网络与通信技术为主要工具,面向工业生产过程自动控制及各行业、各部门的自动化。它具有“控(制)管(理)结合,强(电)弱(电)并重,软(件)硬(件)兼施”等鲜明的特点,是理、工、文、管多学科交叉的宽口径工科专业。学生在校时一般学习半导体变流技术、自动控制系统、电力拖动与电气控制、最优控制、微型计算机控制技术、计算机通讯与网络、数字信号处理、软件工程、传感器原理、自动检测技术、系统工程概论、运筹学和情报检索等近40门课程。本专业是一门适应性强、应用面广的工程技术学科。旨在培养学生成为基础扎实、自动控制技术知识系统深入、计算机应用能力强的高级工程技术人才。所以学生在毕业后都能从事自动控制、自动化、信号与数据处理及计算机应用等方面的技术工作。就业领域也非常的宽广,比如高科技公司、科研院所、设计单位、大专院校、金融系统、通信系统、税务、外贸、工商、铁路、民航、海关、工矿企业及政府和科技部门等。

网络控制系统与传统控制系统区别

网络控制系统与传统控制系统区别 摘要:本文对网络控制系统与传统控制系统发展过程,功能特点,主要方法和当前研究热点进行了简要概述。 关键词:网络控制系统传统控制系统区别 1.前言 随着计算机技术和网络技术的不断发展,控制系统正在向智能化、数字化和网络化的方向发展。本文简要回顾了控制网络的发展, 阐述了它与信息网络发展过程的相似性,分析了目前流行的现场总线控制系统的组成及其存在的问题。对于工业以太网做了简单介绍,提出了控制网络结构发展的趋势。 2.计算机控制系统的发展 计算机及网络技术与控制系统的发展有着紧密的联系。最早在50年代中后期,计算机就已经被应用到控制系统中。60年代初,出现了由计算机完全替代模拟控制的控制系统,被称为直接数字控制(Direct Digital Control, DDC )。70年代中期,随着微处理器的出现,计算机控制系统进入一个新的快速发展的时期,1975年世界上第一套以微处理为基础的分散式计算机控制系统问世,它以多台微处理器共同分散控制,并通过数据通信网络实现集中管理,被称为集散控制系统(Distributed Control System, DCS)。 进入80年代以后,人们利用微处理器和一些外围电路构成了数字式仪表以取代模拟仪表,这种DDC的控制方式提高了系统的控制精度和控制的灵活性,而且在多回路的巡回采样及控制中具有传统模拟仪表无法比拟的性能价格比。 80年代中后期,随着工业系统的日益复杂,控制回路的进一步增多,单一的DDC控制系统已经不能满足现场的生产控制要求和生产工作的管理要求,同时中小型计算机和微机的性能价格比有了很大提高。于是,由中小型计算机和微机共同作用的分层控制系统得到大量应用。 进入90年代以后,由于计算机网络技术的迅猛发展,使得DCS系统得到进一步发展,提高了系统的可靠性和可维护性,在今天的工业控制领域DCS仍然占据着主导地位,但是DCS不具备开放性,布线复杂,费用较高,不同厂家产品的集成存在很大困难。 从八十年代后期开始,由于大规模集成电路的发展,许多传感器、执行机构、驱动装置等现场设备智能化,人们便开始寻求用一根通信电缆将具有统一的通信协议通信接口的

自动配料控制系统文献综述

自动配料控制系统文献综述 1 前言 自动配料系统在轻工、纺织、塑料、食品、制药、化工等行业得到了广泛应用, 并具有很好的发展前景。通过许多关于自动配料控制系统的文献,设计出自动配料系统具有通用性强、自动化程度高、工作可靠性高、人机界面友好、可进行远距离控制、成本低廉等特点。 当前针对某一行业, 配料仪器所用传感器种类、量程基本固定,配料的种类数基本固定, 因此, 目前的配料仪器产品使用场合单一, 针对不同行业, 要设计出不同的配料仪器, 使大批量生产难于实现, 这就使得资源的利用率不高, 产品生产成本过高。因此, 能够开发出可适配多种不同类型的传感器, 具有智能去皮、精确配料、配料种类数由操作人员选择的新型配料仪, 具有广泛的应用价值。本设计就是以基于单片机为核心, 设计出能适配不同种类传感器和应用于不同行业的通用型自动配料仪。 2 国内外现状 近年来我国的配料工业发展迅速,小型配料系统的设备性能有了很大提高。自动配料装置的核心设备是配料秤,配料秤性能好坏,将直接影响配料质量的优劣。用微机代替控制仪表进行称量配料,可以对称量误差进行自动补偿,保证配料的准确性,通过微机的键盘和显示器方便进行人机对话,还科研调用管理完成参数设置,

检查和修改工艺设定值,并监视称量配料的生产过程,发现故障及时报警,通过打印机及时打印生产报表,自动完成统计工作。这样,可以降低原料消耗,提高产品质量,实现生产过程的实时动态监视,配料精度低主要原因是电子秤系统的动态X 围小,而可靠性主要是中间继电器和过程控制的微机控制系统的可靠性低所致,针对实际问题,采用可编程控制器来代替中间的继电器和过程控制的微型机,为了实现生产过程的动态监视,使用微型机与PLC通信,在屏幕上显示出动态生产数据。可靠性是重要的质量指标,由于机械工艺,电子元件等基础,工业发展的滞后,国内电脑配料系统可靠性与国外产品相比尚有一定差距。 主要面临的问题是: ( 1)不同行业使用的传感器不同, 输出的电信号不同, 这就给信号的初期放大处理和程序设计带来困难。 ( 2)不同行业配料种类数不同, 控制信号数不同, 这就给控制电路和处理程序的设计带来困难。

非线性网络控制系统的分析与设计

非线性网络控制系统的分析与设计 文章针对具有未知输入和不确定扰动信号的非线性系统,研究一类以观测器为基础的量化网络化系统故障检测问题。首先,引入时变量化器,对输出信号采用离散量化处理。模拟工业中真是的非线性系统,针对基础的原系统建立故障检测滤波器,最后,通过原系统与观测器的比较,搭建故障检测滤波器误差系统。最后,给出Matlab仿真实例,验证文中方法的有效性。 标签:故障检测滤波器;网络化系统;量化器NCS 前言 NCSs是集自动控制技术、计算机技术和通信技术发展于一体,目前被越来越多的应用于复杂的远程控制系统中,从而实现对终端的远程控制,改变了传统的控制模式。 关于非线性的NCSs的建模和设计要复杂很多,无论是在数学模型的建立,还是工业控制方面的设计,相关的非线性的研究并不是很成熟。文章的设计方法将推广到非线性网络控制系统,设计关于非线性的模型,利用对数量化器联合分析。并最终MATLAB的仿真来判断文章的NCSs模型的稳定性。 1 离散对数量化器 信息在被传输过程中,要经过量化、分割,变为离散信号,才能适用与非线性模型中。这里,首先要将输出信号进行量化,量化分段函数如式(1): 文章中采用静态对数量化器,设计如下量化标准: 其中,?字是量化密度,u0是初始向量。 每一部分分段函数对应着不同的量化条件,最终应用到整个分段函数达到全部的量化标准。对数量化器定义如式(2): 2 系统描述 非线性被控对象描述为: (3) 其中,A、B1、B2、C、N1为具有适当维数的已知实常数矩阵, 为状态向量,为输出向量,为L2范数有界的不确定扰动信号向量,为要检测的故障信号向量,g(x(k))为已知的非线性向量函数且满足g(0)=0

非线性控制系统分析样本

第八章非线性控制系统分析 教学目的: 经过学习本章, 使学生掌握秒素函数法与相平面法分析非线性系统的理论基础与应用。 教学要求: (1) 认识非线性系统区别于线性系统的运动过程特点. (2) 掌握描述函数法和相平面法的特点及应用范围. (3) 明确函数的定义及相关概念, 熟悉典型非线性的妙描述和负倒描述函数特 性, 掌握用描述函数法分析非线性系统的稳定性和分析自振, 计算自振参数的方法. 教学课时: 12 学时 教学重点: (1) 非线性的相关概念. (2) 典型系统的相平面表示. (3) 典型非线性系统的描述函数形式. 教学难点: 非线性系统的描述函数求法; 利用负倒数法分析系统稳定性. 本章学时: 12 学时 主要内容: 非线性系统的概述 8.1 描述函数法 8.2 相平面法分析线性控制系统 8.3 8.4利用非线性特性改进系统的控制性能 8.1 非线性系统的概述 8.1.1 非线性模型

㈠组成 -------- x ------ 非线性环节----------- 线性环节---------- 组成: 非线性环节+线性环节 ㈡. 分类 ①从输入输出关系上分: 单值非线性 非单值非线性 1,从形状特性上分: 饱和 死区 回环 继电器 ㈢特点 稳定性与结构, 初始条件有关; 响应 ㈣分析方法 注意: 不能用叠加原理 1. 非线性常微分方程没有同意的求解方法, 只有同意求近似解的方法: a. 稳定性(时域, 频域) : 由李亚普洛夫第二法和波波夫法判断 b. 时域响应: 相平面法(实际限于二阶非线性系统)较精确, 因高阶作用 太复杂 描述函数法:近似性,高阶系统也很方便 研究非线性系统并不需求得其时域响应的精确解,而重要关心其时域响应的性质,

非线性控制系统分析样本

第八章非线性控制系统分析 教学目的 : 经过学习本章, 使学生掌握秒素函数法与相平面法分析非线性系统的理论基础与应用。 教学要求: (1)认识非线性系统区别于线性系统的运动过程特点. (2)掌握描述函数法和相平面法的特点及应用范围. (3)明确函数的定义及相关概念,熟悉典型非线性的妙描述和负倒描述函数 特性,掌握用描述函数法分析非线性系统的稳定性和分析自振,计算自振参数的方法. 教学课时: 12学时 教学重点: (1) 非线性的相关概念. (2) 典型系统的相平面表示. (3) 典型非线性系统的描述函数形式. 教学难点: 非线性系统的描述函数求法; 利用负倒数法分析系统稳定性. 本章学时: 12学时 主要内容: 8.1 非线性系统的概述 8.2 描述函数法 8.3 相平面法分析线性控制系统 8.4 利用非线性特性改进系统的控制性能

8.1非线性系统的概述 8.1.1 非线性模型 ㈠组成 ---------x-------非线性环节---------线性环节------------ 组成: 非线性环节+线性环节 ㈡. 分类 ①从输入输出关系上分: 单值非线性 非单值非线性 1,从形状特性上分: 饱和 死区 回环 继电器 ㈢特点 稳定性与结构, 初始条件有关 ; 响应 ㈣分析方法 注意: 不能用叠加原理 1. 非线性常微分方程没有同意的求解方法, 只有同意求近似解的方法: a. 稳定性( 时域, 频域) : 由李亚普洛夫第二法和波波夫法判断 b. 时域响应: 相平面法( 实际限于二阶非线性系统) 较精确, 因高阶作用

太复杂 描述函数法: 近似性, 高阶系统也很方便 研究非线性系统并不需求得其时域响应的精确解, 而重要关心其时域响应的性质, 如: 稳定性, 自激震荡等问题, 决定它的稳定性范围, 自激震荡的条件, 震荡幅度与频率等。 2,死区继电器: f(e) +m -△e 3 4.滞环特性( 间隙) -m

《自动化概论》习题讲解

《自动化概论》习题讲解 自动控制原理是指在没有人直接参与的情况下,利用控制装置或控制器,使机器,设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。 课题组1 向新同学介绍: 1-1自动化、自动控制及控制论三者的区别和联系,并具体说明自动化专业是一个口径宽、适应面广的专业。 1-2科学家和工程师有哪些本质区别,科学家/工程师各应该具备什么样的基本素质,并简述你在大学期间准备如何提高自己的个人素质的体会。 1-3自动化的概念,自动化的研究内容以及自动化与新技术革命的关系。 课题组2 科普文章: 2-1 我国自动化的发展。简述控制和自动化的发展,我国古代发明的重要自动装置,介绍指南车用途和原理、候风地动仪原理、宋代水运仪象台观察天文现象的原理等。 2-2 计算机与自动控制。列举5种你认为对人类生产和生活最有影响的自动化技术或系统,以此说明计算机技术和自动控制或自动化技术的密切关系。2-3 社会经济系统工程。介绍社会经济系统工程的主要研究内容,讨论系统工程和自动化的关系。 课题组3 讨论发言稿: 3-1 发言题目:经典控制理论与现代控制理论分析、设计方法 向同学们介绍经典控制理论时期分析和设计自动控制系统的主要方法,现代控制理论分析和设计自动控制系统的主要方法。 3-2 发言题目:综合自动化 向同学们介绍综合自动化,电子计算机在自动化技术中所起的作用,计算机控制的特点。 课题组4 你到一个高职学校去求职,就以下内容准备试讲稿: 4-1 试比较自适应控制和自校正控制的异同,智能控制与普通控制的主要区别。4-2 自动控制系统有哪几个基本环节(元件),何谓自动控制系统的“负反馈”。 介绍恒值自动调节系统、程序自动控制系统、随动系统的功能和特点。

城轨列车网络控制系统 第2次作业 含答案

专业班学号: 姓名: 《城轨列车网络控制系统错误!未指定书签。》课程 (第2次作业) 评分 评分人 四、主观题(共20道小题) 28.列车自动防护系统(ATP)是一个什么样的系统? 参考答案:答:城市轨道交通的信号系统中,列车自动防护〔ATP)系统是非常重要的组成部分,它 为列车行驶提供安全保障,有效降低列车驾驶员的劳动强度,提高行车效率。如果没有ATP系统,列 车的行车安全需要由列车驾驶员人工来保障,这样会造成列车驾驶员过度疲劳,产生安全隐患,为行 车作业效率带来负面影响。因此在城市轨道交通中,尤其是在运营作业繁忙的线路上,信号系统中设 里列车自动防护系统是非常必要的,它是行车作业的安全保障和体现。 ATP系统是保证行车安全、防止列车进入前方列车占用区段和防止超速运行的设备。ATP负责 全部的列车运行保护。ATP系统执行以下安全功能:限制速度的接收和解码、超速防护、车门管理、 自动和手动模式的运行、司机控制台接口、车辆方向保证、永久车辆标识。 29.简述ATP系统具有的主要功能。 参考答案:答:ATP车载设备能连续检测列车的位置、监督速度限制、防护点和根据列车在站台区域 的精确停车控制列车车门和站台安全门。联锁是底层的基本防护系统。ATP轨旁设备连续监视和检查 联锁条件,比如道岔的监督、紧急停车按钮监督、侧面防护和其他进路的情况。这些信息是轨旁设备 计算移动授权的基础。 (1)速度监督与超速防护 轨旁设备从联锁和轨道空闲检测系统获得驾驶指令,整理为相应格式的数据后传输至ATP车 载设备。驾驶指令通常包括目标速度、目标距离、最大允许线路速度和线路坡度等。ATP车载设备通 过此数据计算当前位置的列车允许速度。最终将列车运行所需的数据由驾驶室显示器指示给司机。 实际的列车速度和驶过的距离由测速装置连续进行测量。ATP车载设备将列车实际速度与列车允许速 度进行比较。当列车速度超过列车允许速度时,ATP的车载设备就会发出制动命令,发出报警后控制 列车进行常用全制动或实施紧急制动,使列车自动地制动。 (2)测速与测距 列车运行速度的测量是速度控制的依据。速度值的准确和精度直接影响列车控制的效果。 在目标距离模式中,列车位置对于安全性至关重要。如果列车无法掌握它在线路中的准确位置, 那么它就无法保证在障碍物或限制区范围内减速或停下。ATP车载设备通过连续测量列车行驶的距 离,可以随时査找列车的精确位置。 (3)车门与站台安全门的控制 在通常的情况下,在车辆没有停稳在站台或是车辆段转换轨上时,ATP不允许车门开启。当列车 在车站的预定停车区域内停稳且停车点的误差在允许范围以内时,地面定位天线会收到车载定位天线 发送的停稳信号,列车从ATP轨旁设备收到车门开启命令,ATP才会允许车门操作,车载对位天线和 地面对位天线才能很好地感应耦合并进行车门开关操作。有了车门开启命令后,使ATP轨旁设备发送

第八章非线性控制系统分析习题与解答

第八章 非线性控制系统分析习题与解答 7-1 三个非线性系统的非线性环节一样,线性部分分别为 (1) G s s s ()(.)= +1011 (2) G s s s ()()=+2 1 (3) G s s s s s ()(.) ()(.) =+++21511011 试问用描述函数法分析时,哪个系统分析的准确度高? 解 线性部分低通滤波特性越好,描述函数法分析结果的准确程度越高。分别作出三个系统线性部分的对数幅频特性曲线如图所示。 由对数幅频特性曲线可见,L 2的高频段衰减较快,低通滤波特性较好,所以系统(2)的描述函数法分析结果的准确程度较高。 7-2 将图示非线性系统简化成环节串联的典型结构图形式,并写出线性部分的传递函数。 解 (a) 将系统结构图等效变换为图(a)的形式。 G s G s H s ()()[()]=+111 (b) 将系统结构图等效变换为图(b)的形式。 G s H s G s G s ()() () () =+1111

7-3 判断题7-41图中各系统是否稳定;)(1A N -与)(ωj G 两曲线交点是否为自振点。 解 (a ) 不是 (b) 是 (c) 是 (d) c a 、点是,b 点不是 (e) 是 (f) a 点不是,b 点是 (g) a 点不是,b 点是 (h) 系统不稳定 (i) 系统不稳定 (j) 系统稳定 7-4 已知非线性系统的结构如图所示 图中非线性环节的描述函数为N A A A A ()()=++>6 2 试用描述函数法确定: (1)使该非线性系统稳定、不稳定以及产生周期运动时,线性部分的K值范围; (2)判断周期运动的稳定性,并计算稳定周期运动的振幅和频率。 解 (1) -=-++126N A A A ()(), -=--∞=-101 3 1 1N N (),() dN A dA A ()()=-+<4 202 N(A)单调降,)(1A N -也为单调降函数。画出负倒描述函数曲线)(1A N -和 G j ()ω曲线如图所示,可看出,当K 从小到大变化时, 系统会由稳定变为自振,最终不稳定。 求使 Im[G j ()]ω=0 的ω值: 令 ∠=-?-=-?G j arctg ()ωω902180 得 arctg ωω=?=451,

相关文档
最新文档