实验矩阵建立和基本运算

实验矩阵建立和基本运算
实验矩阵建立和基本运算

实验1 矩阵的建立和基本运算

一、实验目的

熟悉矩阵(matrix laboratory)初等变换的方法以及矩阵运算的各种命令.

二、实验内容与要求

1. 启动与退出

2. 数、数组、矩阵的输入

(1)数的输入

>>a=5

>>b=2-5i

注意:在行尾加“;”,该行结果不显示;标点符号一定要在英文状态下输入!

(2)数组的输入

>>b=[1,3,5,7,9,11]

>>c=1:2:11

>>d=linspace(1,11 ,6)

问题:若b为在0~2π(π用pi表示)之间均匀分布的22个数据,c=(1.3,2.5,7.6,2,-3),d=(23,20,17,14,11,8,5,2),各用何种方法输入

较简单?

(3)矩阵的输入

>>A=[2,3,5;1,3,5;6,9,4]%行之间要用分号隔开

A=

2 3 5

1 3 5

6 9 4

>>m=input('请输入初始量,m=');

请输入初始量,m=

问题:输入A(2,3),结果如何?输入A(7)又如何?

注意:变量名开头必须是英文字母,变量名对字母大小写是区分的.

3. 矩阵大小的测试和定位

numel(Number of elements in an array or subscripted array expression.)

>>A=[3,5,6;2,5,8;3,5,9;3,7,9]

>>d=numel(A)%测试定矩阵A的元素数,5.x版本没有此命令>>[n,m] = size(A) %测试A的行(n)、列(m)数

>>[i,j] = find(A>3)%找出A中大于3的元素的行列数

注意:对一个数组可用n = length(A),A若是矩阵,n给出A的行、列数的最大值.

4. 矩阵的块操作

>>A(2,:)%取出A的第2行的所有元素

>>A([1,3],:)%取出A的第1,3行的所有元素

>>A(2:3,1:2)%取出A的2,3行与1,2列交叉的元素

>>A([1,3],:) = A([3,1],:) %将A的1行和3行互换

问题:如何将A的2,3列互换?

>>A(2,:) = 4 %将A的第2行的所有元素用4取代

>>A(find(A==3))=-3 %将A中等于3所有元素换为-3

>>A(2,:) = [] %删除A的第2行

>>reshape(A,2,3)%返回以A的元素重新构造的2×3维矩阵

>>[A(1:3,2:3),A(2:4,1:2);A,A(:,2)]%由小矩阵构造大矩阵。

5. 矩阵的翻转操作

flip(抛、弹、翻转),rot ation(旋转)

>>flipud(A) %A进行上下翻转

>>fliplr(A) %A进行左右翻转

>>rot90(A)%A逆时针旋转90°

6. 特殊矩阵的产生

random(随意, 任意),randn(Normally distributed random numbers.)randperm(Random permutation.(排列))

>>A = eye(n) %产生n维单位矩阵

>>A = ones(n,m)%产生n×m维1矩阵

>>A = zeros(n,m)%产生n×m维0矩阵

>>A = rand(n,m)%产生n×m维随机矩阵(元素在0~1之间)

问题:产生一个在区间[10,20]内均匀分布的4阶随机矩阵.

>> randn(m,n) %产生m×n正态分布随机矩阵

>> randperm(n)%产生1~n之间整数的随机排列

【例】

>> randperm(6)

ans =

3 2 1 5

4 6

7. 数的运算

sqrt(square root),exp(exponent),log(logarithm)

>>4+2

>>4*2

>>4/2 %4右除2,等于2

>>4\2 %4左除2,等于0.5

>>4^3 %4的3次方

>>sqrt(4)%4的算术平方根,和4^0.5比较

>>exp(3) %e的3次方,不能输成e^3

>>log(4)%4的自然对数,log10(4)是以10为底,log2(4)是以2为底

8. 矩阵的运算

det(determinant,行列式,决定性的,有决定作用的),rank(秩,等级),inv(inverse,倒转的, 反转的),eig(eigenvalues,eigenvectors,本征的,固有的)

>>A’%A的转置

>>det(A) %A的行列式,A必须是方阵

>>rank(A) %A的秩

>>inv(A) %A的逆

>>eig(A)%A的本征值

>>[X,D] = eig(A)%A的本征矢量X及本征值D

>>3*A %常数与矩阵相乘

>>A+B %A,B必须是同维矩阵,和3+A进行比较

>>A–B %A,B必须是同维矩阵,和3-A进行比较

>>A*B %和A.*B进行比较

>>A/B %(和A./B进行比较)

>>A\B %(和A.\B进行比较)

>>A^2%A^2相当于A*A(和A.^2进行比较)

注意:“.* ” ,“. / ”,“ .\ ” ,“ . ^ ” 称为点运算(或称数组运算,又称元素群运算),点运算是前后矩阵对应元素之间的运算.

9. 联机求助

>>help sqrt %将显示出平方根sqrt 命令的功能和使用方式

表1.1 基本的数学函数

算法分析_实验报告3

兰州交通大学 《算法设计与分析》 实验报告3 题目03-动态规划 专业计算机科学与技术 班级计算机科学与技术2016-02班学号201610333 姓名石博洋

第3章动态规划 1. 实验题目与环境 1.1实验题目及要求 (1) 用代码实现矩阵连乘问题。 给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。考察这n 个矩阵的连乘积A1A2…A n。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序,这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,则可以依此次序反复调用2个矩阵相乘的标准算法(有改进的方法,这里不考虑)计算出矩阵连乘积。 确定一个计算顺序,使得需要的乘的次数最少。 (2) 用代码实现最长公共子序列问题。 一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X= < x1, x2,…, xm>,则另一序列Z= < z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列< i1, i2,…, ik>,使得对于所有j=1,2,…,k有Xij=Zj 。例如,序列Z=是序列X=的子序列,相应的递增下标序列为<2,3,5,7>。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X= < A, B, C, B, D, A, B>和Y= < B, D, C, A, B, A>,则序列是X和Y的一个公共子序列,序列也是X和Y的一个公共子序列。而且,后者是X和Y的一个最长公共子序列,因为X和Y没有长度大于4的公共子序列。 (3) 0-1背包问题。 现有n种物品,对1<=i<=n,已知第i种物品的重量为正整数W i,价值为正整数V i,背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分) 使用动态规划使得装入背包的物品价值之和最大。 1.2实验环境: CPU:Intel(R) Core(TM) i3-2120 3.3GHZ 内存:12GB 操作系统:Windows 7.1 X64 编译环境:Mircosoft Visual C++ 6 2. 问题分析 (1) 分析。

矩阵分析实验报告

矩 阵 分 析 实 验 报 告 学院:电气学院 专业:控制工程 姓名:XXXXXXXX 学号:211208010001

矩阵分析实验报告 实验题目 利用幂法求矩阵的谱半径 实验目的与要求 1、 熟悉matlab 矩阵实验室的功能和作用; 2、 利用幂法求矩阵的谱半径; 3、 会用matlab 对矩阵分析运算。 实验原理 理念 谱半径定义:设n n A C ?∈,1λ,2λ,3λ, ,j λ, n λ是A 的n 个特征值,称 ()max ||j j A ρλ= 为关于A 的谱半径。 关于矩阵的谱半径有如下结论: 设n n A C ?∈,则 (1)[]()()k k A A ρρ=; (2)2 2()()()H H A A AA A ρρ==。 由于谱半径就是矩阵的主特征值,所以实验换为求矩阵的主特征值。 算法介绍 定义:如果1λ是矩阵A 的特征值,并且其绝对值比A 的任何其他特征值的绝对值大,则称它为主特征值。相应于主特征值的特征向量1V 称为主特征向量。 定义:如果特征向量中最大值的绝对值等于单位值(例如最大绝对值为1),则称其为是归一化的。

通过形成新的向量' 12=c n V (1/)[v v v ],其中c=v 且1max {},j i n i ≤≤=v v 可将特 征向量 '12n [v v v ]进行归一化。 设矩阵A 有一主特征值λ,而且对应于λ有唯一的归一化特征向量V 。通过下面这个称为幂法(power method )的迭代过程可求出特征对λ,V ,从下列向量开始: []' 0=111X (1) 用下面递归公式递归地生成序列{}k X : k k Y AX = k+11 1 k k X Y c += (2) 其中1k c +是k Y 绝对值最大的分量。序列{}k X 和{}k c 将分别收敛到V 和λ: 1lim k X V =和lim k c λ= (3) 注:如果0X 是一个特征向量且0X V ≠,则必须选择其他的初始向量。 幂法定理:设n ×n 矩阵A 有n 个不同的特征值λ1,λ2,···,,λn ,而且它们按绝对 值大小排列,即: 123n λλλλ≥≥≥???≥ (4) 如果选择适当的X 0,则通过下列递推公式可生成序列{[() ()( ) ]}12k k k k n X x x x '=???和 {}k c : k k Y AX = (5) 和: 11 1k k k X Y c ++= (6) 其中: () 1k k j c x +=且{} ()()1max k k j i i n x x ≤≤= (7) 这两个序列分别收敛到特征向量V 1和特征值λ1。即: 1lim k k X V →∞ =和1lim k k c λ→∞ = (8) 算法收敛性证明 证明:由于A 有n 个特征值,所以有对应的特征向量V j ,j=1,2,···n 。而且它们是

实现稀疏矩阵(采用三元组表示)的基本运算实验报告

实现稀疏矩阵(采用三元组表示)的基本运算实验报告 一实验题目: 实现稀疏矩阵(采用三元组表示)的基本运算二实验要求: (1)生成如下两个稀疏矩阵的三元组a 和b;(上机实验指导P92 )(2)输出a 转置矩阵的三元组; (3)输出a + b 的三元组; (4)输出a * b 的三元组; 三实验内容: 3.1 稀疏矩阵的抽象数据类型: ADT SparseMatrix { 数据对象:D={aij| i = 1,2,3,….,m; j =1,2,3,……,n; ai,j∈ElemSet,m和n分别称为矩阵的行数和列数 } 数据关系 : R={ Row , Col } Row ={ | 1≤ i≤m , 1≤ j≤ n-1} Col ={| 1≤i≤m-1,1≤j≤n} 基本操作: CreateSMatrix(&M)

操作结果:创建稀疏矩阵M PrintSMatrix(M) 初始条件:稀疏矩阵M已经存在 操作结果:打印矩阵M DestroySMatrix(&M) 初始条件:稀疏矩阵M已经存在 操作结果:销毁矩阵M CopySMatrix(M, &T) 初始条件:稀疏矩阵M已经存在 操作结果:复制矩阵M到T AddSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的和Q=M+N SubSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的差Q=M-N TransposeSMatrix(M, & T) 初始条件:稀疏矩阵M已经存在

操作结果:求矩阵M的转置T MultSMatrix(M, N, &Q) 初始条件:稀疏矩阵M已经存在 操作结果:求矩阵的积Q=M*N }ADT SparseMatrix 3.2存储结构的定义 #define N 4 typedef int ElemType; #define MaxSize 100 //矩阵中非零元素最多个数typedef struct { int r; //行号 int c; //列号 ElemType d; //元素值 } TupNode; //三元组定义 typedef struct { int rows; //行数值 int cols; //列数值 int nums; //非零元素个数

算法分析与设计实验报告

算法设计与分析实验报告 班级:计科0902班 姓名:张华敏 学号:0909090814

矩阵连乘问题 一,实验内容: 二,写一个完整的代码来完整的实现矩阵连乘问题。 三,算法设计: 在矩阵连乘问题中,根据老师所讲和自己看书对动态规划方法的理解,通过最优子结构性质。再结合书上的算法,便可顺利的写出了代码 四,遇到的问题及解决方案: 只根据算法写出具体的实现过程刚开始觉得很难,觉得无从下手,不知道该用什么结构形式来存放各个参数,也不知道该怎样具体的实施算法的细节,但是课本上给出了一段实现代码给了我很大的启发,通过借鉴树上的代码实现再结合自己的努力,才终于完成了矩阵连乘全部的代码实现,包括最少连乘次数以及剖分方法。 五,源代码 package suanfa; public class Juzhen { public void matrixchain(int p[],int m[][],int s[][]){ i nt n=p.length-1; f or(int i=1;i<=n;i++){ m[i][i]=0; } f or(int r=2;r<=n;r++){ for(int i=1;i<=n-r+1;i++){ int j=i+r-1;

m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j]; s[i][j]=i; for(int k=i+1;k

矩阵乘法的并行化 实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称: 学生姓名: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验内容与步骤 实验1,矩阵乘法的串行实验 (1)实验内容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵连乘问题算法分析与设计

矩阵连乘问题《算法分析与设计》

设计性实验报告 课程名称:《算法分析与设计》矩阵连乘问题实验题目:长:组员一:成 二:成员成员三:数学与计算机科学系别:系专业班级:指导教师:实验日期: 一、实验目的和要求

实验目的 熟悉动态规划算法设计思想和设计步骤,掌握基 本的程序设计方法,培养学生用计算机解决实际问题的能力。 实验要求 1、根据实验内容,认真编写源程序代码、上机调试程序,书写实验报告。 2、本实验项目考察学生对教材中核心知识的掌握程度和解决实际问题的能力。 3、实验项目可

以采用集中与分散实验相结合的方式进行,学生利用平时实验课时间和课外时间进行 实验,要求在学期末形成完整的项目程序设计报告。 二、实验内容提要 矩阵连乘问题给定n个矩阵{A,A,…,A}, 其中,Ai与Ai+1是可乘的,n21A,A,…,A。由于矩阵乘法满足结n-1。考查这n个矩阵的连乘积i=1,2,…,n12合律,故计算矩阵的连乘积可以有 许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反 复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可 递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 三、实验步骤下面考虑矩阵连乘积的最优计算次序问题的动态规划方法。(1)分析最优解的结构(最优子结构性质)设计求解具体问题的动态规划算法的第一步是刻画该问 题的最优解结构特征。对于矩阵乘积的最优计算次序问题也不例外。首先,为方便起见,降- 1 - 矩阵乘积Ai Ai+1…Aj简记为A[i:j]。

矩阵连乘实验报告

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:软件12K1 学生姓名:吴旭 学号:121909020124 成绩: 指导老师:刘老师实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号 的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在A k和A k+1之间将矩阵链断开,1n,则其相应的完全加括号方式为((A1…A k)(A k+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后将计

算结果相乘得到A[1:n]。 2、建立递归关系 设计动态规划算法的第二步是递归定义最优值。对于矩阵连乘积的最优计算次序问题,设计算A[i:j],1i n,所需的最少数乘次数为m[i][j],原问题的最优值为m[1][n]。 当i=j时,A[i:j]=A i为单一矩阵,无需计算,因此m[i][i]=0,i=1,2,…n。 当i

数据结构实验报告稀疏矩阵运算

教学单位计算机科学与技术 学生学号 5 数据结构 课程设计报告书 题目稀疏矩阵运算器 学生豹 专业名称软件工程 指导教师志敏

实验目的:深入研究数组的存储表示和实现技术,熟悉广义表存储结构的特性。 需要分析:稀疏矩阵是指那些多数元素为零的矩阵。利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算效率。实现一个能进行稀疏矩阵基本运算的运算器。要求以带“行逻辑信息”的三元组顺序表存储稀疏矩阵,实现两矩阵的相加、相减、相乘等运算。输入以三元组表示,输出以通常的阵列形式列出。 软件平台:Windows 2000,Visual C++ 6.0或WINTC 概要设计:ADT Array { 数据对象: D = {aij | 0≤i≤b1-1, 0 ≤j≤b2-1} 数据关系: R = { ROW, COL } ROW = {| 0≤i≤b1-2, 0≤j≤b2-1} COL = {| 0≤i≤b1-1, 0≤ j≤b2-2} 基本操作: CreateSMatrix(&M); //操作结果:创建稀疏矩阵M. Print SMatrix(M); //初始化条件: 稀疏矩阵M存在. //操作结果:输出稀疏矩阵M. AddSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M与N的行数和列数对应相等. //操作结果:求稀疏矩阵的和Q=M+N. SubSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M与N的行数和列数对应相等. //操作结果:求稀疏矩阵的差Q=M-N. MultSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M的列数等于N的行数. //操作结果:求稀疏矩阵的乘积Q=M*N. } ADT Array

求矩阵的基本运算

求矩阵的基本运算 #include #include void jiafa() { int m,n; float a[20][20],b[20][20],c[20][20]; int i,j; printf("请输入矩阵行数:"); scanf("%d",&m); printf("请输入矩阵列数:"); scanf("%d",&n); printf("请输入第一个矩阵:"); for(i=0; i

数学实验矩阵的运算

数学实验报告 学院: 班级: 学号: 姓名: 完成日期:

实验四矩阵的运算 (一)投入产出分析 一.实验目的 1.理解投入产出分析中的基本概念和模型; 2.从数学和投入产出理论的角度,理解矩阵乘法、逆矩 阵等的含义。 二.问题描述 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、部需求、初始投入等如表1-1所示 表1-1国民经济三产部门之间的投入产出表 根据表回答下列问题: (1)如果农业、制造业、服务业外部需求为50,150,100,问三个部门总产出分别为多少? (2)如果三个部门的外部需求分别增加一个单位,问

他们的总产出分别为多少? 三.实验过程 1.问题(1)的求解 (1)求直接消耗矩阵A 根据直接消耗的计算公式 a ij=x ij/x j 和各部门中间需求; x n a n 运行如下代码可得直接消耗系数表。 X=[15 20 30;30 10 45;20 60 0]; X_colsum=[100 200 150]; X_rep=repmat(X_colsum,3,1) A=X./ X_rep 运行结果为: A = 0.1500 0.1000 0.2000 0.3000 0.0500 0.3000 0.2000 0.3000 0 (2)求解 根据公式 X=(I-A)-1y 在运行如下代码

y=[50;150;100]; n=size(y,1); W=eye(n)-A; X=W\y 运行结果为 X = 139.2801 267.6056 208.1377 即三个部门的总产出分别为139.2801,267.6056, 208.1377亿元。 2.问题2求解 设外部需求由y增加至y+Δy,则产出x的增量为 Δx=(I-A)-1(y+Δy)- (I-A)-1y=(I-A)-1Δy 利用问题(1)求得的I-A矩阵,再运行如下的MATLAB 代码可得问题的结果: dx=inv(W) 运行结果: dx = 1.3459 0.2504 0.3443 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167

数据结构稀疏矩阵基本运算实验报告

课程设计 课程:数据结构 题目:稀疏矩阵4 三元组单链表结构体(行数、列数、头) 矩阵运算重载运算符优 班级: 姓名: 学号: 设计时间:2010年1月17日——2010年5月XX日 成绩: 指导教师:楼建华

一、题目 二、概要设计 1.存储结构 typedef struct{ int row,col;//行,列 datatype v;//非0数值 }Node; typedef struct{ Node data[max];//稀疏矩阵 int m,n,t;//m 行,n 列,t 非0数个数 … … 2.基本操作 ⑴istream& operator >>(istream& input,Matrix *A)//输入 ⑵ostream& operator <<(ostream& output,Matrix *A){//输出 ⑶Matrix operator ~(Matrix a,Matrix b)//转置 ⑷Matrix operator +(Matrix a,Matrix b)//加法 ⑸Matrix operator -(Matrix a,Matrix b)//减法 ⑹Matrix operator *(Matrix a,Matrix b)//乘法 ⑺Matrix operator !(Matrix a,Matrix b)//求逆 三、详细设计 (1)存储要点 position[col]=position[col-1]+num[col-1]; 三元组表(row ,col ,v) 稀疏矩阵((行数m ,列数n ,非零元素个数t ),三元组,...,三元组) 1 2 3 4 max-1

算法分析实验三报告

《算法设计与分析》实验报告

目录 一、实验内容描述和功能分析. 二、算法过程设计. 三、程序调试及结果(附截图). 四、源代码(附源代码).

一、实验内容描述和功能分析. 1.矩阵连乘问题 内容描述:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。 功能分析:输入包含多组测试数据。第一行为一个整数C,表示有C 组测试数据,接下来有2*C行数据,每组测试数据占2行,每组测试数据第一行是1个整数n,表示有n个矩阵连乘,接下来一行有n+1 个数,表示是n个矩阵的行及第n个矩阵的列,它们之间用空格隔开。输出应该有C行,即每组测试数据的输出占一行,它是计算出的矩阵最少连乘积次数。 例如:输入:1输出:7500 3 10 100 5 50 2.Pebble Merging 内容描述:在一个圆形操场的四周摆放着n 堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。 编程任务: 对于给定n堆石子,编程计算合并成一堆的最小得分和最大得分。 功能分析:输入由多组测试数据组成。每组测试数据输入的第1 行是正整数n,1≤n≤100,表示有n堆石子。第二行有n个数,分别表示每堆石子的个数。 对应每组输入,输出的第1 行中的数是最小得分;第2 行中的数是最大得分。 例如:输入:4 输出:43 4 4 5 9 54

二、算法过程设计. 1.矩阵连乘问题 矩阵连乘问题是通过设置数组,利用数组的横竖坐标来进行矩阵对应行与列的计算。 2.Pebble Merging 这个问题也是跟数组相关,通过寻找数组中的最大和最小值来进行计算。 三、程序调试及结果(附截图). 1.矩阵连乘问题 2.Pebble Merging

MATLAB矩阵实验报告

MATLAB 程序设计实验 班级:电信1104班 姓名:龙刚 学号:1404110427 实验内容:了解MA TLAB 基本使用方法和矩阵的操作 一.实验目的 1.了解MA TLAB 的基本使用方法。 2.掌握MA TLAB 数据对象的特点和运算规则。 3.掌握MA TLAB 中建立矩阵的方法和矩阵的处理方法。 二.实验内容 1. 浏览MATLAB 的start 菜单,了解所安装的模块和功能。 2. 建立自己的工作目录,使用MA TLAB 将其设置为当前工作目录。使用path 命令和工作区浏览两种方法。 3. 使用Help 帮助功能,查询inv 、plot 、max 、round 等函数的用法和功能。使用help 命令和help 菜单。 4. 建立一组变量,如x=0:pi/10:2*pi ,y=sin(x),在命令窗口显示这些变量;在变量窗口打开这些变量,观察其值并使用绘图菜单绘制y 。 5. 分多行输入一个MA TLAB 命令。 6. 求表达式的值 ()6210.3424510w -=+? ()22tan b c a e abc x b c a ππ++ -+=++,a=3.5,b=5,c=-9.8 ()220.5ln 1t z e t t =++,21350.65i t -??=??-?? 7.已知 1540783617A --????=??????,831253320B -????=????-?? 求 A+6B ,A 2-B+I A*B ,A.*B ,B*A A/B ,B/A [A,B],[A([1,3], :); B^2]

8.已知 23100.7780414565532503269.5454 3.14A -????-??=????-?? 输出A 在[10,25]范围内的全部元素 取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 分别求表达式E

数据结构三元组表存储结构实现稀疏矩阵应用课程方案实验报告

高二《数系的扩充与复数的概念》说课稿 高二《数系的扩充与复数的概念》说稿 《数系的扩充与复数的概念》是北师大版普通高中程标准数学实验教材选修1-2第四第一节的内容,大纲时安排一时。主要包括数系概念的发展简介,数系的扩充,复数相关概念、分类、相等条,代数表示和几何意义。 复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认识,也为进一步学习数学打下了基础。通过本节学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。 在学习了这节以后,学生首先能知道数系是怎么扩充的,并且这种扩充是必要的,虚数单位公开《数系的扩充与复数的概念》说稿在数系扩充过程中的作用,而复数就是一个实数加上一个实数乘以公开《数系的扩充与复数的概念》说稿。学生能清楚的知道一个复数什么时候是虚数,什么时候是纯虚数,两个复数相等的充要条是什么。让学生在经历一系列的活动后,完成对知识的探索,变被动地“接受问题”为主动地“发现问题”,加强学生对知识应用的灵活性,深化学生对复数的认识,从而提高分析问题和解决问题的能力。 教学目标为:1.在问题情境中了解数系的扩充过程。体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的

作用,感受人类理性思维的作用以及数与现实世界的联系。. 2.理解复数的有关概念、数系间的关系、和几何表示。 3.掌握复数的分类和复数相等的条。 4体会类比、转化、数形结合思想在数学发现和解决数学问题中的作用。 教学重点为认识i的意义、复数的有关概念以及复数相等的条. 教学难点为复数相关概念的理解和复数的几何意义的理解 复数的概念是整个复数内容的基础,复数的有关概念都是围绕复数的代数表示形式展开的。虚数单位、实部、虚部的命名,复数想等的充要条,以及虚数、纯虚数等概念的理解,都应促进对复数实质的理解,即复数实际上是一有序实数对。类比实数可以用数轴表示,把复数在直角坐标系中表示出,就得到了复数的几何表示,这就把数和形有机的结合了起。 在学习本节的过程中,复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,采用讲解已学过的数集的扩充的历史,让学生体会到数系的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类。由于学生对数系扩充的知识不熟悉,对了解实数系扩充到复数系的过程有困难,也就是对虚数单位公开《数系的扩充与复数的概念》说稿的引入难以理解。另外虚数单位公开《数系的扩充与复数的概念》说

MATLAB矩阵运算基础练习题

第2章 MATLAB 矩阵运算基础 2.1 在MA TLAB 中如何建立矩阵?? ?? ??194375,并将其赋予变量a ? 2.2 请产生一个100*5的矩阵,矩阵的每一行都是[1 2 3 4 5] 2.3产生一个1x10的随机矩阵,大小位于(-5 5) 2.2 有几种建立矩阵的方法?各有什么优点? 可以用四种方法建立矩阵: ①直接输入法,如a=[2 5 7 3],优点是输入方法方便简捷; ②通过M 文件建立矩阵,该方法适用于建立尺寸较大的矩阵,并且易于修改; ③由函数建立,如y=sin(x),可以由MATLAB 的内部函数建立一些特殊矩阵; ④通过数据文件建立,该方法可以调用由其他软件产生数据。 2.3 在进行算术运算时,数组运算和矩阵运算各有什么要求? 进行数组运算的两个数组必须有相同的尺寸。进行矩阵运算的两个矩阵必须满足矩阵运算规则,如矩阵a 与b 相乘(a*b )时必须满足a 的列数等于b 的行数。 2.4 数组运算和矩阵运算的运算符有什么区别? 在加、减运算时数组运算与矩阵运算的运算符相同,乘、除和乘方运算时,在矩阵运算的运算符前加一个点即为数组运算,如a*b 为矩阵乘,a.*b 为数组乘。 2.5 计算矩阵??????????897473535与???? ??????638976242之和,差,积,左除和右除。 2.6 求?? ?? ??+-+-+-+-++=i 44i 93i 49i 67i 23i 57i 41i 72i 53i 84x 的共轭转置。 2.7 计算???? ??=572396a 与??????=864142b 的数组乘积。 2.8 “左除”与“右除”有什么区别? 在通常情况下,左除x=a\b 是a*x=b 的解,右除x=b/a 是x*a=b 的解,一般情况下,a\b ≠b/a 。 2.9 对于B AX =,如果??????????=753467294A ,???? ??????=282637B ,求解X 。 2.10 已知:???? ??????=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。 2.11 ??????-=463521a ,?? ????-=263478b ,观察a 与b 之间的六种关系运算的结果。

矩阵运算实验报告

实验报告 --矩阵运算 一.实验目的。 1.通过实践加强对程序设计语言课程知识点的理解和掌握,培养对课程知识综合运用能力、实际分析问题能力及编程能力,养成良好的编程习惯。 2.通过实践进一步领会程序设计的特点和应用,提高运用C++ 语言以及面向对象知识解决实际问题的能力。 3.通过实践掌握用C++ 语言编写面向对象的实用程序的设计方法,对面向对象方法和思想增加感性的认识; 4.学会利用C++程序设计语言编写出一些短小、可靠的Windows实用程序,切实提高面向对象的程序设计能力。为后续的相关课程的学习打下基础。 二.实验要求。 1.学会建立模板类; 2.实现矩阵的“加”、“减”、“乘”、“数乘”、“转置”; 3.动态存分配并用随机数填充; 4.注意“加”、“减”、“乘”要进行条件的判断; 三.设计思路。

3.1算法基本流程 1)获取用户输入的矩阵1的行数和列数,动态生成一个一维数组 2)利用随机数生成数组成员,并利用两个循环输出数组,使其符合矩阵的格式 3)矩阵2同矩阵1的处理方法 4)通过两个矩阵的行数和列数比较来判断能否进行加减乘等运算,如不能,输出相关信息 5)如能够进行计算,则利用数组进行相应运算,并按照正确格式输出 6)通过改变一维数组中元素的顺序来实现转置并输出 3.2算法流程图

四.基本界面。

五.关键代码。 5.1关键类的声明 class CMatrixclass { public: CMatrixclass() { int m_Row = 0; //行 int m_Col = 0; //列 m_pElements = NULL; //一维数组

矩阵连乘备忘录算法

湖南涉外经济学院计算机科学与技术专业 《算法设计与分析》课程 矩阵连乘备忘录算法 实验报告 班级: 学号: 姓名: 教师: 成绩: 2012年5月 【实验目的】 1 掌握动态规划算法和备忘录方法; 2 利用动态规划备忘录思想实现矩阵连乘; 3 分析实验结果,总结算法的时间和空间复杂度。思考是否能将算法的时间复杂度提高到 O(nlgn) 【系统环境】 Windows 07 平台 【实验工具】 VC++6.0中文企业版 【问题描述】 描述:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1可乘的,i=1,2,…,n-1。找出这个n个矩阵的连乘A1A2…An所需相乘的最少次数的方式。 例:矩阵连乘积A1A2A3A4可以有一下五种不同的完全加括号方式: (A1(A2(A3A4)))

(A1((A2A3)A4)) ((A1A2)(A3A4)) ((A1(A2A3))A4) (((A1A2)A3)A4) 【实验原理】 原理:1、矩阵连乘满足结合律,且不同的结合方式,所需计算的次数不同。 2、利用备忘录方法,用表格保存以解决的子问题答案,降低重复计算,提高效率。 思路:m初始化为0,表示相应的子问题还位被计算。在调用LookupChain时,若m[i][j]>0,则表示其中储存的是所要求子问题的计算结果,直接返回此结果即刻。否则与直接递归算法一样,自顶而下的递归计算,并将计算结果存入m[i][j]后返回。因此,LookupChain总能返回正确的值,但仅在它第一次被调用时计算,以后调用就直接返回计算结果。 方法:用MemorizedMatrixChain函数将已经计算的数据存入表中,用LookupChain函数配合MemorizedMatrixChain函数递归调用计算。 【源程序代码】 #include #include #include #define N 10 int p[N],m[N][N],s[N][N]; int LookupChain(int i,int j); //备忘录算法函数 int MemorizedMatrixChain(int n,int **m,int **s) { for(int i=1;i<=n;i++) for(int j=i;j<=n;j++) m[i][j]=0;

矩阵乘法的并行化实验报告

科技大学计算机与通信工程学院 实验报告 实验名称: 学生: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验容与步骤 实验1,矩阵乘法的串行实验 (1)实验容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

相关文档
最新文档