中考数学压轴题专题旋转的经典综合题

中考数学压轴题专题旋转的经典综合题
中考数学压轴题专题旋转的经典综合题

一、旋转真题与模拟题分类汇编(难题易错题)

1.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.

(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;

(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;

(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.

【答案】(1)见解析(2)AD=BE+DE (3)8

【解析】

试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;

(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;

(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,

∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,

CE CF

ACF BCE

AC BC

=

?

?

∠=∠

?

?=

?

,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即

AD+BE=DE;

(2)解:如图②,在AD上截取DF=DE.∵CD⊥AE,∴CE=CF,

∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE.在△ACF和△BCE中,

CE CF

ACF BCE

AC BC

=

?

?

∠=∠

?

?=

?

,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即

AD=BE+DE;

故答案为:AD=BE+DE.

(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=6.∵S△BCE=2S△ACD,∴AF=2AD,∴AD=1

12

×6=2,∴AE=AD+DE=2+6=8.

点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.

2.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.

(1)如图1,若α=90°,则AB=,并求AA′的长;

(2)如图2,若α=120°,求点O′的坐标;

(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.

【答案】(1)10,102;(2)(339);(3)12354

5

(,)

【解析】

试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则

∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则

O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求

出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作

P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.

试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,

∴AB==5,

∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,

∴△ABA′为等腰直角三角形,∴AA′=BA=5;

(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,

∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣

∠HBO′=30°,

∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为

();

(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,

∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,

则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),

设直线O′C的解析式为y=kx+b,

把O′(),C(0,﹣3)代入得,解得,

∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P

(,0),

∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,

∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,

∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,

∴P′点的坐标为(,).

考点:几何变换综合题

3.如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.

(1)求证:MN⊥CE;

(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.

【答案】(1)证明见解析;(2)证明见解析.

【解析】

试题分析:(1)延长DN交AC于F,连BF,推出DE∥AC,推出△EDN∽△CFN,推出DE EN DN

==,求出DN=FN,FC=ED,得出MN是中位线,推出MN∥BF,证

CF CN NF

△CAE≌△BCF,推出∠ACE=∠CBF,求出∠CBF+∠BCE=90°,即可得出答案;

(2)延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,求出BG=2MN,证△CAE≌△BCG,推出BG=CE,即可得出答案.

试题解析:

(1)证明:延长DN交AC于F,连BF,

∵N 为CE 中点, ∴EN=CN ,

∵△ACB 和△AED 是等腰直角三角形,∠AED=∠ACB=90°,DE=AE ,AC=BC , ∴∠EAD=∠EDA=∠BAC=45°, ∴DE ∥AC , ∴△EDN ∽△CFN ,

DE EN DN

CF CN NF == , ∵EN=NC ,

∴DN=FN ,FC=ED ,

∴MN 是△BDF 的中位线, ∴MN ∥BF , ∵AE=DE ,DE=CF , ∴AE=CF ,

∵∠EAD=∠BAC=45°, ∴∠EAC=∠ACB=90°, 在△CAE 和△BCF 中,

CA BC CAE BCF AE CF ??

∠∠???

=== , ∴△CAE ≌△BCF (SAS ), ∴∠ACE=∠CBF , ∵∠ACE+∠BCE=90°, ∴∠CBF+∠BCE=90°, 即BF ⊥CE , ∵MN ∥BF , ∴MN ⊥CE .

(2)证明:延长DN 到G ,使DN=GN ,连接CG ,延长DE 、CA 交于点K ,

∵M 为BD 中点, ∴MN 是△BDG 的中位线, ∴BG=2MN , 在△EDN 和?

CGN 中, DN NG

DNE GNC EN NC ??

∠∠???

===, ∴△EDN ≌△CGN (SAS ), ∴DE=CG=AE ,∠GCN=∠DEN , ∴DE ∥CG , ∴∠KCG=∠CKE ,

∵∠CAE=45°+30°+45°=120°, ∴∠EAK=60°, ∴∠CKE=∠KCG=30°, ∴∠BCG=120°, 在△CAE 和△BCG 中,

AC BC CAE BCG AE CG ??

∠∠???

=== , ∴△CAE ≌△BCG (SAS ), ∴BG=CE , ∵BG=2MN , ∴CE=2MN .

【点睛】考查了等腰直角三角形性质,全等三角形的性质和判定,三角形的中位线,平行线性质和判定的应用,主要考查学生的推理能力.

4.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字

为止.

(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;

(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.

【答案】(1)1

3

;(2)不公平.

【解析】

试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.

(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.

试题解析:(1)共有12种等可能的结果,小于10的情况有4种,

所以指针所指区域内的数字和小于10的概率为1

3

(2)不公平,因为小颖获胜的概率为;

小亮获胜的概率为

5

12

.小亮获胜的可能性大,所以不公平.

可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.

考点:1.游戏公平性;2.列表法与树状图法.

5.在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.

(1)如图1,直接写出∠ABD和∠CFE的度数;

(2)在图1中证明:AE=CF;

(3)如图2,连接CE,判断△CEF的形状并加以证明.

【答案】(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.【解析】

试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.

(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.

(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.

(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.

∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.

∴∠CFE=∠A+∠ABD=45°.

(2)如图,连接CD、DF.

∵线段BC绕点B逆时针旋转60得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.

∴CD=BD.

∵线段BD平移到EF,∴EF∥BD,EF=BD.

∴四边形BDFE是平行四边形,EF= CD.

∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.

∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.

∴△AEF≌△FCD(AAS).

∴AE=CF.

(3)△CEF是等腰直角三角形,证明如下:

如图,过点E作EG⊥CF于G,

∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.

∵∠A=300,∠AGE=90°,∴.

∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.

∴EF=EC.

∴∠CEF=∠FEG=90°.

∴△CEF是等腰直角三角形.

考点:1.旋转和平移问题;2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质;5.平行四边形的判定和性质;6.全等三角形的判定和性质;7.含30度直角三角形的性质;8.垂直平分线的判定和性质;9.等腰直角三角形的判定.

6.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).

(1)求AB的长;

(2)当∠BAD=45°时,求D点的坐标;

(3)当点C在线段AB上时,求直线BD的关系式.

【答案】(1)5;(2)D(4,7)或(-4,1);(3)

【解析】

试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根

据勾股定理求解即可;

(2)根据旋转的性质结合△BOA 的特征求解即可;

(3)先根据点C 在线段AB 上判断出点D 的坐标,再根据待定系数法列方程组求解即可. (1)在时,当

时,

,当

时,

(2)由题意得D (4,7)或(-4,1); (2)由题意得D 点坐标为(4,)

设直线BD 的关系式为

∵图象过点B (0,4),D (4,

∴,解得

∴直线BD 的关系式为.

考点:动点的综合题

点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.

7.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点

A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,

B ,

C 的对应点分别为

D ,

E ,

F .

(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标; (Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证ADB AOB △△≌; ②求点H 的坐标.

(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).

【答案】(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见解析;②点H 的坐标为17(,3)5

.(Ⅲ)

3033430334

44

S -+≤≤

. 【解析】

分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;

(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;

②由①知BAD BAO ∠=∠,再根据矩形的性质得CBA OAB ∠=∠.从而

BAD CBA ∠=∠,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得

答案;

(Ⅲ)

3033430334

S -+≤≤

. 详解:(Ⅰ)∵点()5,0A ,点()0,3B , ∴5OA =,3OB =. ∵四边形AOBC 是矩形,

∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=?. ∵矩形ADEF 是由矩形AOBC 旋转得到的, ∴5AD AO ==.

在Rt ADC 中,有222AD AC DC =+, ∴22DC AD AC =

- 22534=-=.

∴1BD BC DC =-=. ∴点D 的坐标为()1,3.

(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=?. 又点D 在线段BE 上,得90ADB ∠=?.

由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=?, ∴Rt ADB Rt AOB ≌.

②由ADB AOB ≌,得BAD BAO ∠=∠. 又在矩形AOBC 中,//OA BC ,

∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =. 设BH t =,则AH t =,5HC BC BH t =-=-.

在Rt AHC 中,有222AH AC HC =+, ∴()2

2235t t =+-.解得175t =

.∴175

BH =. ∴点H 的坐标为17,35??

???

.

(Ⅲ)

3033430334

44

S -+≤≤

. 点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.

8.如图1,直线DE 上有一点O ,过点O 在直线DE 上方作射线OC ,∠COE =140°,将一直角三角板AOB 的直角顶点放在点O 处,一条直角边OA 在射线OD 上,另一边OB 在直线DE 上方,将直角三角板绕着点O 按每秒10°的速度逆时针旋转一周,设旋转时间为t 秒.

(1)当直角三角板旋转到如图2的位置时,OA 恰好平分∠COD ,求此时∠BOC 的度数; (2)若射线OC 的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA 、OC 、OD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t 的取值,若不存在,请说明理由;

(3)若在三角板开始转动的同时,射线OC 也绕O 点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC 平分∠BOD .直接写出t 的值.(本题中的角均为大于0°且小于180°的角)

【答案】(1)∠BOC =70°;(2)存在,t =2,t =8或32;(3)12或

37

2

. 【解析】 【分析】

(1)由图可知∠BOC =∠AOB ﹣∠AOC ,∠AOC 可利用角平分线及平角的定义求出.

(2)分OA 平分∠COD ,OC 平分∠AOD ,OD 平分∠AOC 三种情况分别进行讨论,建立关

于t的方程,解方程即可.

(3)分别用含t的代数式表示出∠COD和∠BOD,再根据OC平分∠BOD建立方程解方程即可,注意分情况讨论.

【详解】

(1)解:∵∠COE=140°,

∴∠COD=180°﹣∠COE=40°,

又∵OA平分∠COD,

∴∠AOC=1

2

∠COD=20°,

∵∠AOB=90°,

∴∠BOC=90°﹣∠AOC=70°;

(2)存在

①当OA平分∠COD时,∠AOD=∠AOC,即10°t=20°,解得:t=2;

②当OC平分∠AOD时,∠AOC=∠DOC,即10°t﹣40°=40°,解得:t=8;

③当OD平分∠AOC时,∠AOD=∠COD,即360°﹣10°t=40°,解得:t=32;

综上所述:t=2,t=8或32;

(3)1

2

37

2

,理由如下:

设运动时间为t,则有

①当90+10t=2(40+15t)时,t=1 2

②当270﹣10t=2(320﹣15t)时,t=37 2

所以t的值为1

2

37

2

【点睛】

本题主要考查角平分线的定义以及图形的旋转,根据题意,找到两个角之间的等量关系建立方程并分情况讨论是解题的关键.

中考数学专题训练---圆的综合的综合题分类含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E. (1)求证:AC∥OD; (2)如果DE⊥BC,求AC的长度. 【答案】(1)证明见解析;(2)2π. 【解析】 试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度. 试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO, ∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD; (2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三 角形,∴∠AOC=60°,∴弧AC的长度=606 180 π? =2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用. 2.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析. 【解析】 【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下: 【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC. (1)判断直线BE与⊙O的位置关系,并证明你的结论; (2)若sin∠ABE= 3 3 ,CD=2,求⊙O的半径. 【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3 . 【解析】 分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下: 连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC. ∵OD=OE,∴∠OED=∠ODE. 又∵∠ABE=∠DBC,∴∠ABE=∠OED, ∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°, ∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

中考数学旋转综合练习题

一、旋转真题与模拟题分类汇编(难题易错题) 1.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为 (4,m)(5≤m≤7),反比例函数y=16 x (x>0)的图象交边AB于点D. (1)用m的代数式表示BD的长; (2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD ①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值; ②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值. 【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5 【解析】 【分析】 (1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论; (2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣1 2 (m﹣8)2+24,即可 得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】 解:(1)∵四边形OABC是矩形, ∴AB⊥x轴上, ∵点B(4,m), ∴点D的横坐标为4, ∵点D在反比例函数y=16 x 上, ∴D(4,4), ∴BD=m﹣4; (2)①如图1,∵矩形OABC的顶点B的坐标为(4,m), ∴S矩形OABC=4m, 由(1)知,D(4,4), ∴S△PBD=1 2(m﹣4)(m﹣4)= 1 2 (m﹣4)2,

∴S=S矩形OABC﹣S△PBD=4m﹣1 2(m﹣4)2=﹣ 1 2 (m﹣8)2+24, ∴抛物线的对称轴为m=8, ∵a<0,5≤m≤7, ∴m=7时,S取到最大值; ②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G, ∴∠DGP=∠PFE=90°, ∴∠DPG+∠PDG=90°, 由旋转知,PD=PE,∠DPE=90°, ∴∠DPG+∠EPF=90°, ∴∠PDG=∠EPF, ∴△PDG≌△EPF(AAS), ∴DG=PF, ∵DG=AF=m﹣4, ∴P(m,m﹣4), ∵点P在反比例函数y=16 x , ∴m(m﹣4)=16, ∴m=2+25或m=2﹣25(舍). 【点睛】 此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键. 2.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

图形的旋转综合练习题(通用)

图形的旋转 1、如图,将△ABC绕点A旋转50°后成为△AB′C′,那么点B的对应点是_____,点C的对应点是_________,线段AB的对应线段是线段________,线段BC的对应线段是线段_________;∠B的对应角是_________,∠C的对应角是__________,旋转中心是点_______,旋转的角度是_____________; 2、如图,△ABC是等腰三角形,∠BAC=36°,D是BC上一点, △ABD经过旋转后到达△ACE的位置, ⑴旋转中心是哪一点? ⑵旋转了多少度? ⑶如果M是AB的中点,那么经过上述旋转后,点M转到了 什么位置? 4、如图,四边形ABCD是正方形,△DAE旋转后能与△DCF重合。 ⑴旋转中心是哪一点? ⑵旋转了多少度? ⑶如果连接EF,那么△DEF是怎样的三角形? 5:钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心; (2)经过20分,分针旋转了多少度? A E M A B C D E F

6:本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度? 旋转的特征 A C′ B′ B C 3:(1)将一个平面图形F上的每一点,绕这个平面一_____ 点旋转,得到图形F’, 图形的这种变换就叫做旋转。(2)对应点到对应中心的距离____________.(3)对 应点与旋转中心所成的角彼此_______ ,且等于_________角(4)旋转不改变 图形的________和_______ . 4、如图,△ABC按逆时针方向转动一个角后到△AB′C′,则线段AB=_______, AC=_______,BC=________;∠BAC=_________,∠B=_________,∠C=___________;

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

中考数学压轴题专题旋转的经典综合题含详细答案

一、旋转 真题与模拟题分类汇编(难题易错题) 1.在△ABC 中,AB=AC ,∠BAC=α(?<

(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=?-?=?。 又∵∠DEC=45°,∴△DCE 为等腰直角三角形。 ∴DC=CE=BC 。 ∵∠BCE=150°,∴(180150) EBC 152 ?-?∠= =?。 而1 EBC 30152 α∠=?-=?。∴30α=?。 (1)∵AB=AC ,∠BAC=α,∴180ABC 2 α ?-∠= 。 ∵将线段BC 绕点B 逆时针旋转60°得到线段BD ,∴DBC 60∠=?。 ∴180ABD ABC DBC 603022 αα ?-∠=∠-∠= -?=?-。 (2)由SSS 证明△ABD ≌△ACD ,由AAS 证明△ABD ≌△EBC ,即可根据有一个角等于60?的等腰三角 形是等边三角形的判定得出结论。 (3)通过证明△DCE 为等腰直角三角形得出(180150) EBC 152 ?-?∠==?,由(1) 1 EBC 302α∠=?-,从 而1 30152 α?-=?,解之即可。 2.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)请问EG 与CG 存在怎样的数量关系,并证明你的结论; (2)将图①中△BEF 绕B 点逆时针旋转45°,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由) 【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立 【解析】 【分析】 (1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG =EG . (2)结论仍然成立,连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点;再证

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

中考数学压轴题专题

中考数学压轴题专题Prepared on 21 November 2021

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-=。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

旋转综合题

旋转综合题 1. .如图13,在平面直角坐标系xOy 中,直线23 3 +- =x y 分别交x 轴、y 轴于C 、A 两点.将射线AM 绕着点A 顺时针旋转45°得到射线AN.点D 为AM 上的动点,点B 为AN 上的动点,点C 在∠MAN 的内部. (1) 求线段AC 的长; (2) 当AM ∥x 轴,且四边形ABCD 为梯形时,求△BCD 的面积; (3) 求△BCD 周长的最小值; (4) 当△BCD 的周长取得最小值,且BD= 52 时,△BCD 的面积为 . (第(4)问只需填写结论,不要求书写过程) 图13 解:(1)∵直线 y = - 3 3 x +2与x 轴、y 轴分别交于C 、A 两点, ∴ 点C 的坐标为(23,0),点A 的坐标为(0,2).----------------------1分 ∴ AC =4. -----------------------------2分 (2)如图1,当AD ∥BC 时, 依题意,可知∠DAB = 45°, ∴ ∠ABO = 45°. ∴ OB = OA = 2. ∵ OC = 23, ∴ BC = 23-2. ∴ S △BCD = 2 1 BC ?OA = 23-2.---------------------------3分 如图2,当AB ∥DC 时. 可得S △BCD = S △ACD . 设射线AN 交x 轴于点E . ∵ AD ∥x 轴, ∴ 四边形AECD 为平行四边形. ∴ S △AEC = S △ACD .

图3 F E D C B A 图2 F E D C B A 图1 N M P ∴ S △BCD =S △AEC = 2 1 CE ?OA= 23-2. 综上所述,当AM ∥x 轴,且四边形ABCD 为梯形时,S △BCD = 23-2. ----------4分 (3)如图3,作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2. ---------------------------------5分 由轴对称的性质,可知CD=C 1D ,CB=C 2B . ∴ C 2B + BD + C 1D= CB + BD +CD. 连结AC 1、AC 2, 可得∠C 1AD=∠CAD ,∠C 2AB=∠CAB ,AC 1=AC 2=AC=4. ∵ ∠DAB = 45°, ∴ ∠C 1AC 2 =90°. 连结C 1C 2. ∵ 两点之间线段最短, ∴ 当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2 的长. ∴△BCD 的周长的最小值为42. ------------7分 (4) 4 3 . --------------------------------8分 图1 图2 图3 2. 如图1,点P 是线段MN 的中点,请你利用该图形画一对以点P 为对称中心的全等三角 形. 请你参考这个作全等三角形的方法,解答下列问题: (1)如图2, 在Rt △ABC 中,∠BAC =90°,AB >AC ,点D 是BC 边中点,过D 作射 线交AB 于E ,交CA 延长线于F ,请猜想∠F 等于多少度时,BE =CF (直接写出结果,不必证明). (2)如图3,在△ABC 中,如果∠BAC 不是直角,而(1)中的其他条件不变,若BE =CF 的结论仍然成立,请写出△AEF 必须满足的条件,并加以证明.

中考数学易错题综合专题一 附答案详解

易错题数学组卷 一.选择题(共3小题) 1.下列各式计算正确的是() A.2x3﹣x3=﹣2x6B.(2x2)4=8x8C.x2?x3=x6D.(﹣x)6÷(﹣x)2=x4 2.(2008?临沂)若不等式组的解集为x<0,则a的取值范围为()A.a>0 B.a=0 C.a>4 D.a=4 3.(2008?临沂)如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且A E=BF=CG,设△E FG的面积为y,AE的长为x,则y关于x的函数的图象大致是() A.B.C.D. 二.解答题(共4小题) 4.(2012?鸡西)顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度. (1)在网格中画出△ABC向上平移4个单位后得到的△A1B1C1; (2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2; (3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积. 5.如图,在△ABC中∠BAC=90°,AB=AC=2,圆A的半径1,点O在BC边上运动(与点B,C不重合),设BO=x,△AOC的面积是y.

(1)求y关于x的函数关系式及自变量的取值范围; (2)以点O为圆心,BO为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积. 6.(2009?黄石)正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物线y=ax2+bx ﹣4过A、D、F三点. (1)求抛物线的解析式; (2)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N,若S四边形AFQM=S△FQN,则判断四边形AFQM的形状; (3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得AP⊥PH且AP=PH?若存在,请给予严格证明;若不存在,请说明理由. 7.(2007?重庆)下图是我市去年夏季连续60天日最高气温统计图的一部分. 根据上图提供的信息,回答下列问题: (1)若日最高气温为40℃及其以上的天数是最高气温为30℃~35℃的天数日的两倍,那么日最高气温为30℃~35℃的天数有_________天,日最高气温为40℃及其以上的天数有_________天;

中考数学压轴题专题训练

2018中考数学压轴专题一、动点与面积问题 例1 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-1, 0),B (4, 0)两点,与y 轴交于点C (0, 2).点M (m , n )是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上.过点M 作x 轴的平行线交y 轴于点Q ,交抛物线于另一点E ,直线BM 交y 轴于点F . (1)求抛物线的解析式,并写出其顶点坐标; (2)当S △MFQ ∶S △MEB =1∶3时,求点M 的坐标. 例2如图,已知抛物线2 12 y x bx c = ++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0). (1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围; ②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个. 例3如图,已知二次函数的图象过点O (0,0)、A (4,0)、B (43 2,3 -),M 是OA 的中点. (1)求此二次函数的解析式; (2)设P 是抛物线上的一点,过P 作x 轴的平行线与抛物线交于另一点Q ,要使四边形PQAM 是菱形,求点P 的坐标; (3)将抛物线在x 轴下方的部分沿x 轴向上翻折,得曲线OB ′A (B ′为B 关于x 轴的对称点),在原抛物线x 轴的上方部分取一点C ,连结CM ,CM 与翻折后的曲线OB ′A 交于点D ,若△CDA 的面积是△MDA 面积的2倍,这样的点C 是否存在?若存在求出点C 的坐标;若不存在,请说明理由. 例4如图,直线l 经过点A (1,0),且与双曲线m y x = (x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平 行线分别交曲线m y x =(x >0)和m y x =-(x <0)于M 、N 两点. (1)求m 的值及直线l 的解析式; (2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;

相关文档
最新文档