氮气在食品中的应用

氮气在食品中的应用

前言叙述:一直以来国家对食品安全非常重视,随着社会的发展,经济的不断进步,人们对用的、吃的要求也越来越高。本文我们要讨论的是氮气在食品包装中的应用。

氮气包装的优势。

我们知道氮气是一种惰性气体,化学性质很稳定,不容易与其它物资反应。相对于干燥空气包装氮气包装用到食品包装中可以有效的延长食品的保质期。然而用到不同的食品上延长的保质期有所不同。在超市总大家会遇到那种袋装的鼓鼓的食品,例如袋装散称面包,袋装薯片等,目前这些都是用干燥空气包装的,然而随着社会发展的趋势所迫,现在这些空气包装逐渐的被氮气所代替。空气包装空气中含有氧,一些细菌在有氧的环境下回生长,代谢导致食品变质,然而用氮气就不一样了,氮气中不含氧气或氧气含量很低这些细菌在无氧或极低的有氧环境中不易生长,从而食物就不会变质。根据一些用氮气包装的厂家提供,用氮气包装可以有效的延长2到3个月。用到肉类包装上比如鸭肉上可以有效的延长7到10天。

氮气包装国家要求:

国家规定氮气包装的氮气纯度需要达到99.9%即可,当然纯度越高越好,但所需的成本也会高。然而苏州奋力净化科技公司针对氮气食品包装上推出的小型一体式高纯度制氮机有效的解决了客户用氮气成本高的困难。在市场上得到了广大食品厂家的认可。

柠檬酸在食品中的应用

柠檬酸在食品中的应用 陆英杰 摘要柠檬酸以其独特的性质在食品加工业中具有广泛应用,是一种用量相当大的食品添加剂,文章概述柠檬酸的性状及在食品工业中的主要用途。 关键词柠檬酸食品应用 一、前言 柠檬酸是水果、蔬菜中分布最广的有机酸,也是食品中应用最广泛的酸味剂。柠檬酸是一种重要的有机酸,又称枸橼酸,无色晶体,常含一分子结晶水,无臭,有很强的酸味,易溶于水。其钙盐在冷水中比热水中易溶解,此性质常用来鉴定和分离柠檬酸。结晶时控制适宜的温度可获得无水柠檬酸。柠檬酸分无水柠檬酸和一水柠檬酸。同时柠檬酸还有许多其他用途,如作为抗氧化剂增效剂、漂白剂增效剂、果酱凝结剂、水果护色剂、增香剂及鱼类、羊奶的除臭剂等。 自然界中柠檬酸广泛存在于柠檬、橙、桔子等水果中。工业生产主要采用合成法和发酵法,而工业上使用的柠檬酸多由黑曲霉发酵法生产。 二、性状特点 柠檬酸易溶于水、乙醇,溶于乙醚。无水柠檬酸在水中的溶解度溶解性好1. 很大,100℃为84%。25℃时政乙醇中的溶解度为58.9%。此外,柠檬酸和其衍生物的丙二醇溶液还可溶于油脂。由于水溶性和脂溶性较好,柠檬酸

易于均匀地分散于各类食品中。 温和芳香,在所有有机酸中是最可口的,并能与多种香料混合产酸味纯正2. 生清爽的酸味,故事用于许多食品。同时由于柠檬酸的弱酸性,在一定pH 范围内能抑制细菌繁殖,起到防腐作用。. 柠檬酸由于含有三个羧基故可形成三种形式的盐,但除碱金属盐螯合力强3. 外,其他盐大多不溶或难溶于水。它还有一种奇特的性质,就是在冷水中比在热水中易溶。 如与磷酸氢二钠以不同比例混合,可得到2~8的系能与碱或盐组成缓冲剂4. 列缓冲液。 在人体内柠檬酸为三羧酸循环的重要中间体,毒性小。毒性小5. 三、应用 广泛应用于各种饮料、果汁、罐头、糖果、果酱、果冻柠檬酸作为酸味剂1. 的生产,使产品的酸味清爽可口,并有果味的香甜。柠檬酸本身是果汁的天然成分之一,不仅赋予饮料水果风味,而且具有增溶、缓冲、抗氧化等作用,能使饮料中的糖、香精、色素等成分交融协调,形成适宜的口味和风味。 在蔗糖液中添加适量柠檬酸可使其转化为糖,以提高蔗柠檬酸作蔗糖转化剂2.

制氮机在不同行业中的应用

制氮机在不同行业中的应用

1、制氮机在石油/天然气的应用 石油天然气行业专用制氮机主要用于大陆石油及天然气开采、沿海及深海石油及天然气开采中的氮气保护、输送、覆盖、管网置换、抢险、维修、注氮采油、稀释氮含量、LNG参氮等领域。 2、制氮机在煤矿的应用 煤矿注氮技术是针对井下采煤市场需求而创新研发的系列产品,它们可以有效的抑制井下煤

矿瓦斯爆炸、煤尘爆炸,为井下安全采煤作业提供了有力的保障。为井下采煤作业提供卧式移动注氮产品,尤其超大型注氮产品填补了国内无法向井下提供注氮产品的空白,我们还积极扩大产品和服务范围,在地面固定和移动式系列产品的研发成功,方便了用户对产品的选择。 煤矿制氮机应用于煤炭开采中的防火灭火、瓦斯及煤气稀释等领域,设备具有地面固定式、地面移动式、井下移动式三种规格,充分满足不同工况下的氮气需求。 3、制氮机在橡胶/轮胎的应用 氮气硫化工艺技术取代了传统的过热水硫化工艺,在橡胶/轮胎行业取得了成功,氮气硫化技术优势:

?减少产生蒸汽工艺所必需的公用工程投资,同时降低NOX、COX的排放量,达到节能减排环保的目的 ?氮气硫化工艺稳定,降低轮胎硫化中缺胶、脱层、气泡的现象,提高轮胎质量 ?热损失小,节约能源,降低成本 ?高纯度氮气消除硫化胶囊在氧气作用下过早老化损坏,胶囊寿命延长25-50%,节省设备操作和维修费用 ?提高产品质量,轮胎性能指标在里程数、耐久性、均匀性、压穿能力都有所提高 ?操作方便,在一定范围内压力可调,升压时间短

?氮气可以回收利用,回收率在40%左右 4、制氮机在食品/饮料的应用 食品储存和液体充氮保鲜技术处于行业领先地位,我们的设备覆盖全国各主要粮仓,有效的抑制了粮食仓存过程中病虫害的生存,我们的氮封技术在啤酒和食品包装行业得到了广泛应用,氮封技术的引入大幅度延长了产品保鲜周期,解除了用户产品滞销所带来的后顾之忧。 食品行业专用制氮装置适用于粮食绿色仓储、

有机化学在食品防腐剂中的应用

有机化学在食品防腐剂中的应用 摘要随着社会发展和人民生活水平的提高,对于自身健康的考虑,广大消费者对食品防腐剂提出了越来越苛刻的要求。目前我国使用的食品防腐剂有哪些?他们对人体有害么?人们应该如何正确看待食品防腐剂?这正是本文着重论述的。 关键词食品防腐剂苯甲酸山梨酸丙酸盐危害 1.什么是食品防腐剂 食品在物理、生物化学和有害微生物等因素的作用下,可失去固有的色、香、味、形而腐烂变质,有害微生物的作用是导致食品腐烂变质的主要因素。可以用物理方法或化学方法来防止有害微生物的破坏。所谓化学方法就是利用抑菌或杀菌(延缓或制止腐烂)的化学药剂,这些化学药剂称为防腐剂。防腐剂的使用为食品防腐提供了有效、简便、经济的方法。 2.食品防腐剂的作用机理 传统研究认为,食品防腐剂的作用机理主要表现在如下三个方面: (1)作用于细胞壁和细胞膜系统; (2)作用于遗传物质或遗传微粒结构; (3)作用于酶或功能蛋白。 近年来,人们进一步研究发现,防腐剂主要是抑制微生物的呼吸作用,不同的抗菌剂的抗菌效力也存在差异。目前,食品防腐剂的防腐机理仍在研究之中。 食品防腐剂的用量逐年增加,如美国80年代以来的年增长率约3.0%。山梨酸及其盐类的应用越来越广。在日本所用的防腐剂中,苯甲酸钠仅占约3%,山梨酸及山梨酸钾已高达90%以上。新近开发的富马酸二甲酯用于面包防霉的效果大大优于丙酸钙。此外,人们还正在研究从天然的香辛料植物中提制具有防腐作用的物质用作食品防腐剂。 3.食品防腐剂的种类 防腐剂按来源分,有化学防腐剂和天然防腐剂两大类。化学防腐剂又分为有机防腐剂与无机防腐剂。前者主要包括苯甲酸、山梨酸等,后者主要包括亚硫酸盐和亚硝酸盐等。我主要论述的是有机化学防腐剂。 有机化学防腐剂:主要包括苯甲酸及其盐类、山梨酸及其盐类、丙酸盐、对羟基苯甲酸的酯类等。苯甲酸及其盐、山梨酸及其盐等均是通过未解离的分子起抗菌作用。它们均需转变成相应的酸后才有效,故称酸型防腐剂。它们在酸性条件下对霉菌、酵母及细菌都有一定的抑菌能力,常用于果汁、饮料、罐头、酱油、醋等食品的防腐。此外,丙酸及其盐类对抑制使面包生成丝状粘质的细菌特别有效,且安全性高,近年来被广泛用于面包、糕点等的防腐。 下面我分别介绍一下各种有机防腐剂的特点。 2.1 对羟基苯甲酸酯类( 甲、乙、丙、异丙、丁、异丁、庚等酯) 也称为尼泊金酯, 其抑菌机理与苯甲酸基本相同,主要是使微生物细胞呼吸系统和电子传递酶系统的活性受抑制, 并能破坏微生物细胞膜的结构, 从而起到防腐的效果。对羟基苯甲酸酯类防腐效果不随pH 值而变化, 在pH4~8 范围内均有较好效果, 故可被用于代替酸性防腐剂, 且毒性低于苯甲酸( 但高于山梨酸) 。由于它具有酚羟基结构, 所以抗细菌性能比苯甲酸、山梨酸都强, 对霉菌、酵母也有较强作用。最大的缺点是有特殊气味, 在水中溶解度差, 其溶解度随酯基碳链长度的增加而

超低温液氮冷冻技术在各行业中的应用

超低温液氮冷冻技术在各行业中的应用 液氮 液氮即液态氮气,分子量28.013,相对密度0.8081(-195.8 ),密度1.2507kg/m3(在0,l大气压时),熔点-209.86,沸点-195.8,临界温度-147.05,临界压力3.39Mpa (33.5大气压),临界密度0.31公斤/公斤,液态密度0.8l公斤/公斤(沸点),蒸发潜热161.19千焦耳/公斤,定压比热1.034千焦耳/公斤·;热传导率2.28×10-4焦耳/厘米·秒·。为无色透明、无味、无毒之低粘度的透明液体,不导热导电,不自燃助燃,化学性质稳定,不与任何物质起化合作用。1单位体积的液氮可产生约650倍体积的氮气,氮气是空气的主要组成部分,在空气中的含量高达78%(体积),液氮作为空气液化分离的最大宗产品、工业制氧的副产品,一般纯度达99.99%。液氮在常温下很容易气化,保存困难,运输携带也较麻烦,在无液氮生产的地区,应用受到限制。 液氮是一个较为方便的冷源,因液氮特有的性质,已逐步受到人们的重视和认可,在畜牧业、医疗事业、食品工业、以及低温研究领域等方面得到越来越普遍的应用。在电子、冶金、航天、机械制造等方面应用不断拓宽和发展。 一、在畜牧业方面的应用 1、广泛用于家畜冻配改良技术 在多种家畜中,牛的精液冷冻制备、保存技术最为成功,自上个世纪五十年代已形成一套完整定型的工艺流程。 牛精液冷冻的冷源普遍应用液氮。颗粒精液在经液氮冷却的氟板(聚四氟乙烯)、铜纱网、铝板上滴冻。要使承接精液的表面与液氮面保持——定的距离(1~2厘米)。在滴冻的过程中,要维持在-80~-120的温度。滴冻前将经过平衡的精液充分混匀,并检查精子的活率。滴要迅速,颗粒要均匀,每毫升经过稀释的精液滴10粒左右为宜。滴冻结束后,要停留2~3分钟,待所有颗粒已冻结立即投入液氮。经抽样检查(一般随机抽取2粒) ,解冻活率在0.3以上者,即可装于纱布袋中,经标记后在液氮中保存。每滴冻完一头公牛的精液后,必须更换氟板等用具。目前,细管的容量分0.25毫升和0.5毫升两种,由无毒塑料(聚氯乙烯)制成。管的一端填有棉塞和聚乙烯粉末,粉末遇水即固化自动封口,输精时又成为推送精液的活塞;另一端在注入精液后,可以聚乙烯粉或钢珠(或塑料珠)封口,要注意在封口处与精液间留有10~13毫米的空间,防止冷冻过程中因膨胀引起细管爆裂。 超低温液氮冷冻技术在各行业中的应用 精液的贮存牛的冷冻精液是以液氮做冷源进行贮存的,需要时可随时取出。为防止温度变化对精液品质的影响,取放动作要迅速,尽量减少在空气中停留的时间。从贮存容器中提取冷冻精液时,精液不应超过液氮容器的颈基部,避免因温度的回升造成精液解冻活率的下降。牛的冷冻精液已有40多年的历史。试验证明,保存至今的冷冻精液仍具有授精能力。但一般认为牛的冷冻精液随保存时间的延长,精子的活力和授精能力逐渐降低。牛冷冻精液长期保存的确切时限,尚需继续研究和观察。 2、家畜及多种动物的胚胎移植中,制备保存胚胎 目前多采用胚胎冷冻仪,属智能型冷冻仪。该仪器采用微机控制技术,专用软件,能较准确地控制液氮的施放量,从而保证被冻存的生物制品以适宜的冷冻速率降温冷冻。 3、液氮超低温保藏微生物技术 将菌种保藏在-196的液氮长期保藏方法,它的原理是利用微生物在-130以下新陈代谢趋于停止而有效地保藏微生物。大型真菌是菌物中的一个重要类群(菌物中形成大型子实体的一类真菌,泛指广义上的蘑菇或蕈菌),很多种类具有较高的营养价值和药用价值,是目前菌物中最有开发应用前景的一类;此外,一些大型真菌能够分解枯死植物,对维持自然界物

化学在生活中的应用分析

化学在生活中的运用 作为一门基础的自然科学,化学在生活中运用非常广泛,对人类发展有着重大意义。众所周知,我们周围的事物都是由许许多多形形色色的化学元素组成的,包括我们人体不可缺少的许多元素以及衣、食、住、行,可以说化学无处不在。随着生产力的发展,科学技术的 进步,化学与人们生活的关系越来越密切。化学在人类的生产和生活中发挥了不可估量的作用。 众所周知,水是地球上所有生命赖以生存的基础。水是生命 的起源,远古时期最早的生命诞生在古老的海洋里,即使实现登陆,生命的存在仍然以水作为首要条件。即使在当今代表了最尖 端科技的航天领域,对外太空生命的探索仍然以水作为第一判断 条件,可以说没有水,一切生命创造的精彩都将不复存在。当今 世界,经济在高速发展,我们对于水需求更大,然而我们却在面 临前所未有的水危机。全世界很多国家国家中,有超过一半的国 家缺水,可见我们面临的形势有多么危急。我国水形势亦不容乐 观:中国是世界上缺水国家之一,全国全国很多城市中目前大约 一半的城市缺水,水污染的恶化更使水短缺雪上加霜:我国江河 湖泊普遍遭受污染,湖泊出现了不同程度的富营养化;城市水域 污染严重,南方城市总缺水量,水污染降低了水体的使用功能, 加剧了水资源短缺,对我国可持续发展战略的实施带来了负面影 响。我们的水资源正在遭受各种污染的侵袭,水污染严重破坏生 态环境、影响人类生存,要想实现人类社会的可持续发展,首先

要解决水污染问题。 由有害化学物质造成水的使用价值降低或丧失称之为水污 染。水的污染有两类:一类是自然污染;另一类是人为污染。而 后者是主要的。水污染可根据污染杂质的不同而主要分为化学性 污染、物理性污染和生物性污染三大类。化学性污染物又可分为:无机污染物、无机有毒物、有机有毒物、需氧污染物、植物营养物、油类物质等;物理性污染又可分为:悬浮物污染、放射性污染、热污染;生物污染主要指造成疾病的病原体对水体的污染。 历史上著名的全球十大环境公害中竟有三件是水污染,它们是水俣病事件、骨痛病事件和剧毒物质污染莱茵河事件。造成的危害是巨大而长久的,给人类带来了无比的伤痛。近些年来发生的水污染事件依旧触目惊心:淮河水污染事件:淮河上游的河南境内突降暴雨,颍上水库水位急骤上涨超过防洪警戒线,因此开闸泄洪将积蓄于上游一个冬春的2亿立方米水放了下来。水经之处河水泛浊,河面上泡沫密布,顿时鱼虾丧失。下游一些地方居 民饮用了虽经自来水厂处理,但未能达到饮用标准的河水后,出现恶心、腹泻、呕吐等症状。经取样检验证实上游来水水质恶化,沿河各自来水厂被迫停止供水很久,百万淮河民众饮水告急,不少地方花高价远途取水饮用,有些地方出现居民抢购矿泉水的场面,这就是震惊中外的"淮河水污染事件。金矿事件:罗马尼亚 境内一处金矿污水沉淀池,因积水暴涨发生温漫坝,含有大量氰化物、铜和铅等重金属的污水冲泄到多瑙河支流蒂萨河,并顺流

氮气在SMT行业的应用

-随着无铅制程已提上日程,如何顺利导入无铅化已成为SMT用户最关心的问题。怎样选择最社和自己生产的氮气源?如何确定氮气气氛的具体参数?成本到底增加多少?(一)氮气源的选择 其实氮气源的供应方式有好几种,你可以有气体分馏塔、向气体公司购买瓶装氮、向气体公司购买液氮和现场制氮(N2 generator)可供选择。 气体公司或者是N2使用量特别大的公司可以配备气体分馏塔(N2Distillation)其工作原理是把空气压缩,使其液化,然后在利用氮气、氧气的沸点不同,将其分馏。这种设备占地面积很大,而且造价昂贵,不适合一般企业。 气量很小的用户可以向气体公司购买钢瓶氮。用高压钢瓶储存氮气,然后直接运送到用气点进行使用。瓶装氮气具有随开随用、灵活方便等优点。但具有危险性高、成本高、运输储存麻烦等缺点。如果瓶装氮已不能满足目前生产,你就应该向气体公司购买液态氮气或者选用现场制氮来获取所需氮气。 用液氮储槽或杜瓦罐来储存液态氮气,在需要使用时将液氮气化成气态氮,经过减压、升温后才可使用。液氮具有方便快捷、随开随用等特点,但存罐中液氮需经常补充,这也给采购和运输带来麻烦与压力。同时长期大量使用液氮,成本高,运输麻烦,且受供给源的影响较大总体投资很大。 现场制氮又有膜分离制氮(Membrane)和变压吸附(Pressure Swing Adsorption)制氮机。 膜分离制氮机是在20世纪80年代兴起的高科技技术。该设备以空气为原料,中空纤维膜为分离利用氧和氮在膜组织里渗透速率不同——水和氧气可以通过而氮气则不能,从而实现氧氮分离。膜分离制氮机制出的氮气纯度较低,一般为95-99.9%。而且膜分离制氮机能耗大,而且其核心部件——中空纤维膜主要依赖进口,价格高,交货周期长,设备后续维护麻烦。 PSA制氮机主要以碳分子筛为吸附剂,压缩空气为主要原料,利用氧气和氮气吸附速率不同,碳分子筛优先吸附氧,而氮大部分富集于不吸附相中,实现氧气和氮气的分离,得到我们所需要的气体。利用这种变压吸附的原理和工艺,采用双吸附塔并联交替进行吸附,一塔工作一塔再生,连续产氮。一次性可能取纯度为98-99.99%的合格产品气(苏州高普公司生产的gaspu品牌制氮机一次性提取纯度可达98-99.995%)。 PSA制氮机制出的氮气若经过氮气纯化装置可进一步深度除氧,可得到99.9999%,即氧含量在1ppm以下的高纯度高品质氮气。 (二)怎样确定氮气氛的具体参数 SMT用户在决定使用氮气之前,先确定炉子中的氮气纯度(几个九,或氧含量的ppm 的值),再确定制氮机出口纯度。氧化反应的充要条件是氧分子的存在,同样条件下氧含量越高,氧化反应越激烈;反之氧含量越低,氧化反应越微弱。当然氮气纯度越高越好,但应考虑投资成本与产品的不良率和返工量的平衡。目前大多数的电子厂尚包括台湾鸿海精密股份(台湾富士康)都选择:99.99%即氧含量小于100ppm,也有选择:99.9%即氧含量小于1000ppm,少数选择:99.999%既氧含量小于10ppm。所以确切的纯度应根据产品的档次、允许的不良率、公司政策、产品对浸润性的要求等因素决定。 确定了炉子中氮气纯度后,再确定制氮机出口纯度,通常制氮机不与SMT生产线一起放在车里,而是放在屋顶,或车间外,通过管道输入炉子,之间有很多个连接口,很有可能造成氮气纯度下降,所以制氮机的出口纯度也要有余。并且单位时间的耗气量(通常以每小时多少立方米计算)不同品牌、不同型号的炉子耗气量也不同,输入PCB的尺寸不同耗气量也不同,链条转动的速度不同耗气量也不一样,所以确切的耗气量要以现场实验为依据。

食品生物化学在军用食品中的应用

新疆农业大学 专业文献综述 题目: 姓名: 学院: 专业: 班级: 学号: 指导教师: 职称: 教师 20 年月日 …………大学教务处制

生物技术在军用食品中的应用与展望 摘要:本文综述了基因工程、细胞工程、酶工程、发酵工程等生物工程技术在军用食品中的应用前景。由生物技术催生的军用食品新材料和新技术,主要包括功能食品基础原料、新型抑菌防腐材料、包装材料、食品添加剂及军用食品快速安全检测技术等。生物技术可有效改善食品品质和营养结构,促进军用食品由营养型向功能型转变。军用食品的未来将在生物技术的集成与耦合中创新发展。 关键词:生物技术;军用食品;功能基础原料;集成与耦合 20世纪70年代后期,随着DNA重组技术(recombinant technology of DNA)的诞生,以基因工程为核心内容,包括细胞工程、酶工程和发酵工程的生物技术应势而生。生物技术集合了分子生物学、生物化学、应用微生物学、化学工程、发酵工程、酶工程和电子计算机等诸多学科的最新科学成就,有助于解决食品、医药、化工、农业、环保、能源和国防等领域的资源紧缺难题,因此被列入当今世界七大高新技术之一,引起了世界各国的极大关注[1]。 生物技术最初源于传统的食品发酵,并首先在食品加工中得到广泛应用。如改良面包酵母菌种,就是基因工程应用于食品工业的第一个例子。基本原理是:将具有较高活性的酶基因转移至面包酵母菌(Saccharomycescer cvisiae),进而使生产菌中麦芽糖透性酶(mal to s epermease)及麦芽糖酶(maltase)的含量与活性高于普通面包酵母,使面团在发酵时产生大量的CO2,形成膨发性能良好的面团,从而提高面包的质量和生产效率。又如制造干酪的凝乳酶,过去的凝乳酶是从小牛胃中提取的,为了满足世界干酪的生产需求,每年全世界大约需要宰杀5000万头小牛。基因工程技术诞生后,通过把小牛胃中的凝乳酶基因转移至大肠杆菌(E.coli)或酵母中,即可通过微生物发酵方法生产凝乳酶,最后经过基因扩增,保证了干酪生产对凝乳酶的需求[1]。此外,酶法转化或酶工程的应用,也能有效改造传统的食品工业。因此,采用生物技术,不仅可以改良食品工业中原料和材料的品种,提高和改善食品工业酶的稳定性,而且还可解决食品资源紧缺难题。 随着科学技术的发展和高技术装备的应用,未来战争作战半径增大、节奏加快,作战人员智能、体能消耗突出,这对军用食品的发展提出了更高要求[2]。通过军用功能食品可快速调节士兵体能,全面提高

制氮机在各行业的应用

阀门切换过程自动控制 变压吸附的一个工作周期包括吸附、均压、脱附、均压四个工作过程,为了保证连续供气,一般采用双塔流程。变压吸附的一个工作周期约为120s,变压吸附氮气设备的控制系统的核心是采用可编程序控制器(PLC),利用已编好并存入PLC中的程序,控制电磁阀按相应的时序进行动作,从而控制氮氧分离系统中的相应的气动阀的启闭。 国家专利产品ZSGP管道式气动阀 瑞气ZSGP系列管道式气动阀属于国家专利产品,是自动化系统的主要管道元件之一,也是我公司在二十年研制变压吸附装置在管道控制介质流通上起主要切断和接通作用。适用于水、蒸汽及弱腐蚀性气体、液体等多种介质。该管道式气动阀是瑞气公司集二十多年变压吸附设备研制经验精心设计而成,结构简单且紧凑,构思巧妙,突破传统设计,执行机构活塞与阀芯一体制造;启闭过程中,密封面的摩擦力小;耐磨性好;启闭行程小,等于活塞的行程;启闭灵活,反映迅速,最适合于PSA设备,能在0.3秒内迅速完成启闭动作;指示直观,有反馈指示件的指示作用;安装维修方便,密封性能好,绝对零泄漏,便于远距离气动控制;阀前后压差波动小,对阀芯不平衡力及启闭速度无任何影响,使用寿命长,最高可达250万次以上。 RICH氮气设备的国家专利RL-VI流程技术 瑞气提供的是节能型碳分子筛制氮机,本装置采用了不等势均压流程,不等势均压对下均压位置作了改进。均压时均压气体从吸附结束的吸附塔中部引出进入脱附结束的吸附塔的底部,按照吸附塔内氮气纯度的倒金字塔型梯度分布特点进行均压,这样将氮气纯度较高的气体从吸附塔压到解吸塔,还原了床层固有的纯度梯度分布,提高了解吸塔的氮气浓度,同时降低了解吸塔内碳分子筛对氧气的预吸附,提高了碳分子筛的利用率,即提高碳分子筛的产氮率。不等势均压流程比等势均压流程更加合理、科学、成熟、其直接效果是氮气回收率提高,产气量上升,间接效果是节约能耗。 碳位报警系统 变压吸附氮气为了保障氮气设备的长期稳定的运行,设置了气缸压紧装置,并同时在控制系统中设置了二次碳位报警。第一次碳位报警是当气缸的行程达到设定值1时,在控制柜的面板上的蜂鸣器会发出刺耳的声音,提醒你在工艺允许的情况下,及早添加分子筛。当气缸的行程到达设定值2时,氮气设备的控制系统会自动停机以保护分子筛。 常温空分(PSA)制氮-- 热处理行业变压吸附制氮设备 镀锌板分为退火及镀锌工艺,对氮气纯度要求为99.9995%,要求配H25~20%,设备组成相当复杂。 山西大同齿轮集团有限责任公司

物理化学在食品中的应用

物理化学在食品中的应用 引言:多年来,人们一直寻求各学科的理论和方法来深入理解和研究食品的性质及其在加工和贮藏中的变化规律。这种努力使得今天的食品加工技术呈现出更多的科学内涵。这也促进了食品专业在教学与研究领域的改革。特别是在食品化学领域,国内外先后出版和再版了许多优秀的教材和参考书。这反映了该领域知识对食品工业的重要性,也说明了该领域的知识更新和研究进展是十分迅速的。摘要:将物理技术应用于食品果蔬的杀菌保鲜、加工,为食品贮藏、保鲜和加工工作开辟了一条新的途径,大量实验表明应用辐射场、静电场、高压脉冲电场、微波等物理技术处理食品果蔬可在不破坏食品的营养结构与原有风味的基础上起到杀虫、灭菌、防腐保鲜的作用.文章综述了近年来物理技术在食品杀菌、保鲜和加工方面取得的研究与应用成果,并对其未来的发展方向作了初步展望. 关键词:食品贮藏和加工物理技术果蔬保鲜杀菌(The preservation of fruits and vegetables, sterilization of food ,storage and processing of physics and technology) 1.1食品超高压杀菌技术 根据杀菌时温度不同,杀菌可分为热杀菌和冷杀菌。其中冷杀菌又根据使用手段不同分为物理杀菌和化学杀菌。冷杀菌中的物理杀菌是目前杀菌技术发展的趋势。物理杀菌克服了热杀菌和化学杀菌的不足之处,是运用物理方法,如高压、场(包括电尝磁场)、电子、光等的单一作用或两种以上的共同作用,在低温或常温下达到杀菌的目的。 超高压技术是90年代由日本明治屋食品公司首创的杀菌方法,它是将食品密封于弹性容器或置于无菌压力系统中,经100Mpa(约为987个大气压)以上超高压处理一段时间,从而达到加工保藏食品的目的。其特点是超高压技术进行食

氮气在煤矿防灭火中的应用

安全管理编号:LX-FS-A53269 氮气在煤矿防灭火中的应用 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

氮气在煤矿防灭火中的应用 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 煤矿防灭火对于惰性气体的定义与化学对惰性气体的定义不尽相同。在防灭火的工作实践中,惰气是指不参与燃烧反应的单一或混合的窒息性气体,其中可能含有少量的氧气。最常见的防灭火惰气是燃气、氮气和二氧化碳。 一、氮气的性质 众所周知,氮气的原料是空气。氮气是一种无色无味无毒无腐蚀,不自燃,也不参与燃烧的气体,标准状态下(21℃,101.325kpa),气体密度为 0.461kg/cm3,液体密度为80.8kg/m3,氮气在

氮气在焊接中的应用

从隧道式到屏蔽式:氮气在焊接中的应用 尽管七十年代初氮气就已经应用于电子制造,但直到引入了免清洗技术,因其需要在惰性气体环境中进行焊接,氮气的使用才得到广泛的认可。 1968首次进行惰性气体实验时,波峰焊接设备都是开放式的。既没有关于作业者安全和健康的规范,也没有密封(enclosure)的要求。最初,在波峰焊中使用氮气仅仅是为了降低成本: ?减少或消除氧化渣 ?减少机器的保养 ?改进免清洗焊接的性能 氮保护层 九十年代初期开发的设备已采用隧道式结构,以形成氮保护层(envelope)。保护层包围着波峰焊接传送带,阻止空气从入口和出口进出。隧道腔的垂直高度应尽可能低,密封框架上有窗口,便于观察焊接过程。也可以取下窗口,接触机器的内部,对机器进行维护和调整制程流程。 在印制板进出的过程中,注入焊接系统的氮气阻止空气从开口处进入。因此,氮气必须维持正压。一些轻的悬挂活动门铰接在隧道的长度方向,以减少空气的侵入。当电路组件靠近时,这些悬挂门可以向上翻转。 当氮气流出隧道进出口时,所有末端开口的隧道设计都有一些排放氮气的方法。通常需要平衡这种“废气”,以便将房间的空气送到排气管,这样有助于防止废气从隧道中抽吸过量的氮气。注意,此时的关键是要降低温度和减少氮气的损耗。隧道的长度可以很短,仅履盖预热区和焊接槽;也可以是很长,从上料端到下料端。因而,长隧道的设备实际上覆盖了助焊剂发配装置(fluxer)、预热区和波峰焊接区。 短隧道与长隧道之间的区别表现在所需氮气的量上:向系统注入杂质含量为 1ppm至2ppm的低温氮气时,焊接波峰周围的氧气杂质应低于10ppm。与长隧道相比,短隧道消耗更多的氮气,并且对车间的空气气流更加敏感。对空气气流的高敏感度往往会导致在波峰中所测量的纯度不稳定。 不管怎样,这种装置一直都在100ppm至200ppm的杂质含量下使用,而且它为焊接制程带来了明显的好处。你可以对现有设备进行改装,使其可以使用氮气,但这将是一个昂贵、耗时的过程。 屏蔽波峰 惰性气体环境中的波峰焊接还有另外一种方法,即采用屏蔽(shroud)设计制成的护罩,围绕在焊嘴的周围直至焊接波峰回落到焊接槽的位置。“喷雾器”位于护罩底部,供给氮气。 这种方法的主要优点是可以直接接触系统。在密封的系统中,有可能使表面黏着零配件的表面达到回流焊的温度,导致焊料回流。如果印制板翘曲或隧道出口处的“帘”接触了印制板上面的SMD,这种可能性将会增加。另一方面,采用这种“屏蔽”技术,完全消除了波峰焊后周围区域的温度问题。 Electrovert和Soltec公司已经制造出了在开放式波峰中使用氮气的焊接系统,他们发现氧化渣的减少同隧道式焊接系统做得一样好。“屏蔽”的结果可以与采用电镀、热涂或热风整平印制板的焊接组件所获得的结果相比。使用这项新技术的另外一个优点是,其氮气消耗量与最昂贵的封闭式波峰焊接系统相同,甚至更低。

(高考生物)食品生物化学在军用食品中的应用

(生物科技行业)食品生物化学在军用食品中的应用

新疆农业大学 专业文献综述 题目: 姓名: 学院: 专业: 班级: 学号: 指导教师: 职称: 教师 20年月日 …………大学教务处制 生物技术在军用食品中的应用与展望

摘要:本文综述了基因工程、细胞工程、酶工程、发酵工程等生物工程技术在军用食品中的应用前景。由生物技术催生的军用食品新材料和新技术,主要包括功能食品基础原料、新型抑菌防腐材料、包装材料、食品添加剂及军用食品快速安全检测技术等。生物技术可有效改善食品品质和营养结构,促进军用食品由营养型向功能型转变。军用食品的未来将在生物技术的集成与耦合中创新发展。 关键词:生物技术;军用食品;功能基础原料;集成与耦合 20世纪70年代后期,随着DNA重组技术(recombinanttechnologyofDNA)的诞生,以基因工程为核心内容,包括细胞工程、酶工程和发酵工程的生物技术应势而生。生物技术集合了分子生物学、生物化学、应用微生物学、化学工程、发酵工程、酶工程和电子计算机等诸多学科的最新科学成就,有助于解决食品、医药、化工、农业、环保、能源和国防等领域的资源紧缺难题,因此被列入当今世界七大高新技术之一,引起了世界各国的极大关注[1]。 生物技术最初源于传统的食品发酵,并首先在食品加工中得到广泛应用。如改良面包酵母菌种,就是基因工程应用于食品工业的第一个例子。基本原理是:将具有较高活性的酶基因转移至面包酵母菌(Saccharomycescercvisiae),进而使生产菌中麦芽糖透性酶(maltosepermease)及麦芽糖酶(maltase)的含量与活性高于普通面包酵母,使面团在发酵时产生大量的CO2,形成膨发性能良好的面团,从而提高面包的质量和生产效率。又如制造干酪的凝乳酶,过去的凝乳酶是从小牛胃中提取的,为了满足世界干酪的生产需求,每年全世界大约需要宰杀5000万头小牛。基因工程技术诞生后,通过把小牛胃中的凝乳酶基因转移至大肠杆菌(E.coli)或酵母中,即可通过微生物发酵方法生产凝乳酶,最后经过基因扩增,保证了干酪生产对凝乳酶的需求[1]。此外,酶法转化或酶工程的应用,也能有效改造传统的食品工业。因此,

氮气在石油和天然气工业上的应用

氮气在石油和天然气工业上的应用 一.氮气在油田中的应用 随着石油工业的发展,石油储量在逐年下降,石油的开采越来越困难了。然而仍然有近2/3的原油因为一二次未能采出而被封锁在地下,现在人们正为此而全力探索新方法和新技术。向油层注氮以提高原油采收率,就是其中一项新技术。利用氮气自身特性进行油层压力保持、混相与非混相驱及重力泄油等技术,可大大提高采收率,对我国石油工业稳产、高产具有很大意义。 按传统作业方法进行一次采油和二次采油采出的原油只有原始地质原油储量的1/3,仍有2/3左右的原油被封闭在油层中。在美国靠传统的开采技术已采出大约1000亿桶原油,油层中仍还有近70%的原油约3000亿桶残留在地下。要想尽可能多的采出这部分原油,就必须不断采取提高采收率的新方法。一般来说,向油藏中注入流体包括液体和气体,就是这样一种新方法。与注液体相比,注气具有注入质量少与油层不混相等优点。注入气体有空气、天然气、二氧化碳和氮气等。由于注入空气可能会导致空气和地下天然气混合达到爆炸极限,而产生爆炸,历史上曾发生过这种悲剧,因此现在注空气已被禁止或严格控制使用。 本世纪60年代期间,以天然气作为提高采收率的主气源,后因天然气供应不足及价格升高等原因,人们又寻求用二氧化碳做气源。但二氧化碳气源通常在远离井场的地方,因此使用也不方便,而且二氧化碳在原油中有一定的溶解。70年代后期,开始转向资源丰富的氮气,因为空气中就含有大量的氮气(空气中含有78%的氮气,21%的氧气,1%的其它气体)而且与天然气和二氧化碳相比具有无腐蚀、适应性好、经济等优点。三者相比较氮气的价格为每立方米约合人民币0.12-0.24元,天然气的价格为每立方米约合人民币0.46-1.38元,而二氧化碳的价格为每立方米约合人民币0.39-0.92元。目前,美国和加拿大每天向油层中注入高达一千四百多万立方米的氮气,用以提高原油的采收率。在美国实施注气的30个油田中,注氮气的就有25个。 从多油藏的角度看,油层注氮主要有如下几方面作用 1.保持油层压力 将油气层的压力保持或高于其露点压力或泡点压力,或保持在目前压力水平上,以使油气层流体能顺利流出。 2.重力泄油和非混相驱 根据氮气密度小的特点,将其注入构造顶部或允许其运移至构造顶部,增强向下驱替油层流体或重力和稳定混相段塞的作用,提高油气层流体的产量。 3.混相驱 利用氮气的多次接触混相作用驱替油气层中的油气。 4.驱动二氧化碳段塞

山梨酸及其盐类在食品中的应用

课程论文 题目:山梨酸及其盐类在食品中的应用姓名:倪迎春 专业班级:食品102班 学号:201016020213 2013年5 月4日

山梨酸及其盐类在食品中的应用 摘要:本文就山梨酸及其盐类的理化性质,对其生产方法做了简要阐述,同时着重分析了山梨酸及其盐类的实际应用。 关键词:山梨酸;山梨酸钾;防腐剂;原理;应用 1、山梨酸和山梨酸钾的结构及理化性质 山梨酸( Sorbic Acid) 化学名2, 4-二烯酸或2-丙烯基丙烯酸, 俗名花楸酸或清凉茶酸。是一种分子结构特殊的不饱和有机酸类不饱和六碳酸,即为具有共轭双烯的不饱和脂肪酸。结构中所含的羧基(-COOR)的α、β碳位与γ、δ碳位皆为(烯基)双键【1,2】,加之内部基团间的相互制约影响,使其性质较特异。 山梨酸为直链不饱和脂肪酸,有超反式(a型)、顺式(b型)、反式(c型)、超顺式(d型)四种同分异构体【1,2】。 山梨酸呈无色针状结晶或白色结晶粉末, 无味、无臭, 沸点228℃, 熔点130~135℃, 闪点127℃, 对光、热稳定, 易溶于乙醇、乙醚。山梨酸具有较高的抗菌活性, 能够抑制霉菌的生长繁殖。基于结构的共轭碳碳双键, 山梨酸的化学反应活性高, 易于进行加成、卤代、加氢、氧化、酯化、脱羧及共聚等多种反应。 山梨酸钾为最重要的山梨酸盐。结构式CH3CH=CHCH=CHCOOK。该盐系无色或白色的磷片状结晶粉末,无臭或微臭味,在空气中不稳定,能被氧化着色,有吸湿性,易于溶解于乙醇中【3】。

山梨酸钠是主要的山梨酸盐类之一。同山梨酸钾一样都属于新型食品防腐添加剂。 2、山梨酸的制备工艺 2.1丙二酸法 最早用于合成山梨酸的工艺路线是用巴豆醛和丙二酸在吡啶碱作用下缩合得到产品。该法工艺路线简单, 产品容易分离, 对原料丙二酸要求不严,所得产品质量好, 但丙二酸易脱羧生成乙酸, 巴豆醛易自聚, 这些副反应严重影响产品收率, 原料先经提纯, 产品收率也不超过60% , 另外丙二酸价格高, 使得产品的生产成本高, 经济效益较差。 2.2丙酮法 丙酮法是使丙酮和巴豆醛在Fe( OH) 3 催化剂存在下于60℃缩合生成巴豆烯叉丙酮, 经次氯酸钠、氢氧化钠处理得山梨酸钠, 再经硫酸酸化、水洗、重结晶制得山梨酸, 同时生成氯仿和丁缩醛。该法工艺较简单、原料便宜、催化剂价廉、产品质量好, 但反应步骤多、副产品多, 以巴豆醛计收率仅为60%。 2.3乙烯酮法 乙烯酮法是使巴豆醛和乙烯酮在催化剂存在下缩聚成聚酯, 再采用酸解法或者热裂解法解聚得山梨酸。乙烯酮是由醋酸在高温下催化裂解而得。巴豆醛由乙醇氧化乙醛、乙醛再缩合而得。该法是目前国内外生产山梨酸普遍采用的工业化生产路线。具有原料易得、生产成

氮气切割的应用领域

氮气切割的应用领域 川汇气体 氮气切割在实际生产中解决了许多加工难题,并且将加工范围扩大到了铝、黄铜等氧气切割很难加工的领域。下面介绍一下它在各种材料、领域中的应用。 1.碳钢 碳钢使用氧气切割。表面温度因为碳辅助熔化、氧气助燃而非常高。当切割尖锐角、直径小于料厚的孔时,狭小的区域内集中了过多的热量,使切割质量无法保证。氮气不辅助燃烧,加之具有的冷却作用,适合解决这类加工难题,能够提高产品质量。 2.不锈钢 从成本考虑,切割边氧化不影响使用的不锈钢零件采用氧气切割。但不锈钢中合金元素Ni等的含量较大,熔化物粘度大,流动性差,氧气切割时较低的气压容易导致粘渣等质量缺陷。焊接不锈钢时氧化层严重影响焊接质量,特别是氩弧焊。氮气切割提供的优质无氧化断面,满足了不锈钢焊接对切割断面的高要求。 3.铝、黄铜 铝、黄铜对激光有着高反射率、低吸收率,要求高功率来熔化材料。而且要配备反射吸收装置,使不平线性波不反射回透镜,来保护激光器的安全。要求氮气切割。 铝的熔点较低,3mm厚以下的可用氧气切割,但质量很差,断面而且毛刺坚硬。使用氮气切割断面光滑,4mm厚以下能够获得没有获得毛刺的效果。铝粘性大加上的热传导性,熔化物可能没来得及吹走就已经冷却了,所以容易出现毛刺。通过调整焦点,升高气压,降低速度来降低表面粗糙度值,以保证毛刺可轻易清除。 4.刻蚀 刻蚀是一种特殊切割,能量只有基本功率的5%。它仅对材料表面发生作用,主要用来刻蚀标记。氧气刻蚀温度高度,有时表面出现焊渣。集中刻蚀还会因热量

集中而损伤零件表面。氮气刻蚀光亮且不损伤表面,可用来刻蚀要求较高的说明文字。 氧气切割厚度大、成本低,主要应用于碳钢。氮气的冷却、保护作用提高了切割质量,并且在不锈钢、铝、黄铜的切割中取得良好效果,解决了许多加工难题。 另外,不辅助燃烧的特点还能用来加工木材、有机玻璃等特殊材料,有着广阔的应用前景。

表面活性剂在食品中的应用

表面活性剂在食品中的应用 摘要:本文对表面活性剂的种类和在食品中的应用作以介绍,并着重介绍单硬脂酸甘油酯用作表面活性剂的食品及其工艺。 关键词:表面活性剂、单甘脂、食品工业、蔗糖酯、化学。 前言 随着人民生活水平的提高,人们对食品的要求也越来越高,食品除了要满足最基本的营养价值之外,还应具有良好的色香味。因此在食品工业中越来越多的使用食品添加剂,表面活性剂就是最常见的一类食品添加剂。表面活性剂是分子里含有固定的亲水亲油基团,能集中在溶液表面、两种不相混溶液体的界面或者集中在液体和固体的界面,降低其表面张力或界面张力的一大类化合物。表面活性剂在食品工业中的应用非常广泛,在一些食品制作中添加表面活性剂,可以大大地改善加工条件,提高产品质量,延长食品保鲜期等。高质量的食品加工,是离不开表面活性剂的应用的。 正文 表面活性剂简介 凡能显著改变体系表面(或界面)状态的物质都称为表面活性剂。表面活性剂能大幅度降低体系的表面(或界面)张力,使体系产生润湿和反润湿?乳化和破乳?分散和凝聚?起泡和消泡?增溶等一系列作用。因此,在食品工业中,表面活性剂可作为乳化剂?分散剂?润湿剂?消泡剂?粘度调节剂?杀菌剂等。 食品用表面活性剂的种类 表面活性剂在食品工业中的使用是有严格限制的,不能对人体产生危害。联合国粮农组织和世界卫生组织(FAO/WHO)批准使用的表面活性剂有:甘油脂肪酸酯?蔗糖脂肪酸酯?大豆磷脂?乙酸及酒石酸一及二甘油脂?二乙酰酒石酸一及二甘油酯?柠檬酸酯?聚甘油脂肪酸及蓖麻酸脂?硬脂酰柠檬酸及酒石酸酯?硬脂

酰乳酸钙(钠)?硬脂酰富马酸钠?山梨糖醇酐脂肪酸酯?聚氧乙烯(20)及(40)硬脂酸酯等。高分子表面活性剂,如海藻酸钠?果胶酸钠?卡拉胶?壳聚糖水溶性蛋白等。它们大多数是半合成的多醇类非离子型表面活性剂,其中大豆磷脂及一些高分子表面活性剂为天然物。 表面活性剂在食品中的主要作用 1表面活性剂做乳化剂方面的应用 1乳化剂最主要的特性是使已形成的乳状液稳定,在一些食品应用中,此过程比初始的分散作用更重要更有意义。这类食品中聚结和失稳现象是我们所不希望发生的,亲水性单甘对乳状液具有良好的稳定性。 2. 化学合成单甘酯不仅具有分子蒸馏单甘的特性,而且其乳化性能更加优越,消泡、起泡、稳泡性能更加优良。 3. 亲水单甘酯是一种优质高效食品乳化剂和表面活性剂,用于面包、糕点、饼干、人造奶油、巧克力、冰淇淋、方便面、豆制品及蛋白类饮料,且有良好的乳化稳定、分散、消泡、保鲜、抗淀粉老化硬结等作用,是国际上公认的无毒、无限量使用的食品添加剂。 4. 在塑料橡胶类制品、纺织、日化、医药等行业中也有较广泛的应用。它除了具有乳化作用外还兼有发沉、消沉、防老及控制脂肪酸凝聚的作用,是一种典型的非离子型表面活性剂。 乳化剂的分子内通常具有亲水基(羟基等)和亲油基(烷基),易在水与油的界面上形成吸附层,属表面活性剂,可分为油包水型和水包油型两类。可用的乳化剂总数约65种,常用的有脂肪酸甘油酯(主要为单甘油脂)/脂肪酸蔗糖酯/脂肪酸山梨糖醇酐酯/脂肪酸丙二醇酯/大豆磷脂/阿拉伯树胶/海藻酸/酪蛋白酸钠/明胶和蛋黄等。乳化剂能改善乳化体中各种构成相互之间的表面张力,使之形成均匀的分散体或乳化体,从

氮气使用管理规定

文件编号:MYH.03/YK.ZD-02.37-2015(A/0) 神木化学工业 氮气使用安全管理办法

1 目的 为加强公司氮气的规使用,防止缺氧窒息事故的发生,保证岗位员工生命安全和国家财产安全,特制定本管理办法。 2 适用围 本办法适应于承包商、公司员工在生产区使用氮气过程的安全管理。 3 编制依据 3.1 《化学品生产单位受限空间作业安全规》 AQ3028-2008 3.2 《缺氧危险作业安全规程》 GB8958-2006 3.3 《低温液体贮运设备使用安全规则》 JBT6898-1997 3.4 《中国煤制油化工氮气使用安全管理办法》 4 术语定义 4.1 氮气取用连接点 通过一个或多个阀门与氮气源连接和断开来取用氮气的连接点。 4.2 常规氮气(含液氮)作业 通过压力管道连续或间断使用氮气且所用氮气作为工艺装置生产原料(含中间品和气提介质)、作为产品充装、工艺物料输送载体、工艺设备管道试压、气密或隔离气(含设备氮封)、工艺装置升降温和催化剂还原钝化带热载体气、装置事故紧急吹扫气、气体消防灭火系统原料气的作业。 4.3 非常规氮气(含液氮)作业 通过压力管道或橡胶管等临时管道连续或间断使用氮气、使用氮气作为工艺管道置换惰性气、工艺装置封闭保护气等的作业。 5 组织与职责 5.1 安健环部 5.1.1 负责《氮气使用安全管理办法》的制定。 5.1.2 负责监督检查现场氮气使用管理情况。 5.1.3 负责氮气防护用品的配备。 5.1.4 负责中心临时性氮气使用方案的审批。 5.2 生产运营部

5.2.1 负责氮气使用操作规程的编制、监督与考核。 5.2.2 负责全厂氮气管网的运行管理。 5.2.3 负责组织协调非常规状态下氮气的使用。 5.2.4 负责非常规状态下氮气使用方案的审批。 5.2.5 负责组织中心对氮气使用操作规程的编制和修订,并组织员工培训学习。 5.3 各中心 5.3.1 负责编制、上报非常规状态下氮气使用方案,并严格执行经生产运营部、安健环部审批的方案。 5.3.2 负责进行非常规状态下使用氮气的风险评价和现场处置。 5.3.3 负责本中心氮气的投用、使用和停用过程的安全管理。 5.4 作业负责人的职责 5.4.1 对临时氮气使用作业安全负全面责任。 5.4.2 向作业人进行作业程序和安全措施的交底。 5.4.3 在临时氮气使用作业环境、作业方案和防护设施及用品达到安全要求后,可安排作业人员进行作业。 5.4.4 在临时氮气使用作业区域及其附近发生异常情况时,应停止作业。 5.4.5 检查、确认应急准备情况,对临时氮气使用作业情况进行全过程监督。 5.4.6 对未经允许试图进入或已经进入临时氮气使用作业区域者进行劝阻或责令退出。 5.5 作业人的职责 5.5.1 在保障安全的前提下进入临时氮气使用作业区域实施作业任务,作业前应充分了解作业的容、地点(位号)、时间、要求,熟知作业中的危害因素和作业证中的安全措施。 5.5.2 在临时氮气使用作业环境达到安全要求,作业证上的安全防护措施经落实确认,审批人审批同意后,方可进行作业。 5.5.3 确认现场处于安全环境状态,检查和正确使用防护器具、急救器材。发现异常时,立即发出疏散警报,同时立即呼叫紧急救援。 5.5.4 经过专门培训合格后上岗,掌握应急救援和紧急救护的基本知识。 5.5.5 遵守临时氮气使用作业安全管理制度,应服从作业负责人的指挥。 5.6 监护人职责 5.6.1 对作业人的安全负有监督和保护的职责。

相关文档
最新文档