直流电机调速电路的设计

直流电机调速电路的设计
直流电机调速电路的设计

电力电子技术课程设计报告单相桥式可控整流电路的设计

姓名

学号

年级

专业

系(院)

指导教师

设计任务

一、设计内容:

1、根据给定参数设计直流电机调速电路。

2、根据给定参数设计环式直流电机调速电路,使用模拟电路元件实现环式直流电机调速系统。

二、设计要求:

1、根据设计要求完成系统的稳态参数设计计算、判断系统的稳定性、绘制系统的稳态结

构图。

2、按工程设计方法设计转速直流调速系统的调节器,选择调节器结构、利用伯德图

完成系统动态校正、计算系统的稳定余量γ及GM、计算调节器参数、绘制系统动态结构图。

3、设计采用模拟调节器及MOSFET功率器件实现的转速单闭环调速系统,绘制控制电

路及主电路电路图。

4、测试单闭环调速系统的PWM驱动信号波形、PWM电压波形、电机电流波形、转速反

馈波形和直流电动机转速及控制电路各单元的相关波形。

提交完整的直流电动机转速单闭环、转速电流双环闭环调速系统设计、测试报告书。

三、设计参数:

1、直流电动机参数:P

N =20W、U

N

=24V、I

N

=1.5A、n

N

=3000r/min、电枢电阻R

a

=1.8Ω

电枢电感L

a

=9.76mH、GD2=16.68N·cm2、Tm=35ms

2、测速发电机参数:U

n =80V,n

N

=3000r/min,P

N

=16W,I

N

=200mA,负载电阻R=400Ω

3、PWM主电路:驱动频率f≥100kHz,R=2.7+1.8=4.5Ω

4、设计指标:转速电流双闭环直流调速系统:U *

n =10V,U

im

=10V,I

dm

=1.5I

N

,σ

i

≤5%,

σn≤10%。

直流电机调速电路的设计

一、直流调速电路的组成及其静态结构图 1、直流调速系统的组成

直流电机调速系统是由单闭环自动调速系统发展而来的。单闭环调速系统使用了一个比例积分调节器组成速度调节器可以得到转速的无静差调节。从扩大调速范围的角度来看, 单环系统已能基本上满足生产机械对调速的要求。但是, 任何调速系统总是需要启动与停车的, 从电机能承受的过载电流有一定限制来看, 要求启动电流的峰值不要超过允许数值。为达到这个目的, 采用电流截止负反馈的系统, 它能得到启动电流波形, 见图2-1中实线所示。波形的峰值正好达到直流电动机所允许的最大冲击电流dm I , 其启动时间为1t 。

图2-1 带有截止负反馈系统启动电流波形

实际的调速系统, 除要求对转速进行调整外, 很多生产机械还提出了加快启动和制动过程的要求, 例如可逆轧钢, 龙门刨床都是经常处于正反转工作状态的, 为了提高生产率, 要求尽量缩短过渡过程的时间。从图2.1启动电流变化的波形可以看到, 电流只在很短的时间内就达到了最大允许值dm I , 而其他时间的电流均小于此值, 可见在启动过程中,电机的过载能力并没有充分利用。如果能使启动电流按虚线的形状变化, 充分利用电动机的过载能力, 使电机一直在较大的加速转矩下启动, 启动时间就会大大缩短, 只要2t 就够了。上述设想提出一个理想的启动过程曲线, 其特点是在电机启动时, 启动电流很快加大到允许过载能力值dm I , 并且保持不变, 在这个条件下, 转速n 得到线性增长, 当开到需要的大小时, 电机的电流急剧下降到克服负载所需的电流fz I 值,对应这种要求可控硅整流器的电压在启动一开始时应为dm I R ∑, 随着转速n 的上升, dm e U I R C n ∑=+ 也上升, 达到稳定转速时, fz e U I R C n ∑=+。这就要求在启动过程中把电动机的电流当作被调节量, 使之维持在电机允许的最大值dm I , 并保持不变。这就要求一个电流调节器来完成这个任务。带有速度调节器和电流调节器的双闭环调速系统便是在这种要求下产生的。如下图2-2

为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级联接,如图2-2所示。这就是说把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。从闭环结构上看,电流调节环在里面,叫内环;转速调节环在外边,叫做外环。这样就形成了转速、电流双闭环调速系统。

为了获得良好的静、动态性能,双闭环调速系统的两个调节器都采用PI调节器。采用PI型的好处是其输出量的稳态值与输入无关,而是由它后面环节的需要决定的。后面需要PI调节器提供多么大的输出值,它就能提供多少,直到饱和为止。

双闭环调速系统的静特性在负载电流小于最大电流

I时表现为转速无静差,这时,

d

max

转速负反馈起主要调节作用。当负载电流达到

I后,转速调节器饱和,电流调节器起

max

d

主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内、外两个闭环的效果。

2、稳态结构框图

为了分析双闭环调速系统的静特性,必须先绘出它的稳态结构框图,如下图2-4所示。电流调节器和转速调节器均为具有限幅输出的PI调节器,当输出达到饱和值时,输出量的变化不再影响输出,除非产生反向的输入才能使调节器退出饱和。当输出未达到饱和时,稳态的输入偏差电压总是为零。正常运行时,电流调节器设计成总是不会饱和的,而转速调节器有时运行在饱和输出状态,有时运行在不饱和状态。

分析静特性的关键是掌握这样的PI 调节器的稳态特征,一般存在两种状况:①饱和——输出达到限幅值。即饱和调节器暂时隔断了输入和输出间的联系,相当于使该调节环开环。②不饱和——输出未达到限幅值。即PI 的作用使输入偏差电压U ?在稳态时总为零。

实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有调速调节器饱和与不饱和两种状况:

(1)转速调节器不饱和:稳态时,他们的输入偏差电压都是零,因此*

0n

U n n α

=

=,而

得到下图2-5静特性的CA 段。

(2)转速调节器饱和: 输出达到限幅值*

im U ,转速外环呈开环状态,转速的变化对系

统不再产生影响。双闭环系统变成一个电流无静差的点电流闭环调节系统。稳态时

*im

d dm U I I β

==,从而得到下图2-5静特性的AB 段。

这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大,特别是为了避免零点漂移而采用“准PI 调节器”时,静特性的两段实际上都N 略有很小的静差,见图2-5的虚线。

图2-5 双闭环直流调速系统的静特性

d dm I I < ASR 主导,表现为转速无静差

d dm I I = ACR 主导,表现为电流无静差(过电流保护)

二、转速、电流双闭环直流调速系统的动态模型

在单闭环直流调速系统动态数学模型的基础上,考虑双闭环控制的结构,即可绘出双闭环直流调速系统的动态结构图,如下图2-6所示。

图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。如果采用PI 调节器,则有

双闭环直流调速系统突加给定电压n U *由静止起动时,转速和电流的动态过程示于下图。

由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三种情况,整个动态过程就分成图2-7中标明的I 、II 、III 三个阶段.

s

s K s W n

n

n ASR 1

)(ττ+=s

s K s W i i

i ACR 1

)(ττ+=

三、按工程方法设计双闭环系统调节器

图2-8 双闭环调速系统的动态结构图

T 0i — 电流反馈滤波时间常数 T 0n — 转速反馈滤波时间常数 a 电流调节器的作用:

(1)作为内环的调节器,在外环转速的调节过程中,它的作用是使电流紧紧跟随其给定电

压(即外环调节器的输出量)变化。 (2)对电网电压的波动起及时抗扰的作用。

(3)在转速动态过程中,保证获得电机允许的最大电流,从而加快动态过程。

(4)当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。一旦故障

消失,系统立即自动恢复正常。这个作用对系统的可靠运行来说是十分重要的。 b 转速调节器的作用:

(1)转速调节器是调速系统的主导调节器,它使转速 n 很快地跟随给定电压变化,稳态

时可减小转速误差,如果采用PI 调节器,则可实现无静差。 (2)对负载变化起抗扰作用。

(3)其输出限幅值决定电机允许的最大电流。

1、电流调节器的设计计算 1-1确定时间常数

⑴ 流装置滞后时间常数s T 0.1s T ms = 10f kHz =

⑵ 流滤波时间常数oi T 三相桥式电路每个波头的时间是3.3ms 为了基本滤平波头应有

()1~20.1oi T ms = 因此取 0.060.00006oi T ms s ==。

⑶ 电枢回路电磁时间常数9.760.00224.5a l L mH T s R =

==Ω

⑷ 流环小时间常数之和0.00016s i s oi T T T ∑=+=。 1-2选择电流调节器结构

根据设计要求5%i σ≤,并保证稳态电流误差,可按典型Ⅰ型系统设计电流调节器,电流环控制对象是双惯性的,可用PI 型电流调节器,传递函数为:

()()

1i i ACR i k s W s s

ττ+=

(2-3) 检查对电源电压的抗扰性能

0.00213.750.00016

c i T T ξ== (2-4) 参照表2—3的典型Ⅰ型系统动态抗扰性能是可接受的。 1-3计算电流调节器参数

电流调节器超前时间常数:s T l i 0022.0==τ。(2-5) 电流开环增益:要求5%i σ≤时,取0.5I i K T ∑=,

电流调节器参数0.0022i l T s τ== 电流开环增益:要求5%i σ≤时

(

100%5%0.707e

επσε-=?≤?=

ε=

24

2.410

s k =

= 因此 1i 0.5

31250.00016K s s

-=

= (2-7)

*1010 4.441.5 1.5 1.5

i d N u I I β====? (2-8)

于是,ACR 的比例系数为

31250.0022 4.5

2.92.4 4.44

I i i s K R K K τβ??=

==? (2-9)

1-4校验近似条件

电流环截止频率 : 13125-==s K I ci ω

(1) PWM 装置传递函数的近似条件

ci s w s s

T >=?=-13.33330001.03131 满足近似条件。

(2) 忽略反电动势变化对电流环动态影响的条件 ci l m s s

s T T ω<=??=-127.3690022.003.01313

(2-10) 满足近似条件。

(3) 电流环小时间常数近似处理条件

ci oi s s s

s T T ω>=?=-13.430300006.00001.01

31131 (2-11)

满足近似条件。

1-5 计算调节器电阻和电容

由图2-9,按所用运算放大器取040R K =Ω,各电阻和电容值为 0 2.940116,i i R K R K K ==?Ω=Ω, 取120K Ω

30.00220.01812010i Ci F F Ri τμ=

==?,取0.018F μ ,006.010

4000006.0443

0F F R T C oi oi μ=??==取F μ006.0 按照上述参数,电流环可以达到的动态跟随性能指标为 4.3%5%i σ=<,满足设计要

求。

2、转速调节器的设计计算 2-1确定时间常数

(1)电流环等效时间常数1/K I 。由前述已知,0.5I i K T ∑=,则

s s T K i I

00032.000016.0221=?==∑ (2-12) (2)转速滤波时间常数on T ,根据所用测速发电机纹波情况,取s T on 0025.0=. (3)转速环小时间常数n T ∑。按小时间常数近似处理,取

s s s T K T on I n 00282.00025.000032.01

=+=+=∑

(2-13)

2-2 选择转速调节器结构

图2-9 含滤波环节的PI 型电流调节器

按照设计要求,选用PI 调节器,其传递函数式为

(1)

()n n ASR n K s W s s

ττ+= (2-14)

2-3 计算转速调节器参数

按跟随和抗扰性能都较好的原则,先取h=5,则ASR 的超前时间常数为

s s hT n n 0141.000282.05=?==∑τ (2-15)

则转速环开环增益 2

22

22259.60300141.0521521--∑=??+=+=s s T h h K n

N (2-16) *

100.003min/3000

n N U V r n α≈==?

可得ASR 的比例系数为 (1)6 4.40.00710.03

14.772250.003 4.50.00282

e m n n h C T K h RT βα∑+???=

==???? (2-17) 式中 电动势常数。

r V n R I U C N a N N e min/.0071.03000

8

.15.124=?-=-=

。 (2-18)

图2-10含给定滤波与反馈滤波的PI 型转速调节器

2-6校核转速超调量

当h=5时,查表2-6【1】典型∏型系统阶跃输入跟随性能指标得,37.6%n σ=,不能满足设计要求。计算超调量。

设理想空载起动时,负载系数0=Z ,已知A I N 5.1=,min /3000r n N =,5.1=λ,Ω=5.4R , r V C e min/0071.0?=, 0.035m T s =,00282.0=∑n T 。当5=h 时,由附表 6.4查得,

%2.81/max =?b C C 而调速系统开环机械特性的额定稳态速降

m n

N b b b n T T n n Z C C n n C C ∑?-???

? ???=????? ???=*)(2*max max λσ (2-22)

调速系统开环机械特性的额定稳态速降 min;/7.9500071

.05

.45.1r C R I n e N N =?==

? *n 为基准值,对应为额定转速min /3000r n N =。

根据式(2-21)计算得

%10%25.703

.000282

.030007.9505.1%2.812<=??

??=n σ 满足设计要求。

1、原理图各部分电路

1-1调制波(电压给定)电路如下图

图2-12电压给定电路

1-2基波(三角波)产生电路如下图所示

图2-12基波产生电路

1-3脉冲产生电路如下图所示

图2-13比较波产生电路1-4主电路

图2-15主电路

2、测试结果

2-1方波及三角波测试结果

图2-16、UPC4570—1端口输出电压波形图2-17、UPC4570—7端口输出电压波形2-2比较器产生波形

图2-18、LM311输出电压波形图2-19、调节占空比后的LM311输出电压波形

图2-20、74HC08与门输出电压波形图 2-21、TD62084输出端A+、B-波形

元件清单

五、自我评定

设计心得如下:

1、在设计部分。由于课上讲的是晶闸管触发整流电路,PWM变换器的电路缺少现

成的例题可以仿照。在查阅了大量的资料后,并且经过和同学的深刻讨论,课下

请教老师后才算出了调节器的参数。通过此次设计我们很好的复习了运动控制系

统直流调速部分的内容,对于直流电机的无静差调速有了更深刻的感官上的理解。

2、在实验部分。由于实验室设备的限制,我们用面包板搭制了速度反馈的调速电

路,在这个过程中不仅仅是动手能力有了很大的提高,而且对于书本上理论值和

现实的效果之间的差距也有了更加深刻的认识。由于时间有限,可以说我们的实

验还不算很成功,总结如下:

(1)首先,通过老师的讲解,了解了原理图各部分的功能,对方波发生器、三角波发生器、死区时间一些电路结构有了更深刻的认识。

(2)在试验中我们采取了分部操作,即搭好一块电路,检测一块电路,先是方波的产生,随后是三角波,在三角波这一环节中我们遇到了问题:在老师

给定的电容值范围内,积分不够,只能产生梯形波,于是就并联电容,直

到产生方波。实际用到的电容比老师给定的最大参考电容大出两个数量级。

后来请教老师才知道是面包板接触不良所致。

(3)在搭到反向电路时发现产生的信号并不反向,仔细检查后发现,基波信号和调制波信号给错,调整后正常。

(4)在示波器检测脉冲信号时有许多的尖峰。波形并不完美。

参考文献

[1] 陈伯时.运动控制系统.北京:机械工业出版社,2003

[2] 樊立萍.电力电子技术.北京:中国林业出版社,2006

[3] 王建辉.自动控制原理.北京:清华大学出版社,2007

[4] 华成英.模拟电子技术.北京:高等教育出版社,2006

[5] 阎石.数字电子技术.北京:清华大学出版社,2007

[6] 顾绳谷.电机及拖动基础.北京:机械工业出版社,2007

直流电机PWM调速电路

直流电机P W M调速电 路 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

《电子技术》课程设计报告 课题:直流电机PWM调速电路 班级电气工程1101学号1101205304 学生姓名xxx 专业电气信息类 系别电子与电气工程学院 指导老师电子技术课程设计指导小组 xxxxx 电子与电气工程学院 2012年5月 一、设计目的 a)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 b)学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 c)进行基本技术技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 d)培养学生的创新能力。 二、设计任务与要求 1.设计电机驱动主回路,实现直流电机的正反向驱动; 2.设计PWM驱动信号发生电路; 3.设计电机转速显示电路; 4.设计电机转速调节电路;可以按键或电位器调节电机转速; 5.安装调试; 6.撰写设计报告。 三、设计思想及设计原理

1.信号可以采用数字方法给定,也可以采用电位器给定。建议采用数字方法。 2.PWM信号可以采用三角波发生器和比较器产生,也可采用数字电路及可编程器件产生。建议采用数字方法。 3.正反转主回路可以采用双极型器件实现,也可以用MOS器件实现; 4.转速测量电路可以采用增量型光电编码器,也可采用自行制作的光电编码电路、霍尔传感器以及其它近似测速方法。建议采用光电编码器。 5.显用数字方法显示电机转速。采用光电编码等方法的脉冲测速方法时,可采用计数法测量电机转速;电机转速信号为模拟信号时,可采用数字表头显示转速。建议采用数字方法。 6.(提高部分)可以采用反馈控制技术对系统进一步完善。 四、单元电路设计 4.1LM324组成的PWM直流电机产生电路 4.1.1它主要由U1(LM324)和Q1组成 图4.1中,由U1a、U1d组成振荡器电路,提供频率约为400Hz的方波/三角形波。U1c产生6V的参考电压作为振荡器电路的虚拟地。这是为了振荡器电路能在单电源情况下也能工作而不需要用正负双电源。U1b这里接成比较器的形式,它的反相输入端(6脚)接入电阻R6、R7和VR1,用来提供比较器的参考电压。这个电压与U1d的输出端(14脚)的三角形波电压进行比较。当该波形电压高于U1b的6脚电压.U1b的7脚输出为高电平;反之,当该波形电压低于U1b的6脚电压,U1b的7脚输出为低电平。由此我们可知,改变U1b的6脚电位使其与输入三角形波电压进行比较。就可增加或减小输出方波的宽度,实现脉宽调制(PWM)。电阻R6、R7用于控制VR1的结束点,保证在调节VR1时可以实现输出为全开(全速或全亮)或全关(停转或全灭),其实际的阻值可能会根据实际电路不同有所改变。 图4.1中,Q1为N沟道场效应管,这里用作功率开关管(电流放大),来驱动负载部分。前面电路提供的不同宽度的方波信号通过栅极(G)来控制Q1的通断。LED1的亮度变化可以用来指示电路输出的脉冲宽度。C3可以改善电路输出波形和减轻电路的射频干扰(RFI)。D1是用来防止电机的反电动势损坏Q1。 当使用24v的电源电压时,图1电路通过U2将24V转换成12V供控制电路使用。而Q1可以直接在21v电源上,对于Q1来讲这与接在12v电源上没有什么区别。参考图1,改变J1、J2的接法可使电路工作在不同电源电压(12V或24V)下。当通过Q1的电流不超过1A时,Q1可不用散热器。但如果Q1工作时电流超过1A时,需加装散热器。如果需要更大的电流(大于3A),可采用IRFZ34N等替换Q1。 图4.1LM324组成的PWM直流电机产生原理图 4.1.2工作原理 脉冲宽度调制(PWM)是英文“PulseWidthModulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

直流电机调速电路的设计

课程设计说明书 直流电机调速电路的设计 系、部: 学生姓名: 指导教师: 专业: 班级: 完成时间: 摘要

将电子技术和控制技术引入传统的电力技术领域,利用半导体开关器件组成各种电力变换电路实现电能的变换和控制,构成了一门完整的学科,被国际电工委员会命名为电力电子学或称为电力电子技术,他是一门综合了电子技术,控制技术和电力技术的新兴交叉学科。直流电机是电机的主要类型之一。一台直流电机即可作为发电机使用,也可作为电动机使用,用作直流发电机可以得到直流电源,而作为直流电动机,由于其具有良好的调速性能,在许多调速性能要求较高的场合,仍得到广泛使用。直流电动机是人类最早发明和应用的有一种电机。直流电动机是将直流电转换为的旋转机械。他与交流电动机相比,虽然直流电动机因为结构复杂,维护困难,价格比较贵等缺点制约了它的发展,应用不如交流电动机广泛。但由于直流电动机有优良的启动,调速和制动性能,因此在工业领域中仍占有一席之地。 关键词电力电子技术;直流电动机;机械能 ABSTRACT

Will the electronic technology and control technology into the traditional power technology, using semiconductor switching parts of all kinds of power transformation of electric power circuit implementation transformation and control, constitute a complete discipline, be door to the international electrotechnical commission named power electronics or called power electronic technology, he is a comprehensive electronic technology, control technology and the emerging interdisciplinary power technology. Dc motor is one of the main types of the motor. A dc motor as a generator can use, also can use as a motor, used as dc generators can get dc power, and as a dc motor, since it has good performance of speed adjustment, in many speed performa, is still widely used. Dc motor is the earliest human invention and application of a kind of motor. Current motor is converted to dc of rotating machine. He compared with ac motor, although dc motor for the complex structure, maintenance difficulties, price is more expensive shortcomings constrains its development, the application as ac motor widely. But because of dc motor with fine start, speed and braking performance, so in industry still has a place. Key words power electronic technology; dc motor; mechanical energy 目录

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

直流电机控制电路集锦

直流电机控制电路集锦 直流电机的类型 按:直流电机在家用电器、电子仪器设备、电子玩具、录相机及各种自动控制中都有广泛的应用。但对它的使用和控制,很多读者还不熟悉,而且其技术资料亦难于查找。直流电机控制电路集锦,将使读者“得来全不费功夫”! 在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。大家熟悉的录音机、电唱机、录相机、电子计算机等,都不能缺少直流电机。所以直流电机的控制是一门很实用的技术。本文将详细介绍各种直流电机的控制技术。 站长的几句说明:本文内容比较详实完整,但遗憾的是原稿的印刷质量和绘图的确很差,尽管采取了很多措施,有些图仍可能看不太清楚。 直流电机,大体上可分为四类: 第一类为有几相绕组的步进电机。这些步进电机,外加适当的序列脉冲,可使主轴转动一个精密的角度(通常在1.8°--7.5°之间)。只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向进行连续的转动。 步进电机用微处理器或专用步进电机驱动集成电路,很容易实现控制。例如常用的SAAl027或SAAl024专用步进电机控制电路。 步进电机广泛用于需要角度转动精确计量的地方。例如:机器人手臂的运动,高级字轮的字符选择,计算机驱动器的磁头控制,打印机的字头控制等,都要用到步进电机。 第二类为永磁式换流器直流电机,它的设计很简单,但使用极为广泛。当外加额定直流电压时,转速几乎相等。这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中。也用于变速范围很宽的驱动装置,例如:小型电钻、模型火车、电子玩具等。在这些应用中,它借助于电子控制电路的作用,使电机功能大大加强。 第三类是所谓的伺服电机,伺服电机是自动装置中的执行元件,它的最大特点是可控。在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,伺服电机就立即停止转动。伺服电机应用甚广,几乎所有的自动控制系统中都需要用到。例如测速电机,它的输出正比于电机的速度;或者齿轮盒驱动电位器机构,它的输出正比于电位器移动的位置.当这类电机与适当的功率控制反馈环配合时,它的速度可以与外部振荡器频率精确锁定,或与外部位移控制旋钮进行锁定。 唱机或激光唱机的转盘常用伺服电机。天线转动系统,遥控模型飞机和舰船也都要用到伺服电机。 最后一类为两相低电压交流电机。这类电机通常是直流电源供给一个低频振荡器,然后再用低频低压的交流去驱动电机。这类电机偶尔也用在转盘驱动机构中。 步进电机的基本工作原理

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

直流电机地PWM电流速度双闭环调速系统课程设计

电力拖动课程设计 题目:直流电机的PWM电流速度双闭环调速系统 姓名:强 学号:U201311856 班级:电气1303 指导老师:徐伟 课程评分:

日期:2016-07-10 目录 一、设计目标与技术参数 二、设计基本原理 (一)调速系统的总体设计 (二)桥式可逆PWM变换器的工作原理(三)双闭环调速系统的静特性分析(四)双闭环调速系统的稳态框图 (五)双闭环调速系统的硬件电路 (六)泵升电压限制 (七)主电路参数计算和元件选择 (八)调节器参数计算

三、仿真 (一)仿真原理(含建模及参数) (二)重要仿真结果(目的为验证设计参数的正确性) 四、结论 参考文献 附录1:调速系统总图 附录2:调速系统仿真图 一、设计目标与技术参数 直流电机的PWM电流速度双闭环调速系统的设计目标如下: 额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min; 电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s; 电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01 V*min/r; 允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;

电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ; 晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。 PWM变换器的放大系数:K S=20。 二、设计基本原理 (一)调速系统的总体设计 在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。如图2-1所示。 图2-1 直流调速系统启动过程的电流和转速波形 用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。在启动过程的主要阶段,只有电流负反馈,没有转速负反馈,不让电流负反馈发挥主要作用,既能控制转速,实现转速无静差调节,又能控制电流使系统在充分利用电机过载能力的条件下获得最佳过渡过程,很好的满足了生产需求。 直流双闭环调速系统的结构图如图2-2所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。 直流PWM控制系统是直流脉宽调制式调速控制系统的简称,与晶闸管直流调速系统的区

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

基于单片机的直流电机调速系统的课程设计

一、总体设计概述 本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩 阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。 二、直流电机调速原理 根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。但是对于直流电动机的转速,总满足下式: 式中U——电压; Ra——励磁绕组本身的内阻; ——每极磁通(wb ); Ce——电势常数; Ct——转矩常数。 由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。 电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。随着电力电子的发展,出现了许多新的电枢电压控制法。如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电. 压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。如 果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。平均转 速Vd与占空比的函数曲线近似为直线。 三、系统硬件设计

直流电机驱动电路设计

应用越来越广泛的直流电机,驱动电路设计 Source:电子元件技术| Publishing Date:2009-03-20 中心论题: ?在直流电机驱动电路的设计中,主要考虑功能和性能等方面的因素 ?分别介绍几种不同的栅极驱动电路并比较其性能优缺点 ?介绍PWM调速的实现算法及硬件电路 ?介绍步进电机的驱动方案 解决方案: ?根据实际电路情况以及要求仔细选择驱动电路 ?使用循环位移算法及模拟电路实现PWM调速 ?对每个电机的相应时刻设定相应的分频比值,同时用一个变量进行计数可实现步进电机的分频调速 直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1。输出电流和电压围,它决定着电路能驱动多大功率的电机。 2。效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3。对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4。对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5。可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 三极管-电阻作栅极驱动 1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2。7V 基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。

直流电机驱动控制电路_NMosfet

1 引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。 2 直流电机驱动控制电路总体结构 直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图如图一 由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。 在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。 3 H桥功率驱动原理 直流电机驱动使用最广泛的就是H型全桥式电路,这种驱动电路方便地实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。H桥功率驱动原理图如图2所示。

4kw以下直流电动机的不可逆调速系统课程设计要点

设计任务书 一.题目: 4kw 以下直流电动机不可逆调速系统设计 二.基本参数: 三.设计性能要求: 调速范围D=10静差率s < 10%制动迅速平稳 四.设计任务: 五.参考资料: 1. 设计合适的控制方案。 2. 画出电路原理图,最好用计算机画图(号图纸) 3. 计算各主要元件的参数,并正确选择元器件。 4. 写出设计说明书,要求字迹工整,原理叙述正确。 5. 列出元件明细表附在说明书的后面。 直流电动机:额定功率 Pn=1.1kW 额定电压 Un=110V 额定电流 In=13A 转速 Nn=1500r/min 电枢电阻 Ra=1Q 极数 2p=2 励磁电压 Uex=110V 电流 Iex=0.8A

电动机作为一种有利工具,在日常生活中得到了广泛的应用。而直流电动机具有很好的启动,制动性能,所以在一些可控电力拖动场所大部分都米用直流电动机。 而在直流电动机中,带电压截止负反馈直流调速系统应用也最为广泛, 其广泛应用于轧钢机、冶金、印刷、金属切割机床等很多领域的自动控制。 他通常采用三相全桥整流电路对电机进行供电,从而控制电动机的转速, 传统的控制系统采用模拟元件,比如:晶闸管、各种线性运算电路的等。 虽在一定程度上满足了生产要求,但是元件容易老化和在使用中易受外界干扰影响,并且线路复杂,通用性差,控制效果受到器件性能、温度等因素的影响,从而致使系统的运行特征也随着变化,所以系统的可靠性及准确性得不到保证,甚至出现事故。直流调速系统是由功率晶闸管、移相控制电路、转速电路、双闭环调速系统电路、积分电路、电流反馈电路、以及缺相和过流保护电路。通常指人为的或自动的改变电动机的转速,以满足工作机械的要求。机械特性上通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机的机械特性和工作特性的机械特性的交点,使电动机的稳定运转速度发生变化 由于本人和能力有限,错误或不当之处再所难免,期望批评和指正

直流电机控制系统设计

XX大学 课程设计 (论文) 题目直流电机控制系统设计 班级 学号 学生姓名 指导教师

航空航天大学 课程设计任务书 课程名称专业基础课程设计 院(系)自动化学院专业测控技术与仪器 班级学号 课程设计题目直流电机控制系统设计 课程设计时间: 2012年7 月9 日至2012年7 月20 日 课程设计的容及要求: 1.容 利用51单片机开发板设计并制作一个直流电机控制系统。系统能够实时控制电机的正转、反转、启动、停止、加速、减速等。 2.要求 (1)掌握直流电机的工作原理及编程方法。 (2)掌握直流电机驱动电路的设计方法。 (3)制定设计方案,绘制系统工作框图,给出系统电路原理图。 (4)用汇编或C语言进行程序设计与调试。 (5)完成系统硬件电路的设计。 (6)撰写一篇7000字左右的课程设计报告。 指导教师年月日 负责教师年月日

学生签字年月日 目录 0 前言 (1) 1 总体方案设计 (2) 1.1 系统方案 (2) 1.2 系统构成 (2) 1.3 电路工作原理 (2) 1.4 方案选择 (3) 2 硬件电路设计 (3) 2.1 系统分析与硬件设计 (3) 2.2 单片机AT89C52 (3) 2.3 复位电路和时钟电路 (4) 2.4 直流电机驱动电路设计 (4) 2.5 键盘电路设计 (4) 3 软件设计 (5) 3.1 应用软件的编制和调试 (5) 3.2 程序总体设计 (5) 3.3 仿真图形 (7) 4 调试分析 (9) 5 结论及进一步设想 (9) 参考文献 (10) 课设体会 (11)

附录1 电路原理图 (12) 附录2 程序清单 (13)

温度控制直流电动机转速的课程设计

目录 1 1引言 (1) 2设计任务及要求 (2) 2.1设计目的 (2) 2.2设计要求 (2) 3 本课程设计的意义 (2) 4使用软件介绍 (3) 4.1Proteus仿软真件的介绍 (3) 4.2 Keil软件 (3) 5电路使用元件的介绍 (4) 5.1关于AT89C51单片机的简介 (4) 5.2关于DS18B20温度传感器的简介 (4) 5.3关于L298电机驱动芯片的简介 (4) 5.4关于LM016液晶模块的简介 (5) 6部分硬件的工作原理 (5) 6.1直流电动机的工作原理 (5) 6.2转速的测量原理 (6) 6.3直流电动机的转速控制系统的工作原理 (6) 7直流电动机的转速控制系统软件设计 (7) 7.1编程思路 (7) 7.2系统流程图 (7) 8仿真程序(C语言) (10) 9结束语 (16) 1 1引言 在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。据资料统计,现在有的90%以上的动力源自于电动机,电动机和人们的生活

息息相关,密不可分。随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。 近年来由于微型机的快速发展,国外交直流系统数字化已经达到实用阶段由于以微处理器为核心的数字控制系统硬件电路的标准化程度高,制作成本低,且不受器件温度漂移的影响,且单片机具有功能强、体积小、可靠性好和价格便宜等优点,现已逐渐成为工厂自动化和各控制领域的支柱之一。其控制软件能够进行逻辑判断和复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律。所以微机数字控制系统在各个方而的性能都远远优于模拟控制系统且使用越来越广泛。 现在市场上通用的电机控制器大多采用单片机和DSP。但是以前单片机的处理能力有限,对采用复杂的反馈控制的系统,由于需要处理的数据量大,实时性和精度要求高,往往不能满足设计要求。近年来出现了各种单片机,其性能得到了很大提高,价格却比DSP低很多。其相关的软件和开发工具越来越多,功能也越来越强,但价格却在不断降低。现在,越来越多的厂家开始采用单片机来提高产品性价比。 2设计任务及要求 2.1设计目的 设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD上显示当前的温度值。 2.2设计要求 一、设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于45C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于10C时电动机加速反转,温度小于0C 时电动机全速反转。温度回到10C-45C时电动机停止转动。在液晶显示屏1602LCD 上显示当前的温度值。 二、画出基于温度的电动机转速控制电路的电路图; 三、所设计的电路需要在仿真软件Protues v7.5上能够运行,课程设计报告的最后必须附有在仿真软件Protues v7.5下设计的电路图和控制程序清单。 3 本课程设计的意义 直流电动机作为一种高效率速度控制电动机引人注目、但市场的知名度还小

直流电机调速电路

电动机电子调速控制器一 本例介绍的电动机电子调速控制器,可用于600W以下、额定电压为22Ov的直流电动机的调速。 电路工作原理 该电动机电子调速控制器电路由电源电路、励磁电路、触发电路和调速控制电路组成,如图8-58所示。 电源电路由熔断器FU、电阻器Rl-R3、整流二极管VD5-VD9、稳压二极管VS和滤波电容器C3组成。 励磁电路由电阻器Rl5、Rl6、电容器Cl、C2和二极管Dl-D4组成。 触发控制电路由脉冲变压器T、单结晶体管VU、晶体管Vl、V2、二极管VDlO-VDl2、电容器C4-C6和电阻器R4-R7组成。 调速控制电路由晶闸管VTl、VT2、二极管VDl3-VDl5、电阻器R8-R14、电容器C7和电位器RP组成。 交流220V电压经Rl和R2限流降压、VDl-VD4整流、R3限流、VS稳压后,产生24V左有的脉动直流电压。该电压一路经R4为VU提供同步电源;另一路经VD9隔离、C3滤波后,为Vl、V2和由R8、RP、R9组成的分压电路提供22V稳定的直流电压。 交流220V电压还经VDl-VD4整流后加至直流电动机M的励磁绕组W上,作为励磁电源。 在RP的中心抽头处能得到可控制M转速的控制电压。调节RP的阻值,该电压可花4·6-2OV之间变化。 R12和R13组成电枢电压取样反馈电路,两电阻器的接点处产生0--9·3V的取样电压。该电压与控制电压叠加后加至Vl的基极,控制Vl和V2的工作电流。调节RP的阻值使Vl和V2的导通电流增大时,通过C5、VU和T、VDll使VTl和VT2的导通角增大,电枢电压升高,电动机M的转速加快;反之,调节RP的阻值使Vl和V2的导通电流变小时,VTl和V饱的导通也相应地变小,电枢电压下降,电动机M的转速降低。 Rl5、Cl和R16、C2为尖脉冲吸收电路,用来保护VDl-VD4。VDl3为续流二极管,用来消除M电枢绕组的反峰电压。R14和C7为峰值吸收电路,用来保护VTl和VT2。 改变电动机电枢电压极性或改变励磁电压极性,即可改变直流电动机的旋转方向。 元器件选择 Rl-R3均选用lOW的线绕电阻器;R4选用1/2W的金属膜电阻器;R5-RlO、Rl2和R13均选用1/4W金属膜电阻器;RIl选用4-5W的线绕电阻器;R14-R16均选用lW的金属膜电阻器。 RP选用3W的精密合成膜电位器或线绕电位器。 Cl、C2和C7均选用耐压值大于400V的CBB电容器;C3和C6均选用耐压值为5OV的铝电解电容器;C4和C5均选用耐压值为160V的涤纶电容器。 VDl-VD4和VDl3均选用1N6308(3A、600V)型硅整流二极管;VD5-VDl2均选用IN4007(1A、

直流电动机调速课程设计教学提纲

直流电动机调速课程 设计

电机与拖动课程设计报告 (2014—2015学年第二学期) 题目直流电动机调速系统设计 系别信息与控制系 专业电气工程及其自动化 班级 1103 学号 311101423 姓名周军 指导教师顾波 完成时间 评定成绩

目录 第一章直流电动机....................................................... - 0 - 第二章直流电动机的结构与工作原理....................................... - 1 - 2.1 直流电动机的结构................................................ - 1 - 2.2 直流电动机的工作原理............................................ - 2 - 第三章他励直流电动机的调速............................................. - 3 - 3.1电机调速指标.................................................... - 4 - 3.2 电枢串电阻调速.................................................. - 6 - 3.3改变电枢电源电压调速............................................ - 7 - 3.4弱磁调速........................................................ - 8 - 第四章课程设计内容.................................................... - 10 - 4.1 采用电枢串电阻调速............................................. - 10 - 4.2 采用电枢电压调速............................................... - 11 - 4.3 采用改变励磁电流调速........................................... - 11 - 结论................................................................... - 12 - 设计体会............................................................... - 13 - 参考文献............................................................... - 15 -

相关文档
最新文档