化合物的溶度积常数表(超全)

化合物的溶度积常数表(超全)
化合物的溶度积常数表(超全)

化合物的溶度积常数表

基本物理常数

基本物理常数 是物理领域的一些普适常数,主要是指原子物理学中常用的一些常数。最基本的有真空中光速с,普朗克常数h、基本电荷e、电子静止质量m e和阿伏伽德罗常数N A 等。基本物理常数共有30多个,加上其组合量则有40~50个,它们之间有着深刻的联系,并不是彼此独立的。 基本物理常数的发现和测量,在物理学的发展中起了很大的作用。纵观近代物理学史可以看到,一些重大的物理现象的发现和物理理论的创立,常常同基本物理常数的发现或准确测定有着密切的联系。例如,电子的发现是通过对电子的荷质比e/m的测定获得的;M.普朗克建立量子论的同时,发现了普朗克常数;狭义相对论的出 发点之一就是真空中的光速不变;等等。由此可见,基本物理常数出现于许多不同的物理现象之中,每一种物理现象的规律都同一种确定的常数有关。 物理学发展到今天,形成了许多分支,如固体物理学、原子物理学、原子核物理学、粒子物理学、天体物理学等等,包括大至宇宙、小至基本粒子的广阔领域。但是物理学的这些分支都是用统一的物理理论结合在一起的,这些基本理论有经典电动力学、相对论(见狭义相对论、广义相对论)、统计力学(见统计物理学)、量子力学等。这些理论的定量预言的准确程度,依赖于在理论中出现的基本物理常数值的准确性。特别重要的是,仔细研究由物理学不同领域的实验所确定的这些常数值,能逐个考察物理学一些基本理论的一致性和正确性。由于应用了高稳定激光、约瑟夫森效应、X射线干涉术、量子霍耳效应等许多新方法,使基本物理常数测量的准确度有所提高,很多常数的测量准确度已达10-6量级,更高的可达10-8~10-10量级。常数的准确值增加一位,就会有可能发现物理学中前所未知的矛盾,或获得解决目前所存在的某个矛盾的线索。 基本物理常数的重要性还表现在定义计量单位从而建立计量基准的工作上。普朗克早在1906年就建议用基本常数来定义计量基本单位,由于当时常数的测量准确度还很低,这个愿望不能实现。60年代以来,随着常数值的准确度不断提高,上述建议就有了现实意义。如由于可同时准确测量高稳定激光波长λ和频率v,就能够通

初中物理基本单位、基本公式、基本常数大全

初中物理公式 物理量计算公式备注 速度v= s / t 1m / s = 3.6 Km / h 声速v= 340m / 光速C = 3×10^8 m /s 密度ρ= m / V 1 g / cm^3 = 103 Kg / m 合力 F = F1 - F2 (F1、F2在同一直线线上且方向相反) F = F1 + F2 (F1、F2在同一直线线上且方向相同 ) 压强 p = F / S 适用于固、液、气 p =ρg h 适用于竖直固体柱和液体 浮力①F浮= G – F ②漂浮、悬浮:F浮= G ③F浮= G排=ρ液g V排 物体浮沉条件 ①F浮>G(ρ液>ρ物)上浮至漂 浮 ②F浮=G(ρ液=ρ物)悬浮 ③F浮<G(ρ液<ρ物)下沉杠杆平衡条件F1 *L1 = F2 *L 2 杠杆平衡条件也叫杠杆原理 滑轮组 F = G / n ( 理想滑轮组) F =(G动+ G物)/ n (忽略轮轴间的摩擦) η=G/ nF(实际情况n:作用在动滑轮上绳子股数) 功W = F S = P t 1J = 1N?m = 1W?s 功率P = W / t = Fv 1KW = 10^3 W,1MW = 10^3KW 有用功W有用= G h(竖直提升)= F S(水平移动)= W总– W额=ηW总额外功W额= W总– W有= G动h(忽略轮轴间摩擦)= f L(斜面) 总功W总= W有用+ W额= F S = W有用/ η 机械效率η= W有用/ W总 热量Q=cm(t-t°) 电流I=U/R 电功W=UIt =Pt 电功率P=W/t=UI =I2R=U2/R 串联电路I=I1=I2 电流处处相等 U = U 1+ U 2 干路电压等于各支路电压之和 R=R1+R2 总电阻等于的电阻之和

常用物理常数表

常用物理常数表 光速 101099792458.2?=c cm sec -1 万有引力常数 81067259.6-?=G dyn cm -2 g -2 普朗克常数 27106260.6-?=h erg sec 271005457266.12/-?==πh η erg sec 玻尔兹曼常数 1610380662.1-?=k erg deg –1 里德堡常量 312.109737/2342==∞ch e m R e π cm -1 斯特藩—玻尔兹曼常数 51066956.5-?=σ erg cm -2 deg -4 sec -1 电子电量 101080325.4-?=e esu 1910602192.1-?= coulomb 电子质量 281010956.9-?=e m g 原子质量单位 2410660531.1-?=amu g 精细结构常数 0360.1372//12==e hc πα 第一玻尔轨道半径 82220105291775.04/-?==e m h a e π cm 经典电子半径 1322108179380.2/-?==c m e r e e cm 质子质量 2410672661.1-?=p m g 007276470.1= amu 中子质量 241067492.1-?=n m g 00866.1= amu 电子静止能量 5110034.02=c m e meV 常用天文常数表 地球质量 2710976.5?=⊕M g 地球赤道半径 164.6378=⊕R km 地球表面重力 665.980=⊕g cm sec -2 天文单位 810495979.1?=AU km 1光年 ly = 9.460×1012 km 1秒差距 pc= 3.084×1013 km=3.262ly 千秒差距 kpc=1000pc 地月距离 3.8×105 km 太阳到冥王星的平均距离 5.91×109km 最近的恒星(除太阳)的距离 4×1013km =1.31pc= 4.3ly

基础物理常数全表PDF

Fundamental Physical Constants—Complete Listing Relative std. Quantity Symbol Value Unit uncert.u r UNIVERSAL speed of light in vacuum c,c029*******m s?1(exact) magnetic constantμ04π×10?7N A?2 =12.566370614...×10?7N A?2(exact) electric constant1/μ0c2ε08.854187817...×10?12F m?1(exact) characteristic impedance of vacuum μ0/ 0=μ0c Z0376.730313461...?(exact) Newtonian constant of gravitation G6.673(10)×10?11m3kg?1s?21.5×10?3 G/ˉh c6.707(10)×10?39(GeV/c2)?21.5×10?3 Planck constant h6.62606876(52)×10?34J s7.8×10?8 in eV s4.13566727(16)×10?15eV s3.9×10?8 h/2πˉh1.054571596(82)×10?34J s7.8×10?8 in eV s6.58211889(26)×10?16eV s3.9×10?8 Planck mass(ˉh c/G)1/2m P2.1767(16)×10?8kg7.5×10?4 Planck lengthˉh/m P c=(ˉh G/c3)1/2l P1.6160(12)×10?35m7.5×10?4 Planck time l P/c=(ˉh G/c5)1/2t P5.3906(40)×10?44s7.5×10?4 ELECTROMAGNETIC elementary charge e1.602176462(63)×10?19C3.9×10?8 e/h2.417989491(95)×1014A J?13.9×10?8 magnetic?ux quantum h/2eΦ02.067833636(81)×10?15Wb3.9×10?8 conductance quantum2e2/h G07.748091696(28)×10?5S3.7×10?9 inverse of conductance quantum G?1012906.403786(47)?3.7×10?9 Josephson constant a2e/h K J483597.898(19)×109Hz V?13.9×10?8 von Klitzing constant b h/e2=μ0c/2αR K25812.807572(95)?3.7×10?9 Bohr magneton eˉh/2m eμB927.400899(37)×10?26J T?14.0×10?8 in eV T?15.788381749(43)×10?5eV T?17.3×10?9 μB/h13.99624624(56)×109Hz T?14.0×10?8 μB/hc46.6864521(19)m?1T?14.0×10?8 μB/k0.6717131(12)K T?11.7×10?6 nuclear magneton eˉh/2m pμN5.05078317(20)×10?27J T?14.0×10?8 in eV T?13.152451238(24)×10?8eV T?17.6×10?9 μN/h7.62259396(31)MHz T?14.0×10?8 μN/hc2.54262366(10)×10?2m?1T?14.0×10?8 μN/k3.6582638(64)×10?4K T?11.7×10?6 ATOMIC AND NUCLEAR General ?ne-structure constant e2/4π 0ˉh cα7.297352533(27)×10?33.7×10?9 inverse?ne-structure constantα?1137.03599976(50)3.7×10?9

基本物理常数与计量基本单位

收稿日期:2002-12-27. 基金项目:湖北省教育厅2002年度重点项目(B 类). 作者简介:杨建平(1964-),女,副教授,主要从事物理学史的研究. 基本物理常数与计量基本单位 杨建平 (湖北民族学院物理系,湖北恩施445000) 摘要:基本物理常数的发现和测量,不仅在物理学的发展中起到了很大的作用,而且在计量学的发展上也起到 了重要的作用.设法把计量单位的定义与基本物理常数相联系,详细分析了长度单位、电压单位、电阻单位以 及质量单位与基本物理常数的关系.由于基本物理常数是不会变化的,因此这样定义的计量单位极为稳定,不 会随着时间而发生漂移. 关键词:基本物理常数;计量基准;单位制 中图分类号:04-34文献标识:A 文章编号:1008-8423(2003)02-0069-03 基本物理常数是指那些在物理学中起着基本而广泛作用的普适常数.如真空中的光速c 、普朗克常数1、基本电荷量e 、阿伏伽德罗常数N A 以及许多有关微观粒子的常数等等.基本物理常数的发现和测量,不仅在物理学的发展中起到了很大的作用,而且在计量学的发展上也起到了重要的作用.普朗克早在20世纪初就 建议用基本物理常数来定义物理量的基本单位,也就是计量基本单位.但由于当时的测量准确度还很低, 这个愿望未能实现.20世纪50年代以前,计量基准的量值一般是由实物基准所保存及复现的.这种实物基准一般是根据经典物理学的原理,用某种特别稳定的实物来实现,而且总是用工业界所能提供的最好的材料及工艺制成,以保证其稳定性. 实物基准及相应的计量量值传递检定系统给产业界提供了计量服务,确实在帮助产业界提升产品品质的工作中作出了贡献.但是,随着科技及工农业的发展,这样的传统计量量值传递检定系统开始反映出一些不足:实物基准一旦做成,总会有一些不易控制的物理、化学过程使它的特性发生缓慢的变化,因而它所保存的量值也会有所改变;最高等级的实物计量基准全世界只有一个或一套,一旦因为某种意外原因而损坏,就无法完全一模一样地复制出来,原来连续保存的单位量值也会因之中断;量值传递检定系统庞大复杂,从最高等级的实物基准到具体应用场所,量值要经过多次传递,准确度也必然会有所下降.为了解决这些问题,人们就要寻找那些不依赖于某一具体实物具体特性的计量基准,从而诞生了量子计量基准.量子计量基准基于量子物理学中阐明的微观粒子的运动规律,特别是微观粒子的态和能级的概念.按照量子物理学,宏观物体中的微观粒子如果处于相同的微观态,其能量有相同的确定值,也就是处于同一能级上.当粒子在不同能级之间发生量子跃迁时,将伴随着吸收或发射能量等于能级差!E 的电磁波能量子,即光子.而且,电磁波频率 !与!E 之间满足普朗克公式, 而比例系数为普朗克常数1.也就是说,电磁波的频率反映了能级差的数量.另一方面,宏观物体中基本粒子的能级结构与物体的宏观参数,如形状、体积、质量等并无明显关系.因此,即使物体的宏观参数随时间发生了缓慢变化,也不会影响物体中微观粒子的量子跃迁过程.这样,利用量子跃迁现象来复现计量单位,就可以从原则上消除各种宏观参数不稳定产生的影响,所复现的计量单位不再发生缓慢漂移,计量基准的稳定性和准确度可以达到空前的提高.而且量子跃迁复现计量单位不受时间、地点的限制.现在,把此类用量子现象复现量值的计量基准统称为量子计量基准,而量子计量基准中,又依赖于一些基本物理常数.20世纪80年代开始,随着基本物理常数准确度的不断提高,长度单位、电学量电压和电阻单第21卷第2期 2003年6月湖北民族学院学报(自然科学版)JournaI of Hubei Institute for NationaIities (NaturaI Science Edition )VoI.21No.2Jun.2003

物理最常用常数

常用物理常数表 光速 101099792458.2×=c cm sec -1 万有引力常数 81067259.6?×=G dyn cm -2 g -2 普朗克常数 27106260.6?×=h erg sec 271005457266.12/?×==πh erg sec 玻尔兹曼常数 1610380662.1?×=k erg deg –1 里德堡常量 312.109737/2342==∞ch e m R e π cm -1 斯特藩—玻尔兹曼常数 51066956.5?×=σ erg cm -2 deg -4 sec -1 电子电量 101080325.4?×=e esu 1910602192.1?×= coulomb 电子质量 281010956.9?×=e m g 原子质量单位 2410660531.1?×=amu g 精细结构常数 0360.1372//12==e hc πα 第一玻尔轨道半径 82220105291775.04/?×==e m h a e π cm 经典电子半径 1322108179380.2/?×==c m e r e e cm 质子质量 2410672661.1?×=p m g 007276470.1= amu 中子质量 24 1067492.1?×=n m g 00866.1= amu 电子静止能量 5110034.02=c m e meV 常用天文常数表 地球质量 27 10976.5×=⊕M g 地球赤道半径 164.6378=⊕R km 地球表面重力 665.980=⊕g cm sec -2 天文单位 810495979.1×=AU km 1光年 ly = 9.460×1012 km 1秒差距 pc= 3.084×1013 km=3.262ly 千秒差距 kpc=1000pc 地月距离 3.8×105 km 太阳到冥王星的平均距离 5.91×109km 最近的恒星(除太阳)的距离 4×1013km =1.31pc= 4.3ly 太阳到银心的距离 2.4×1017km=8kpc 太阳质量 M ⊙ 3310989.1×= g 太阳半径 R ⊙10109599.6×=cm 太阳光度 L ⊙33 10826.3×= erg sec -1

常用物理基本常数表

常用物理基本常数表 物理常数符号最佳实验值供计算用值真空中光速 c 299792458±1.2m·s-1 3.00×108m·s-1 引力常数G0(6.6720±0.0041)×10-11m3·s-2 6.67×10-11m3·s-2阿伏加德罗(Avogadro)常 数 N0(6.022045±0.000031) ×1023mol-1 6.02×1023mol-1 普适气体常数R (8.31441±0.00026)J·mol-1·K-18.31 J·mol-1·K-1 玻尔兹曼(Boltzmann)常 数 k (1.380662±0.000041) ×10-23J·K-1 1.38×10-23J·K-1理想气体摩尔体积V m(22.41383±0.00070) ×10-322.4×10-3m3·mol-1基本电荷(元电荷) e (1.6021892±0.0000046) ×10-19 C 1.602×10-19 C 原子质量单位u (1.6605655±0.0000086)×10-27kg 1.66×10-27kg 电子静止质量m e(9.109534±0.000047)×10-31kg 9.11×10-31kg 电子荷质比e/m e (1.7588047±0.0000049)×10-11C· kg -2 1.76×10-11C· kg-2 质子静止质量m p(1.6726485±0.0000086)×10-27kg 1.673×10-27kg 中子静止质量m n(1.6749543±0.0000086)×10-27kg 1.675×10-27kg 法拉第常数 F (9.648456±0.000027 )C·mol-196500 C·mol-1 真空电容率ε0(8.854187818±0.000000071)×10-12 F·m-2 8.85×10-12F·m-2 真空磁导率μ012.5663706144±10-7H·m-14πH·m-1 电子磁矩μe(9.284832±0.000036)×10-24J·T-1 9.28×10-24J·T-1 质子磁矩μp (1.4106171±0.0000055)×10-23J·T- 1 1.41×10-23J·T-1 玻尔(Bohr)半径α0(5.2917706±0.0000044)×10-11m 5.29×10-11m 玻尔(Bohr)磁子μB(9.274078±0.000036)×10-24J·T-1 9.27×10-24J·T-1核磁子μN(5.059824±0.000020)×10-27J·T-1 5.05×10-27J·T-1普朗克( Planck)常数h (6.626176±0.000036)×10-34J·s 6.63×10-34J·s精细结构常数 a 7.2973506(60)×10-3 里德伯(Rydberg)常数R 1.097373177(83)×107m-1 电子康普顿(Compton)波长 2.4263089(40)×10-12m 质子康普顿(Compton)波长 1.3214099(22)×10-15m 质子电子质量比m p/m e1836.1515

化合物的溶度积常数表(超全).doc

化合物的溶度积常数表化合物 醋酸盐 **AgAc *AgBr *AgCl *AgI BaF2*CaF2*CuBr *CuCl *CuI *Hg 2Cl2*Hg 2I2HgI2PbBr2*PbCl2PbF2*PbI2SrF2Ag 2CO3*BaCO3CaCO3CdCO3*CuCO3FeCO3Hg 2CO3MgCO3MnCO3NiCO3*PbCO 31.94 × 10-3 卤化物 1.8 × 10-10 8.3 × 10-17 1.84 × 10-7 溶度积化合物

氢氧化物 *AgOH 2.0 × 10-8 *Al(OH) 3(无定形) 1.3 × 10-33 *Ca(OH)2*Cd(OH) 25.5 × 10-6 5.27 × 10-15 溶度积化合物 *CdS *CoS(α-型) *CoS(β-型) *Cu 2S *CuS *FeS *HgS(黑色) *HgS(红色) *MnS(晶形 )**NiS *PbS *SnS **SnS2**ZnS 磷酸盐 *Ag 3PO4*AlPO4*CaHPO4*Ca

3(PO 4)2**Cd 3(PO 4)2Cu 3(PO 4)2FePO 4·2H 2O 5.4 × 10-12 1.6 × 10-7 4× 10-9 4.43 × 10-10 3.2 × 10-7 4.83 × 10 1.70 × 10-7 8.51 × 10-10-溶6度积8.0 × 10-27 4.0 × 10-21 2.0 × 10-25 2.5 × 10-48 6.3 × 10-36

6.3 × 10-18 1.6 × 10-524 × 10-53 2.5 × 10-13 1.07 × 10-21 8.0 × 10-281 × 10-252 × 10-27 2.93 × 10-25 1.4 × 10-16 6.3 × 10-191 × 10-7 2.0 × 10-29 2.53 × 10-33 1.40 × 10-37 9.91 × 10-16 2.5 × 10-13 1.04 × 10-24 8.0 × 10-43 9.0 × 10-33 7.2 × 10-11 1.6 × 10 1.3 × 10-16 1.03 × 10-12-41 5.0 × 10-13*Be(OH)

高中物理常用基本物理常数

20楼 物理常数符号最佳实验值供计算用值 真空中光速 c 299792458±1.2m·s-1 3.00×108m·s-1 万有引力常数 G0 (6.6720±0.0041)×10-11m3·s-2 6.67×10-11 m3·s-2 阿伏加德罗(Avogadro)常数 N0 (6.022045±0.000031)×1023mol-1 6.02×1023 mol-1 普适气体常数 R (8.31441±0.00026)J·mol-1·K-1 8.31 J·mol-1·K-1 玻尔兹曼(Boltzmann)常数 k (1.380662±0.000041)×10-23J·K-1 1.38×10-23 J·K-1 理想气体摩尔体积 Vm (22.41383±0.00070)×10-3 22.4×10-3 m3·mol-1 基本电荷(元电荷) e (1.6021892±0.0000046)×10-19 C 1.602×10-19 C 原子质量单位 u (1.6605655±0.0000086)×10-27 kg 1.66×10-27 kg 电子静止质量 me (9.109534±0.000047)×10-31kg 9.11×10-31kg 电子荷质比 e/me (1.7588047±0.0000049)×10-11 C· kg-2 1.76×10-11 C· kg-2 质子静止质量 mp (1.6726485±0.0000086)×10-27 kg 1.673×10-27 kg 中子静止质量 mn (1.6749543±0.0000086)×10-27 kg 1.675×10-27 kg 法拉第常数 F (9.648456±0.000027)C·m ol-1 96500 C·mol-1 真空电容率ε0 (8.854187818±0.000000071)×10-12F·m-2 8.85×10-12F·m-2 真空磁导率μ0 12.5663706144±10-7H·m-1 4πH·m-1 电子磁矩μe (9.284832±0.000036)×10-24 J·T-1 9.28×10-24 J·T-1 质子磁矩μp (1.4106171±0.0000055)×10-23 J·T-1 1.41×10-23 J·T-1 玻尔(Bohr)半径α0 (5.2917706±0.0000044)×10-11 m 5.29×10-11 m 玻尔(Bohr)磁子μB (9.274078±0.000036)×10-24 J·T-1 9.27×10-24 J·T-1 核磁子μN (5.059824±0.000020)×10-27 J·T-1 5.05×10-27 J·T-1 普朗克( Planck)常数 h (6.626176±0.000036)×10-34 J·s 6.63×10-34 J·s 精细结构常数 a 7.2973506(60)×10-3 里德伯(Rydberg)常数 R 1.097373177(83)×107m-1 电子康普顿(Compton)波长 2.4263089(40)×10-12m 质子康普顿(Compton)波长 1.3214099(22)×10-15m 质子电子质量比 mp/me 1836.1515

基本物理常量大全

基本物理常量表1 基本物理常数1986年国际推荐值 量符号数值单位不确定ppm 光速c299,792,458 m/s (精确)真空磁导率μ04π× 10-7N·A (精确)真空介电常量,1/μ0 c ε08.854 187 817…10-12 F/m (精确)牛顿引力常量G 6.672 59(85) 10-11 m kg·s 128 普朗克常量h 6.626 075 5(40) 10-34J·s 0.60 基本电荷e 1.602 177 33(49) 10-19C 0.30 电子质量me9.10 938 97(54) 10-31kg 0.59 电子荷质比-e/ me-1.758 819 62(53) 1011C / kg 0.30 质子质量mp 1.672 623 1(10) 10-27 kg 0.59 里德伯常量R∞10 973 731.534(13) 107 m-10.0012 精细结构常数a7.297 353 08(33) 10 0.045 阿伏伽德罗常量NA,L 6.022 136 7(36) 1023 mol 0.59 气体常量R8.314 510(70) J mol K 8.4 玻耳兹曼常量k 1.380 658(12) 10-23 J/K 8.4 摩尔体积(理想气体) T=273.15K p=101325Pa Vm22.414 10(29) L/mol 8.4 圆周率π 3.141 592 65 自然对数底 e 2.718 281 83 对数变换因子loge10 2.302 585 09 注:摘自《物理》,1987年,Nol,P7-12.

表2 20℃时常见固体和液体的密度 物质密度 ρ(kg / m3) 物质 密度 ρ(kg / m3) 铝2698.9窗玻璃2400~2700铜8960冰(0℃)800~920铁7874石蜡792 银10500有机玻璃1200~1500金19320甲醇792 钨19300乙醇789.4 铂21450乙醚714 铅11350汽油710~720锡7298弗利昂-121329 水银13546.2变压器油840~890钢7600~7900甘油1260 石英2500~2800食盐2140 水晶玻璃2900~3000表3 标准大气压下不同温度的纯水密度 温度密度ρ 3 温度密度ρ 3 温度密度ρ 3 0999.84117.0998.77434.0994.371 1.0999.90018.0998.59535.0994.031 2.0999.94119.0998.40536.099 3.68 3.0999.96520.0998.20337.0993.33 4.0999.97321.0997.99238.0992.96 5.0999.96522.0997.77039.0992.59 6.0999.94123.099 7.53840.0992.21 7.0999.90224.0997.29641.0991.83 8.0999.84925.0997.04442.0991.44 9.0999.78126.0996.783 10.0999.70027.0996.51250.0998.04 11.0999.60528.0996.23260.0983.21 12.0999.49829.0995.94470.0977.78 13.0999.37730.0995.64680.0975.31 14.0999.24431.0995.34090.0965.31 15.0999.09932.0995.025100958.35 16.0999.94333.0994.702 第2页共2 页

基本物理常数表

Preface Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor National Institute of standards and Technology, Gaithersburg, MD 20899-8401 This table gives the 1998 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. Further, it describes in detail the adjustment of the values of the subset of constants on which the complete 1998 set of recommended values is based. The 1998 set replaces its immediate predecessor recommended by CODATA in 1986. The new adjustment, which takes into account all of the data available through 31 December 1998, is a significant advance over its 1986 counterpart. The 1998 adjustment was carried out by P. J. Mohr and B. N. Taylor of the National Institute of Standards and Technology (NIST) under the auspices of the CODATA Task Group on Fundamental Constants. The standard uncertainties (i.e., estimated standard deviations) of the new recommended values are in most cases about 1/5 to 1/12 and in some cases 1/160 times the standard uncertainties of the corresponding 1986 values. Moreover, in almost all cases the absolute values of the differences between the 1998 values and the corresponding 1986 values are less than twice the standard uncertainties of the 1986 values. The Task Group was established in 1969 with the aim of periodically providing the scientific and technological communities with a self-consistent set of internationally recommended values of the fundamental physical constants based on all applicable information available at a given point in time. The first set was published in 1973 and was followed by a revised set first published in 1986; the current 1998 set first appeared in 1999. In the future, the CODATA Task Group plans to take advantage of the high level of automation developed for the current set in order to issue a new set of recommended values at least every four years.

初中物理常数、估测物理量汇总

重要的物理常数 ●真空中光速、电磁波的传播速度:c=3×108m/s ●15℃空气中声速为340m/s ●重力与质量的比值:g=9.8N/kg(在不要求精确计算的前提下,g可取10N/kg)●1标准大气压:p0=760mmHg=1.013×105Pa ●水的密度:ρ水=1.0g/cm3=1.0×103kg/m3 ●水的比热容:c水=4.2×103J/(kg·℃) ●冰水混合物的温度、冰的熔点、水的凝固点:0℃ ●1标准大气压下水的沸点:100℃ ●1节干电池的电压:1.5V ●1节蓄电池的电压:2V(探究题中的蓄电池一般是三节串联,也就是6V) ●家庭电路电压:220V ●对人体的安全电压:不高于36V 常见的物理数值(估算用)

物理公式

做计算题的注意事项: ● 必须写“解:”,必须有公式和计算过程,必须下结论(“∴……”或“答:……”)。 ● 读题时注意思考各物理量之间的关系,并且思考应该使用什么样的公式。 电学题要做电路分析,力学题要做受力分析。 ● 上面没有加括号的公式都可以直接使用,其他公式必须先推导才能使用(“由R U I = 得U =IR =……”)。 ● 绝大多数公式的单位都是已经确定的(国际主单位)。上面有三个公式可以使用两种单位。杠杆平衡条件可以不使用主单位,但是必须使用统一的单位。 ● 代入时数的顺序不能颠倒。 ● 数字后面必须带单位,只有倍数、比例、机械效率除外。 ● 对于有很多“0”的数字,最好用科学计数法。用kg/m 3 作为密度单位时,必须写成“△×103kg/m3” (固体、液体)和“△kg/m 3 ”。 ● 注意g 的取值。 ● 最终的计算结果不能写成分数。对于除不开的数,一般保留两位小数(不要写约等于“≈”)。 ● 解答一道题的不同部分时,最好标清题号。这是对自己、对评卷老师都有好处的事情。

物理学常数表

物理学常量表 真空中的光速 181099792458.2-??=s m c 电子由荷 C e 19106021892.1-?= 普朗克常数 s J h ??=-3410)40(6260755.6 s J h ??==-3410)63(05457266.12/π 玻耳兹曼常数 12310)12(380658.1--??=K J k 斯忒藩-玻耳兹曼常数 4128234210)19(67051.560----????==K s m J c k πσ 阿伏伽德罗常数 ()123010)36(0221367.6-?=mol N 标准条件下的摩尔体积 ()130224136.0-?=mol m V m ol 真空介电常数 1120108542.8--??=m F ε 真空磁导率 2727010566370614.12104----??=??=A N A N πμ 电子静质量 231)15(51099906.010)54(1093897.9--?=?=c MeV kg m e 质子静质量 227)28(27231.93810)10(6726231.1--?=?=c MeV kg m p 中子静质量 22755.9391067482.1--?=?=c MeV kg m n 原子质量单位 22748.931106605655.1--?=?=c MeV kg u 玻尔半径 m e m h a e 102010)24(529177249.04-?==πε 里德伯常数 1701009737312.1-?=m R 171009677576.1-?=m R H 精细结构常数 036.1371402==c e a πε 电子的康普顿波长 m c m h e c 12 104263.2-?==λ

物理常数公式大全

常用物理常数 1、光速:C=3×108m/s (真空中) 2、声速:V=340m/s (15℃空气中) 3、人耳区分回声时间:≥0.1s 4、重力与质量比值(重力加速度): g=9.8N/kg≈10N/kg 5、标准大气压值: 760毫米水银柱高=1.01×105Pa 6、水的密度:ρ=1.0×103kg/m3 7、水的凝固点:0℃ 8、水的沸点:100℃(一标准大气压下) 9、水的比热容:C=4.2×103J/(kg℃) 10、元电荷:e=1.6×10-19C 11、一节干电池电压:1.5V 12、一节铅蓄电池电压:2V 13、对于人体的安全电压:≤36V(不高于 36V) 14、家庭电路电压:220V 15、动力电路的电压:380V

基本物理量

初中物理常用公式 1、速度:V=S/t 2、重力:G=mg 3、密度:ρ=m/V 4、压强:p=F/S 5、液体压强:p=ρgh 6、浮力: (1)F浮=F’-F (压力差) (2)F浮=G-F (视重力) (3)F浮=G (漂浮、悬浮) (4)阿基米德原理:F浮=G排=ρ液gV排 7、杠杆平衡条件:F1 L1=F2 L2 8、理想斜面:F/G=h/L 9、理想滑轮:F=G/n 10、实际滑轮:F=(G+G动)/ n (竖直方向) 11、功:W=FS=Gh (把物体举高) 12、功率:P=W/t=FV 13、功的原理:W手=W机14、实际机械:W总=W有+W额外 15、机械效率: η=W有/W总 16、滑轮组效率: (1)η=G/ nF(竖直方向) (2)η=G/(G+G动) (竖直方向不计摩擦)

溶度积常数

溶度积常数

————————————————————————————————作者:————————————————————————————————日期:

溶度积表 化合物化学式温度K sp 无水氢氧化铝Al(OH)320°C 1.9×10–33无水氢氧化铝Al(OH)325°C3×10–34 三水合氢氧化铝Al(OH)320°C4×10–13 三水合氧化铝Al(OH)325°C 3.7×10–13磷酸铝AlPO425°C9.84×10–21溴酸钡Ba(BrO3)225°C2.43×10–4碳酸钡BaCO316°C7×10–9 碳酸钡BaCO325°C8.1×10–9铬酸钡BaCrO428°C 2.4×10–10 氟化钡BaF225.8°C1.73×10–6二水合碘酸钡Ba(IO3)225°C6.5×10–10二水合草酸钡BaC2O418°C1.2×10–7硫酸钡BaSO418°C0.87×10–10硫酸钡BaSO425°C1.08×10–10硫酸钡BaSO450°C1.98×10–10氢氧化铍Be(OH)225°C 6.92×10–22

碳酸镉CdCO325°C1.0×10–12氢氧化镉Cd(OH)225°C7.2×10–15三水合草酸镉CdC2O418°C 1.53×10–8磷酸镉Cd3(PO4)225°C 2.53×10–33 硫化镉CdS 18°C3.6×10–29碳酸钙(方解石) CaCO315°C0.99×10–8碳酸钙(方解石) CaCO325°C0.87×10–8碳酸钙(方解石) CaCO318-25°C 4.8×10–9铬酸钙CaCrO418°C 2.3×10–2 氟化钙CaF218°C 3.4×10–11氟化钙CaF225°C3.95×10–11氢氧化钙Ca(OH)218°C-25°C8×10–6 氢氧化钙Ca(OH)225°C5.02×10–6 Ca(IO3) 六水合碘酸钙 18°C 6.44×10–7 2 一水合草酸钙CaC2O418°C1.78×10–9一水合草酸钙CaC2O425°C 2.57×10–9磷酸钙Ca3(PO4)225°C2.07×10–33硫酸钙CaSO410°C6.1×10–5

常用物理常数

TABLE OF INFORMATION FOR 2002 CONSTANTS AND CONVERSION FACTORS 1 unified atomic mass unit, 1 u 16610 27 == -.kg 931MeV/2 c Proton mass,m p =×?1671027.kg Neutron mass,m n =×?1671027.kg Electron mass, m e =×?9111031.kg Magnitude of the electron charge, e =×?1601019.C Avogadro’s number,N 023 1 60210=×?.mol Universal gas constant, R =?831./()J mol K Boltzmann’s constant, k B =×?13810 23 .J/K Speed of light,c =×300108./m s Planck’s constant, h hc =×=×=×=×???????663104141019910124103415253....J s eV s J m eV nm Vacuum permittivity, ?01222 88510=×??./C N m Coulomb’s law constant, k ==×?14901009 2 2 /./π?N m C Vacuum permeability, μπ07410=×??()/T m A Magnetic constant, k =T m A 0μπ/()/4107 =??Universal gravitational constant, G = ?-6671011 32 ./m kg s Acceleration due to gravity at the Earth’s surface,g =982 .m/s 1 atmosphere pressure, 11010101052 5 atm N /m Pa =×=×.. 1 electron volt, 11601019 eV J =×?.UNITS Name Symbol meter m kilogram kg second s ampere A kelvin K mole mol hertz Hz newton N pascal Pa joule J watt W coulomb C volt V ohm ? henry H farad F tesla T degree Celsius o C electron-volt eV PREFIXES Factor Prefix Symbol 109giga G 106mega M 103kilo k 102?centi c 103?milli m 106?micro μ 109?nano n 1012 ?pico p VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES θ sin θcos θtan θ 0o 01030o 1/232 /33 /37o 3/54/53/445o 22 /22 /153o 4/53/54/360o 32 /1/23 90o 1 ∞ The following conventions are used in this examination. I.Unless otherwise stated, the frame of reference of any problem is assumed to be inertial. II.The direction of any electric current is the direction of flow of positive charge (conventional current). III.For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.*IV.For mechanics and thermodynamics equations, W represents the work done on a system. *Not on the Table of Information for Physics C, since Thermodynamics is not a Physics C topic.

相关文档
最新文档