有机太阳能电池性能影响因素

有机太阳能电池性能影响因素
有机太阳能电池性能影响因素

有机溶剂的沸点

给体与受体材料的共混是通过溶解在有机溶剂中来实现的,在旋涂的过程中,若有机溶剂的沸点较低,挥发较快,则会影响到活性层膜的均匀性以及共混体系的表面形貌,从而影响到整个电池的性能。用四种不同沸点的溶剂制备而成的太阳能电池表现出了不同的性能,如图3 为不同情况下的J-V 曲线(小图为暗条件下J-V 曲线,大图为光照条件下J-V 曲线),其中空心圆和实心圆分别代表氯仿和甲苯,而空心方块和实心方块则分别代表氯苯和对二甲苯。由小图可看出,用低沸点溶剂(氯仿和甲苯)制备的太阳能电池相比于用高沸点溶剂(氯苯和对二甲苯)所制备的电池,其整流特性不好,而且在反偏压下漏电流较大,这说明其并联电阻很小,同时也反映出活性层致密度较小,存在孔洞,在光照条件下则表现为填充因子和开路电压低。总得来说,用高沸点溶剂制备的太阳能电池性能要明显高于低沸点溶剂所制备的电池。

活性层厚度

活性层的作用是吸收太阳光、产生并分离激子,从而形成光电流。理论上来分析,若活性层厚度过小则不能充分吸收太阳光,使得光生载流子数减少,效率降低;若活性层厚度过大,虽然能更充分地吸收太阳光而产生更多的激子,但是却增大了激子的复合几率,同时也会增大电池的串联电阻而使电流降低。所以,合适厚度的活性层能使电池性能大大提高。开路电压Voc 基本不随活性层厚度的变化而变化,但是短路电流密度Jsc和填充因子FF则变化较大,随着厚度的减小,Jsc的变化规律为先增大后减小,在厚度为63nm 时,Jsc 和PCE 都达到最大,这与理论上的分析是一致的。

热退火处理

在未经退火处理的P3HT:PCBM 共混体系中,PCBM 掺入P3HT分子链中,使得P3HT 处于无序状态。只要退火温度达到了聚合物的玻璃化转换温度(glass transitiontemperature),那么退火处理就能使P3HT 由无序的非晶态转换为有序的晶态,即可使得P3HT 和PCBM 各自聚集, P3HT 排列更加有序,共轭长度增加。同时也增加了P3HT分子链相互作用,产生更多的共轭π-π电子,也降低了P3HT 体系中π-π间的带隙,增大了π-π间的光学跃迁。不同的退火温度和时间会造成共混体系不同的排列方式,并形成不同的互穿网络和表面形貌,从而对电池的性能造成不同的影响。如图4所示为不同温度处理后活性层薄膜的紫外-可见吸收光谱,由图可知,与未经过退火处理的薄膜相比,所有经过退火处理的薄膜的吸收强度都得到了增加,而且P3HT 的吸收峰在70℃至130℃的温度范围内不断的红移,

而且肩峰愈加明显,当温度达到150℃时,P3HT的吸收峰出现了大约8nm的蓝移。此外,在此过程中,PCBM 的吸收峰(大约在335nm处)和强度始终保持不变,可见退火处理会对P3HT的吸收光谱产生影响,而基本不对PCBM产生影响。

另外,经退火处理后,P3HT 由非晶态转换为晶态,这会大大提高空穴迁移率,使电流急剧增加。因此,我们可以看出,退火能使太阳能电池的性能得到极大的提高,这可由图5所证实。由图可知,经过退火处理后,短路电流密度Jsc 和F 都明显提高了,而且经110℃退火处理后,电池的性能最优。

除了温度外,退火时间也对退火的效果起着重要的作用。退火时间若太短,则P3HT可能未能全部结晶,或者结晶质量不佳,但若是退火时间太长了,则多余的能量会破坏已经形成的互穿网络而影响到电池的性能。所以,退火时间也应合适才能提高退火对太阳能电池性能的改善程度。研究表明,在不同的退火温度下,10min为最佳的退火时间,但超过10min 之后,电池性能也没有明显下降,有的甚至上升了。

图4 不同温度处理后活性层薄膜的紫外-可见吸收光谱

图5

太阳能电池发展现状综述

太阳能电池发展现状综述 摘要:随着社会的发展,传统能源消耗殆尽,能源越来越收到重视。其中发展前景最为广阔的莫过于太阳能。太阳能绿色环保,因此逐渐受到了人们的普遍重视。太阳能已成为新能源领域最具活力的部分,世界各国都致力于发展太阳能。本文主要阐述了太阳能电池的发展历程,太阳能电池的种类,太阳能电池的现状以及发展前景. 关键词:太阳能电池;太阳能电池种类;发展现状; Narration on the Current Situation of Solar Battery Abstract:With the development of society, traditional energy will be used up in a short time.Eneygy are being payed more and more attention.And the solar energy is the most promising.Because of its’environmental protection,it gets widespread attention. Solar energy has become the most vibrant part among the new energy field,and all countrise tried their best to develop solar energy.This article mainly explains the development of solar battery,the types of solar battery,curent situation of solar battery and its’ prospect. Key Words:solar battery; types of solar battery; curent situation of solar battery 1引言 随着经济的发展,能源的重要性日趋凸显。但是石油、煤等不可生起源消耗殆尽,人们开始探索新的能源。太阳能取之不尽用之不竭,因此受到了人们的亲睐。在太阳能电池领域中,太阳能的光电利用是近些年来发展最快、最具活力的研究领域[1].太阳能电池的研制和开发日益得到重视.制作太阳能电池主要是以半导体材料为基础.其工作原理是利用光电材料吸收光能后发生的光电子转化反应。根据所用材料的不同,太阳能电池可分为:①硅太阳能电池;②以无机盐如砷化镓Ⅲ一V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;③纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料[2].这也是太阳能电池以硅材料为主的主要原因. 本文简要地综述了太阳能电池发展进程,太阳能电池的种类,以及发展现状,并讨论了太阳能电池的发展趋势。 2太阳能电池现状及其前景

浅谈太阳能电池片厂的空调系统

浅谈太阳能电池片厂的空调系统------以茂迪(苏州)新能源有限公司1F、3F车间扩建工程为例 作者:于洪亮 太阳能电池片是目前非常火热的产业之一,太阳能电池片厂的空调系统因其特殊生产工艺也有其自身的特点。由于太阳能电池片厂的制程设备散热负荷较大,湿负荷基本稳定,常年热湿比很大,而且工艺排气量很大。下面以茂迪(苏州)新能源有限公司昆山电池片厂1FAB区、3FCD区电池片车间扩建工程为例,详细叙述太阳能电池片厂的空调系统。 本次是茂迪(苏州)新能源有限公司昆山电池片厂1FAB区、3FCD区电池片车间扩建工程,空调系统也为在原有系统基础上作扩充。冷源为8℃的冰水,热源为50℃的热水,在各空调机房内有相应冷热水管预留接口。但配合业主的需求,原空调主系统的水系统扩充一台冰机(甲供)、一台冷却塔(甲供)、一台冷却水泵、一台冰水一次泵、一台汽水板换和一台热水泵,皆直接接入原主管路上的预留阀。MAU的高压喷雾加湿及空气水洗喷淋的软水源为原有软水系统,1F AB区车间的MAU所需软水由3FMAU机房内原有软水管路引入,3F CD区车间的MAU所需软水直接由屋面5吨的软水箱上预留口引下。 本次扩建车间空调系统属工艺性空调,温度要求23±3℃,湿度要求55±10%,但无洁净度要求。本次车间(包括1F车间、1FFQC、3F车间)采用的空调方案为MAU(全新风空调箱)+RAU(循环风空调箱)的全空气系统。车间内的湿度由MAU定露点来控制,温度由RAU来控制调节,车间内的正压也是由MAU变频率调节新风量来控制的

本次工程空调设备配备情况:1F车间采用2台45000CMH风量的变频MAU+8台25000CMH风量的吊挂式RAU;1FFQC区采用1台21000CMH 风量的落地式RAU,新风由1F车间的2台MAU的送风管引来;2FFQC的办公区采用8台吊挂明装的FCU(风机盘管);3F车间采用2台55000CMH 风量的变频MAU+2台70000CMH风量的落地式RAU;3F更衣区采用1台15000CMH吊挂式的RAU。 下面具体介绍一下空调箱的配置情况。MAU的功能段配置为新风进风水洗段、初中效过滤段、热水预热段、冰水表冷除湿段、高压喷雾加湿段(带湿膜挡板)、热水再热段、风机送风段。(如下面示意图所示) MAU功能段配置示意图 RAU的功能段配置为室内回风进风段、初中效过滤段、表冷(热)段、风机送风段。(如下面示意图所示)

有机太阳能电池研究进展(1)

专题介绍 有机太阳能电池研究进展 X 林 鹏,张志峰,熊德平,张梦欣,王 丽 (北京交通大学光电子技术研究所,信息存储、显示与材料开放实验室,北京,100044) 摘 要:有机太阳能电池与无机太阳能电池相比,还存在许多关键性问题。为了改善有机太阳能电池的性能,各种研究工作正在进行,这些研究主要是为了寻找新的材料,优化器件结构。对电池原理、部分表征方法、效率损失机制、典型器件结构、最近的发展、以及未来的发展趋势作了简要描述。 关键词:有机太阳能电池;器件结构;给体;受体;转换效率 中图分类号:T N 383 文献标识码:A 文章编号:1005-488X(2004)01-0055-06 Progres s in Study of Organic Sola r Ce ll LIN Peng ,ZHANG Zhi -feng ,XIONG De -ping ,ZHANG Meng -xin ,WANG Li (I nstitute of O p toelectronics T echnology ,Beij ing J iaotong University ,Beijing ,100044,China )Abstr act :Compaer ed with inorganic solar cells ,organic solar cells still have many critical pr oblems.In order to improve the properties of organic solar cells,a lot of different studies have been carried on.T he main purposes of these studies are to seek new mater ials and new device structure.A brief review of the theory of photovoltaic cells,along with some aspects of their characterization ,the basic efficiency loss mechanism ,typical device structures ,and the trends in research will be presented. Key wor ds :organic photovoltaic cell;device structure;donor;acceptor ;conversion effi-ciency 前 言 进入21世纪以来,由于煤、石油、天然气等自然资源有限,已经不能满足人类发展的需要。环境污染也已经成为亟待解决的严重问题。同使用矿物燃料发电相比,太阳能发电有着不可比拟的优点。 太阳能取之不尽,太阳几分钟射向地球的能量相当 于人类一年所耗用的能量。太阳能的利用已经开始逐年增长。但目前使用的硅等太阳能电池材料,因成本太高,只能在一些特殊的场合如卫星供电、边远地区通信塔等使用。目前太阳能发电量只相当于全球总发电量的0.04%。要使太阳能发电得到大规模推广,就必须降低太阳能电池材料的成本,或 第24卷第1期2004年3月 光 电 子 技 术OPT OELECT RONIC T ECHNOLOGY Vol.24No.1 Mar.2004   X 收稿日期:2003-11-17 作者简介:林 鹏(1978-),男,硕士生。主要从事光电子技术研究。 张志峰(1977-),男,硕士生。主要从事有机电致发光(OLED)的研究工作。熊德平(1975-),男,硕士生。主要从事无机半导体材料方面的研究工作。

浅析太阳能电池片废水处理工艺

浅析太阳能电池片废水处理工艺 李慧娟1郭晓霞2 1、内蒙古鑫安能源咨询评估有限公司内蒙古包头014010 2、城市建设研究院内蒙古 分院内蒙古包头014010 摘要:太阳能光伏电池是一种新型的依靠太阳能进行能量转换的光电元器件,它将太阳能转换成电能,清洁无污染,具有广阔的应用前景。太阳能光伏电池作为一种清洁能源,应用前景广泛。而近年来,太阳能电池片生产技术不断进步,生产成本不断降低,转换效率不断提高,使光伏发电的应用日益普及并迅速发展,逐渐成为电力供应的重要来源。但是,太阳能电池片生产工艺产生的废水、废气处理不当的话,容易对环境造成污染,在此,本文对单晶硅生产工艺产生的废水处理工艺做详细的阐述。 关键词:太阳能电池片废水处理工艺 中图分类号:TM914.4文献标识码:A 一、引言 随着社会的发展,不可再生资源日益减少,寻求清洁可再生能源成为社会发展的必然趋势,因此,太阳能、风能、生物能产业得到快速发展。太阳能光伏电池是一种新型的依靠太阳能进行能量转换的光电元器件,它将太阳能转换成电能,清洁无污染,具有广阔的应用前景。太阳能光伏电池作为一种清洁能源,应用前景广泛。其生产废水因含有,腐蚀性强,治理困难。采用两级反应沉淀法,先添加氯化钙除氟,再加絮凝剂和助凝剂进行沉淀,在一级、二级沉淀池中分别进行沉降。结果显示,出水质量浓度降至10mg/L以下,达到《污水综合排放标准》(GB8978.1996)的一级排放标准,解决了企业废水处理问题,废水处理效果好,运行稳定,具有推广价值。 二、单晶硅太阳能电池工艺简介 太阳能电池片是一种能量转换的光电元件,它可以在太阳光的照射下,把光能转换成电能,从而实现光伏发电[1]。生产电池片的工艺比较复杂,一般要经过硅片检测、表面制绒、扩散制结、等离子刻蚀、去磷硅玻璃、镀减反射膜、丝网印刷、快速烧结和检测分装等主要步骤。 三、污水成分分析 电池片生产工艺中,单晶硅片制绒工艺是用碱(通常用氢氧化钠)腐蚀硅片表面形成金字塔形貌,过程中用氢氟酸和盐酸清洗,主要产生的废水有浓碱废水、酸碱冲洗废水;去磷硅玻璃工序用氢氟酸去除硅片表面的磷硅玻璃,会产生含氟废水。 从废水的成分来说,主要有以下三部分,含氟废水:主要包括含氢氟酸、硅类的含氟冲洗废水,无机废水主要成分为氢氟酸和SS,[H+]及氟离子浓度较高,酸碱废水中含有硅粉等悬浮物,少量的氟化物,一定量的异丙醇,因此COD、SS污染浓度高[2]。因此,设计后废水收集在两个不同的储罐和两个集水池,分别为:浓碱储罐、浓酸储罐、酸碱废水、含氟废水,废水按照浓度的不同,分开收集,做到轻污分流,节约处理成本。 四、处理工艺的建立 按照工艺的设计,废水按照浓度和成分的不同,分别收集在不同的储罐和集水池,分别为浓酸储罐、浓碱储罐、含氟冲洗废水池、酸碱废水。 浓酸储罐主要收集酸洗和去磷硅玻璃工序中氢氟酸和盐酸槽的废水,废水酸度大,氟离子含量高;浓碱储罐主要收集制绒槽的废水,有机物含量比较高(主要含异丙醇),含有硅粉等悬浮物,COD、SS污染浓度高;含氟冲洗废水池主要收集硅片出氢氟酸槽后的冲洗废水,废水水量大,含有少量的氟离子;酸碱废水池分别收集硅片出碱槽后的冲洗废水、硅片

光伏电池的原理及发展现状

光伏电池的原理及发展现状 众所周知,太阳能是一种用之不竭、储量巨大的清洁可再生能源,每天到地球表面的辐射能量相当于数亿万桶石油燃烧的能量,太阳能开发与利用逐步成府重点发展的战略。热能和光能利用是太阳能应用的两种重要形式。光伏发电是利用光伏电池的光伏效应将太阳光的光能直接转换为电能的一种可再生、无污染的发电方式,正在全球范围内迅猛发展,其不仅要替代部分化石能源,而且未来将成为世界能源供应的主体,是世界各国可再生能源发展的重点。本文阐述了太阳能光伏电池的原理,综述了国内外光伏发电技术的发展现状及发展趋势。 光伏电池的原理及发展现状1839 年,法国的Edmond Becquerel 发现了光伏效应,即光照能使半导体材料内部的电荷分布状态发生变化而产生电动势和电流。光伏电池是基于半导体P- N 结接受太阳光照产生光伏效应,直接将光能转换成电能的能量转换器。1954 年,美国Bell 实验室的G.Pearson 等发明了单晶硅光伏电池,其原理如图1 所示。 图 1 中,太阳光照射到光伏电池表面,其吸收具有一定能量的光子,在内部产生处于非平衡状态的电子-空穴对;在P- N 结内建电场的作用下,电子、空穴分别被驱向N,P 区,从而在P- N 结附近形成与内建电场方向相反的光生电场;光生电场抵消P- N 结内建电场后的多余部分使P,N 区分别带正、负电,于是产生由N 区指向P 区的光生电动势; 当外接负载后,则有电流从P 区流出,经负载从N 区流入光伏电池。图2 为光伏电池等效电路,其中,Iph为与光伏电池面积、入射光辐照度成正比的光生电流(1 cm2硅光伏电池的Iph值为16 ~30 mA);ID,Ish分别为P- N 结的正向电流、漏电流;串联电阻RS主要由电池体电阻、电极导体电阻等组成(RS一般<1 );旁漏电阻Rsh 由硅片边缘不清洁或体内缺陷所致(Rsh一般为几k);RL 为外接负载电阻,IL,UO 分别为光伏电池输出电压、电流;当负载开路(RL= )时,UO即为开路电压Uoc,其与环境温度成反比、与电池面积无关(在100 mW/cm2的光谱辐照度下,硅光伏电池的Uoc一般为450 ~600 mV。与图2 对应的光伏电池解析模型,

浅谈钙钛矿太阳能电池技术与发展

浅谈钙钛矿太阳能电池技术与进展 全华锋BY619102 摘要:基于钙钛矿材料(CH3NH3PbI)制备的太阳能电池的效率由2009年的3.8%增长到了目前的20.2%,因为其较高的光吸收系数,较低的成本以及易于制备等优势引起了广泛的关注。钙钛矿材料不仅可以作为光吸收层,还可以作为电子传输层(ETM)和空穴传输层(HTM),由此可以制备不同结构的钙钛矿太阳电池:介孔结构、介观超结构、平面结构和有机结构等。除此之外,钙钛矿材料的制备方法的多样性也使其更具吸引力,目前已有一步溶液法、两步连续沉积法、双源共蒸发法和溶液—气相沉积法。本文主要介绍钙钛矿太阳电池的发展历程、工作原理、薄膜的制备方法以及各层的作用,最后对钙钛矿太阳电池面临的问题和发展前景进行介绍。 关键词:钙钛矿材料;太阳电池;光吸收层 1.钙钛矿太阳电池的发展历程 随着人类社会的不断发展与进步,由工业发展带来的能源和环境问题日益明显,化石燃料(石油、煤炭、天然气等)的有限储量及其燃烧带来的全球变暖问题使人们不得不去寻找和开发环保且可再生的新型能源。太阳能来源丰富,取之不尽,用之不竭,而且太阳能绿色环保无污染,是未来有希望获得大规模应用的新能源之一,受到国际社会的广泛关注与研究。将太阳能转换为电能的重要器件之一就是太阳电池。 2009年,日本人Kojim等首先将有机-无机杂化的钙钛矿材料应用到量子点敏化太阳电池中,制备出第一块钙钛矿太阳电池,并实现了 3.8%的效率。但这种钙钛矿材料在液态电介质中很容易溶解,该电池仅仅存在了几分钟级宣告失败,随后,Park等人于2011年将CH3NH3PbI纳米晶粒改为2-3nm,效率达到了6.5%。由于仍然采用液态电解质,仅仅经过10min,电池效率就衰减了80%。为解决钙钛矿的稳定性问题,2012年Kim等人将一种固态空穴传输材料(spiro-OMeTAD)引入到钙钛矿太阳电池中,制备出第一块全固态钙钛矿太阳电池,电池效率达到了9.7%。即使未经封装,电池在经过500小时后,效率衰减很小。空穴传输层(HTM)的使用,初步解决了液态电解质钙钛矿太阳电池不稳定和封装困难的问题。随后Snaith等首次将Cl元素引入到钙钛矿中,并使用Al2O3代替TiO2,证明钙钛

太阳能电池片技术发展的现状和趋势

太阳能电池片生产技术的发展和趋势 LED光伏电子项目部 2009/2/22

1太阳能电池片的生产工艺 1.1太阳能电池的工作原理 典型的太阳电池本质上是一个大面积半导体二极管,它利用光伏效应原理把太阳辐射能转换成电能。当太阳光照射到太阳电池上并被吸收时,其中能量大于禁带宽度Eg的光子能把价带中电子激发到导带上去,形成自由电子,价带中留下带正电的自由空穴,即电子-空穴对,通常称它们为光生载流子。自由电子和空穴在不停的运动中扩散到pn结的空间电荷区,被该区的内建电场分离电子被扫 到电池的n型一侧,空穴被扫到电池的p型一侧,从而在电池上下两面(两极)分别形成了正负电荷积累,产生“光生电压”,即“光伏效应”(photovoltaic effect)若在电池两侧引出电极并接上负载,负载中就有“光生电流”通过,得到可利用的电能,这就是太阳电池的工作原理,如图1所示。 图1太阳电池的工作原理 光伏效应是1839年法国Becqueral第一次在化学电池中观察到的。1876年在固态硒(Se)的系统中也观察到了光伏效应,随后开发出Se/CuO光电池。硅光电池的报道出现于1941年1954年,贝尔实验室Chapin等人开发出效率为6%的单晶硅光电池,为太阳能光伏发电奠定了技术基础,成为现代太阳电池时代的划时代标志。作为能源,硅太阳电池于1958年首先在航天器上得到应用。在随后10。多年里,硅太阳电池在空间应用中不断扩大,工艺不断改进,电池设计逐步定型。70 年代初,许多新技术引入电池制造工艺,转换效率有了很大提高。与此同时,硅太阳电池开始引入地面应用,70年代末,地面太阳电池产量已经超过了空间电池产量,促使成本不断降低。80年代初,硅太阳电池发展进入快速发展时期,技术进步和研究开发使太阳电池效率进一步提高,商业化生产成本持续降低,应用不断扩大。在太阳电池的整个发展历程中,先后开发出各种不同结构的电池,如肖特基(MS)电池、MIS电池、MINP电池、异质结电池等,其中同质p2n结电池自始至终占着主导地位,其他结构电池对太阳电池的发展也产生了重要影响。在材料方面,有晶硅电池、非晶硅薄膜电池、铜铟硒(CIS)薄膜电池、碲化镉(CdTe)薄膜电池、砷化镓薄膜电池等,由于薄膜电池被认为是未来大幅度降低成本的根本出路,因此成为太阳电池研发的重点方向和主流,在技术上得到快速发展,并逐步向商业化生产过渡,多晶硅薄膜电池和Gratzel电池在90年代中后期开始成为薄膜电池的研发热点,技术发展比较迅速。 1.2太阳能电池的生产工艺

浅谈太阳能电池的发展与应用

浅谈太阳能电池的基本原理与应用 摘要:人类面临着有限常规能源和环境破坏严重的双重压力。特别是煤、石油、天然气等不可再生能源的逐渐枯竭,能源问题已经成为制约社会经济发展的重大问题,研究新能源的开发利用已是当务之急。太阳能作为一种清洁、高效、取用不尽的能源已有尽半个世纪的发展历程。并成为当前各国争相开发利用的一种新能源。太阳能光伏发电的最核心的器件是太阳能电池,太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。为全面的了解太阳能电池的相关知识,本文通过查阅大量资料与新闻信息,综述太阳能电池的发展历程与当前应用情况。重点研究太阳能电池的工作原理,基本结构,主要类型,发展现状及趋势。 关键词:太阳能电池;基本原理;材料; 晶体硅;薄膜太阳能电池;转换效率 引言:由于人类对可再生能源的不断需求。促使人们致力于开发新型能源。太阳在40min内照射带地球表面的能量可供全球目前能源消费的速度使用1年。合理的利用好太阳能将是人类解决能源问题的长期发展战略,是其中最受瞩目的研究热点之一。在太阳能的有效利用中, 太阳能的光电利用是近些年来发展最快、最具活力的研究领域. 太阳能电池的研制和开发日益得到重视. 太阳能电池是利用光电材料吸收光能后发生的光电子转移反应而进行工作的. 根据所用材料的不同, 太阳能电池主要可分为四种类型: ( 1) 硅太阳能电池; ( 2) 多元化合物薄膜太阳能电池; ( 3) 有机物太阳能电池; ( 4) 纳米晶太阳能电池.太阳能电池以硅材料为主的主要原因是其对电池材料的要求: ( 1) 半导体材料的禁带宽度不能太宽; ( 2) 要有较高的光电转换效率; ( 3) 材料本身对环境不造成污染; ( 4) 材料便于工业化生产且材料性能稳定. 随着新材料的不断开发和相关技术的发展, 以其他材料为基础的太阳能电池也愈来愈显示出诱人的前景. 本文简要地综述了太阳能电池的原理、种类及其研究现状, 并讨论了太阳能电池的发展趋势. 1 基本原理 太阳能(Solar Energy),一般是指太阳光的辐射能量。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源。太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。 1.1 半导体的简单介绍 半导体材料指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,这种材料在某个温度范围内随温度升高而增加电荷载流子的浓度,电阻率下降。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。 1.1.1关于半导体的基本概念 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 载流子:运载电荷的粒子称为载流子,包括电子与空穴。 杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。 P型半导体:在纯净的硅晶体中掺入三

中国太阳能发展现状及其前景

我国太阳能发展现状及其发展前景 摘要:能源是现代社会存在和发展的基石。随着全球经济社会的不断发展,能源消费也相应的持续增长,但是化石能源是不可再生的,所以,在化石能源供应日趋紧张的背景下,大规模的开发和利用可再生能源已成为未来各国能源战略中的重要组成部分。本文旨在介绍我国太阳能发展的现状及其发展方向。关键词:太阳能;清洁能源;化石能源;光伏发电;光热转换 0 引言 化石能源是千百万年前埋在地下的动植物经过漫长的地质年代形成的,所以。随着时间的推移,化石能源的稀缺性越来越突显,且这种稀缺性也逐渐在能源商品的价格上反应出来。而且,化石能源在利用的过程中还会带来一系列的诸如温室效应,粉尘,酸雨等环境问题。而在全球的能源消费结构中化石能源的比例达到87%,在我国,化石能源的比例竟然达到了92%![1]所以,在化石能源供应日趋紧张的背景下,大规模的开发和利用可再生能源已成为未来各国能源战略中的重要组成部分。 1. 太阳能的优点 在诸如风能,水利能,潮汐能,太阳能等各种新型清洁能源中,有很多专家学者都对太阳能青眼有加。 首先太阳能具有普遍性:太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输。其次太阳能有无害害性,开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。 其次太阳能总量十分巨大:每年到达地球表面上的太阳辐射能约相当于130万亿吨煤,而据世界能源会议统计,世界已探明可采煤炭储量共计15980亿吨,预计还可开采200年,全世界可开采的化石能源总量相当于33730亿吨原煤,所以可以说太阳能其总量属现今世界上可以开发的最大能源。 还有最重要的长久性:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。因此,太阳能的大规模开发利用是面向未来,实现可持续发展的必然选择。 2 我国太阳能资源的现状 我国土地辽阔,幅员广大,在中国广阔富饶的土地上,有着十分丰富的太阳能资源。全国各地太阳年辐射为3340MJ/m2~8400MJ/m2,中值为5852MJ/m2。从中国太阳能总量的分布来看,西部地区由于地理位置较好,太阳辐射总量很大。我国各省的太阳能资源分布如下表一所示。[2] 3 我国太阳能的发展现状 目前,我国利用太阳能的方式大多都是太阳能光热转换和光电转换两大种类,例如,太阳热水器、太阳灶、太阳房、太阳能干燥、太阳能温室、太阳能制冷与空调、太阳能发电及光伏发电系统等。 太阳能光热转换 太阳能光热转换是指将太阳光直接或通过聚光照射于集热器上,使光能直接转化为热能。目前主要用于太阳能热水器和太阳热能发电。 在光热转换方面,截至2007年底,中国太阳能热水器产量达2300万平方米,总保有量达亿平方米,占世界的55%,成为全球太阳能热水器生产和使用第一大国,且拥有完全自主知识产权,技术居国际领先水平。这种迹象表明,我国正在向太阳能时代迈进!为了促进太阳能热水系统的推广应用,国家制定

太阳能电池的研究现状及发展

太阳能电池的研究现状及发展 【摘要】近年来随着人们对环境的重视,对新能源的需要变得越来越大,太阳能成为新型能源将被广泛应用。黄铁矿结构的二硫化铁(FeS2)是一种具有合适的禁带宽度(Eg≈0.95eV)和较高光吸收系数(当λ≤700nm时,α=5×105cm-1)的半导体材料,而且其组成元素在地球上储量丰富、无毒,有很好的环境相容性。因此,FeS2薄膜在光电子以及太阳能电池材料等方面有潜在的应用前景,受到人们的广泛关注。本文从不同制备方法所制备出的二硫化铁薄膜的研究结果,来分析二硫化铁薄膜的研究状况。 【关键词】能源;二硫化铁;制备方法;光电性能 1.引言 太阳能电池自1954年由诺贝尔实验室和RCA公司几位杰出的科学家发明问世以来,由于地球变暖现象的日益严重,世界各国对二氧化碳的排放量均采取严格的管制,再加上石油匮乏,40年后将消耗殆尽,其价格持续攀升,这些因素都促成了对代替能源的重视与需求,也激发了太阳能产业的蓬勃发展。 太阳是一座聚合核反应器,它一刻不停地向四周空间放射出巨大的能量。它的发射功率为3.865×1026J/S(相当于烧掉1.32×1016ton标准煤释放出来的能量)。地球大气表层所接收的能量仅是其中的22亿分之一,但是地球一年接收的太阳的总能量却是现在人类消耗能源的12000倍。另外,根据文献记载太阳的质量为1.989×1030kg,根据爱因斯坦相对论(E=mc2)可以计算出太阳上氢的含量足够维持800亿年。而由地质资料得出的地球年龄远远小于这个数字。因此可以说太阳能是取之不尽、用之不竭的[1-3] 2.太阳能电池 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。 2.1 太阳能电池发展 目前,太阳能电池产品是以半导体为主要材料的光吸收材料,在器件结构上则使用P型与N型半导体所形成的PN结产生的内电场,从而分离带负电荷的电子与带正电荷的空穴而产生电压。由于晶体硅材料与器件在技术的成熟度方面领先于其他半导体材料,最早期的太阳能电池极为晶体硅制成,直到近几年晶体硅太阳能电池仍有大约90%的市场占有率。除了技术与投资门槛较低以外,不用担心硅原料匮乏等都是造成其市场占有率高的主因。 在晶体硅太阳能电池之后,大约从1980年起开始有非晶硅薄膜太阳能电池

太阳能电池发展现状及存在的主要问题

太阳能电池发展现状及存在的主要问题 晨怡热管2008-10-17 23:05:45 一、2005年国际太阳能电池产业发展情况 2005年,世界太阳能电池总产量1656MW,其中日本仍居首位,762M W,占世界总产量的46%,欧洲为464M W,占总产量的28%,美国156M W,占总产量的9%,其他274MW,占总产量的17%。 2004年全球前14位太阳能电池公司总产量达到1055MW,占当年世界总产量的88.3%,近五年来,日本Sharp公司一直领先,2004年产量达到324MW,见表1。

以2004年数据分析,各种太阳能电池中硅基太阳能电池占总产量的98%,晶体硅太阳能电池占总产量的84.6%,多晶硅太阳能电池占总量的56%,见表2。

2005年,世界光伏市场安装量1460M W,比2004年增长34%,其中德国安装最多,为837MW,比2004年增长53%,占世界总安装量的57%;欧洲为920MW,占总世界安装量的63%,日本安装量292M W,增幅为14%,占世界总安装量的20%;美国安装量为102MW,占世界总安装量的7%,其他安装量为146M W,占世界总安装量的10%。

至2005年全世界光伏系统累计安装量已超过5GW,2005年一年内投资太阳能电池制造业的资金超过10亿美元。现在,一个世界性的问题是制造太阳能的电池的硅原材料紧缺,尽管2005年全世界硅原材料供应增长了12%,但仍然供不应求,国际上长期供货合同抬价25%。持续的硅材料紧缺将对2006年太阳能电池生产产生较大的影响,预计2006年世界太阳能电池产量的增幅将不限制在10%左右。要解决硅材料的紧缺问题预计将需要5年以上的时间。 根据光伏市场需求预测,到2010年,全世界光伏市场年安装量将在3.2G到3.9GW之间,而光伏工业年收入将达到186美元到231亿美元。 日本和欧美各国都提出了各自的中长期PV发展路线图。 按日本的PV路线图(TV Roadmap 2030),到2030年PV电力将达到居民电力消耗的50%(累计安装容量约为100GW),具体的发展目标见表3和表4。

浅析无机材料在有机太阳能电池中的应用

浅析无机材料在有机太阳能电池中的应用 发表时间:2018-11-19T17:32:32.533Z 来源:《中国经济社会论坛》学术版2018年第1期作者:吴涛熊磊梁溪凯徐龙 [导读] 现阶段伴随着我国科技水平的不断快速发展,我国的无机材料在有机太阳能电池中的应用范围越来越广泛,其中无机材料的迁移效率比较高,光谱效应和太阳能光谱相匹配,而相对于有机材料来说价格便宜,合成方法较简单。 吴涛熊磊梁溪凯徐龙 湖南工业大学冶金学院湖南省株洲市 412007 摘要:现阶段伴随着我国科技水平的不断快速发展,我国的无机材料在有机太阳能电池中的应用范围越来越广泛,其中无机材料的迁移效率比较高,光谱效应和太阳能光谱相匹配,而相对于有机材料来说价格便宜,合成方法较简单。就目前情况来看,无机材料的迁移效率较差,所以导致光电转换效率比较低,并且阻碍了有机太阳能电池的应用。假使能够将无机材料和有机材料相融合在一起,可以大大的提高太阳能电池的光电转换效率。本文主要阐述了无机材料和有机太阳能电池的概述与优点分析,无机材料在OSCs中的应用原理以及目前无机材料在有机太阳能电池中的应用。 关键词:无机材料;有机材料;有机太阳能;效率;电池;应用 一、无机材料和有机太阳能电池的概述与优点分析 无机材料就是指由无机物单独或者是和混合其他物质制成的材料,通常其中包括硅酸盐和铝酸盐以及硼酸盐等原料经一定的工艺制备而成的材料。无机材料的优点具有技术含量高、产品更新换代快以及经济效益明显的特点。 有机太阳能电池就是由有机材料构成核心部分的太阳能电池。主要是以具有光敏性质的有机物作为半导体的材料,并且用光伏效应产生的电压而形成电流,才能够实现太阳能发电的效果。有机太阳能的优点具有价格便宜,有机高分子半导体材料的合成工艺比较简单。比如说酞菁类染料已经实现了工业化的生产,所以它的成本低。还有就是有机太阳能电池可以降解,从而减少对环境的污染。 二、无机材料在OSCs中的应用原理 现如今无机材料在OSCs中的原理是利用有机材料产生的光伏特效应,从而实现的光电能量之间的转化。以下就是无机材料在OSCs中的应用原理过程:先是通过光照射到0SCs上,其中具有能量大于有机材料的光子后被激活,并且产生激子,进而激子在浓度梯度的作用下扩散到异质结处,此时在界面形成孪生的电子空穴;再是由于激子不能够自动解离,所以需要工种不同的最高己占轨道和最低未占轨道的材料相连接,才能够结合到受体LUMO的能极差值作用下分解成自由移动的电子和空穴,那就是电载流子;最后是通过阴阳两极之间的作用存在着功函差,使得电子和空穴在内部的电场作用下产生电流。 三、目前无机材料在有机太阳能电池中的应用 1.无机材料在太阳能电池中阴极缓冲材料的应用。有机太阳能电池器件是稳定性一般的产品,如何提高稳定性就要在阴极与有机层之间添加一层缓冲的材料,这种材料必须使得有机层与电极间接触良好,又不得增加接触的电阻,而且有机层也不能够受到破坏。比如说化合物LiF 常用在电致发光中,但它也可以用于OSCs。何况TiO 2不仅在OSCs 中作为受体,还可以作为阴极缓冲层,阻挡空穴流向阴极,保护了有机层。 2.无机材料在太阳能电池中阳极缓冲材料的应用。有机太阳能电池发光器中的金属氧化物空穴材料在OSCs 中可以作为阳极修饰层,比如说NiO 和WO 3都可以作为阳极修饰层。何况金属氧化物的厚度对于有机太阳能电池器件有明显的影响作用,可以用MoO 3做阳极的修饰层,有机太阳能电池能够在红外区的光吸收能量。从而采取WO 3做阳极修饰,有机太阳能电池器件的效率可以达到 3.1%,主要原因是由于降低了有机太阳能器件中载流子的复合几率。其中NiO 做阳极修饰层,可以有效的调节活性层能级,阳极更容易接纳空穴,从而使得效率不断的提高。过渡金属氧化物与阳极形成良好的能级匹配,有效的阻止了有机层和电极发生电化学反应,进而有利于载流子收集大幅度提高,所以才能够使的有机太阳能电池器件的稳定性提高。 3. 无机材料在太阳能电池中活性层的应用。无机材料在太阳能电池中活性层的应用主要包括铬化合物、硅和低能的纳米粒子以及金属氧化物这四部分构成。 铬化合是指人们常用到的无机受体材料CdS 和CdTe等,铬化合物应用在有机太阳能电池OCSCs 中,首先报道了球形CdSe 与MEH-PPV 结合的有机太阳能电池器件。但是球形粒子表面的绝缘层限制了电荷传输。Huynh 制作了氧化铟锡/聚3-乙基噻吩:CdSe/Al 的有机太阳能电池器件。所以使得纳米棒状CdSe 电子传输有效的提高。 硅是由纳米硅材料制成,具有无毒和对光强吸收以及电子迁移率高的活性层应用。硅不仅可以用作受体材料与有机材料结合制备成了有机太阳能电池,还可以利用蚀刻法形成的硅纳米线阵列可以增加OSCs 在可见和近红外的吸收,从而增大迁移效率。我们可以将硅作为受体串联到有机太阳能电池器件中,能够使得内部电场增大,可以使得电子和空穴转移更加容易,这就充分解决了传输的问题。 低能的纳米粒子主要是为了提高有机太阳能电池的能量转换效率。才能够将波长带隙窄的无机受体与有机受体相融合起来。其中Cui 等制作的有机太阳能电池器件吸收在可见光和近红外区域内。在Tan 改进之后,,不仅减少了活性区载流子的复合数量,并且也保证了光吸收。 金属氧化物其中有TiO 2,它化学稳定性高,可见光区透光良好,有金红石、板钛矿和锐钛矿三种晶型。金红石型TiO 2在热力学上稳定性是最高的,而且光散射性优异。锐钛矿型TiO 2带隙较宽,而且导带能级较高。锐钛矿型TiO 2因为有较高的电子迁移效率,而且在有机太阳能中应用广泛。有一种ZnO 的能级结构和锐钛矿型TiO 2基本相同,也是n 型半导体。ZnO 的缺点是化学稳定性不好,在酸碱环境中都不能稳定很长时间,比较易溶解。 四、结束语 由上可知,目前的无机材料和有机材料能够相融合在一起,他们可以各自发挥各自的优点,但也弥补了材料组成的太阳能电池不足,所以对有机太阳能电池器件有很大的帮助。有机材料的结合,不仅价格便宜,而且工艺简单,并且具有很好的稳定性,可以大大的提高了有机太阳能电池的迁移效率,同时光吸收和太阳能光谱更加匹配。至于有机太阳能电池是否能够实现产业化和居民化,这些都和有机太阳能电池的应用发展有着密切的关联。因为正是有机太阳能电池的这些明显优点——轻快,便宜,原材料容易得,并且可以大面积的制备,用来满足实现产业化、居民化的条件。因此,我们攻克了有机太阳能电池能量转换效率问题,世界的能源界必将迎来有机太阳能电池的时

影响太阳能电池效率因素

影响太阳能电池效率因素 时间:2012-08-20 来源:作者: 摘要:提高太阳能电池的光电转换效率一直以来都是太阳能产业发展研究的重点,因而受到广泛的关注。本文主要从材料的微观结构入手,论述了材料的表面结构,内部杂质带量子阱结构,p-n结数目,界面,层错缺陷等因素对光生伏特效应的影响,从而为提高太阳能电池光电转换效率提供可行的理论依据。 关键词:太阳能电池异质结量子阱杂质带点缺陷掺杂 0 引言 随着世界经济快速发展,能源问题日益突出,太阳能作为一种优质的可再生清洁能源能在带来巨大经济效益的同时改善环境污染问题。太阳能电池具有安全,环保的优良特性,可应用于日常生活的各个领域,具有可观的发展前景。 太阳能电池利用光电转换技术将光能转变为电能,是获取太阳能的有效方式,Si作为目前太阳能电池主要材料其光吸收率很低,禁带宽度为 1.12ev,与最佳光伏响应禁带宽度1.5ev相差较大。因此,研究结构对光电转换效率的影响非常必要,为今后通过开发新材料新结构及对旧材料改性来提高光电转换效率奠定理论基础。 1 太阳能电池光电转换基本原理 固体样品的电子结构或其他性质存在某种不均匀性或异质性,当光照固体时出现外电压的光生伏特效应【1】。这种不均质固体想接触时,势垒区域产生光激发载流子,内建场将使异号的剩余载流子向相反方向运动,形成电子和空穴在不同区域积累,导致电子结构的突变,形成光电压。 2 影响光生伏特效应的因素 提高光电转换效率主要取决于开路电压,闭路电流和填充因子三个物理量。下面从以下几个影响因素论述其对这三个物理量的影响提高太阳能电池光电转换效率。 2.1梯度掺杂 对于均匀掺杂的p-n结太阳能电池,在p区与n区界面处通过扩散作用产生了自建电场,在厚度很小的耗尽层内,光照时,只在电场区域及附近的电子空穴对守电场力的驱使定向移动形成光电流。其他区域电子空穴对由于无电场力无法分离,激子复合率较大,重新辐射出光子,相当于降低了光子吸收率。 若在n区p区进行梯度掺杂,在同型区域内由于浓度差引起载流子的扩散形成自建电场。指数递增掺杂【2】,且远离耗尽层浓度高,n区

探究影响太阳能电池电压的因素

探究影響太陽能電池電壓的因素G608 摘要 本實驗製作出來的染料敏化太陽能電池,真的能發電。照度到4000Lux 的時候,太陽能電池的電壓最強;到達5000Lux的時候,電壓沒有增強,也沒有明顯的減弱,電壓幾乎一樣。沒有加染料的太陽能電池電壓很低,染料是甲基藍的電壓最高。甲基藍對水濃度為1:40的染料敏化太陽能電池,所產生的電壓最高,濃度最高和最低的染料敏化太陽能電池,測出的電壓都不高。 壹、研究動機 我們日常生活最重要的能源就是電,無時無刻離不開電,電力讓我們生活舒適便利;然而,由於地球上的各項能源日益短缺,全球氣候變遷、空氣污染、地球暖化;因此,節能減碳與找尋乾淨能源,便成了大家最重要的課題。 能源分為好幾種,火力發電會造成空氣污染,核能發電可能會有輻射外露,太陽能是最無污染的能源、又可以使用最長久的能源,所以我打算從太陽能電池著手。 貳、研究目的 一、製作出染料敏化太陽能電池 二、用甲基藍當染料,不同照度對染料敏化太陽能電池產生之電壓之影響 三、用紅汞液當染料,不同照度對染料敏化太陽能電池產生之電壓之影響 四、不同顏色的染料對二氧化鈦敏化之影響 五、不同濃度的染料對太陽能電池產生電壓之影響 參、文獻探討 一、太陽能電池介紹 1.矽晶元太陽能電池 分為單晶矽及多晶矽,目前為研究成熟並商業量產,轉換效率達20%以上,唯因需要高度純化的矽半導體,故成本仍然很高。 2.非晶矽太陽能電池 此類光電池是發展最完整的薄膜式太陽能電池,惟在光點使用後短時間內性能會大幅衰退,其光電轉換效率較低,商業模組僅4~8%。 3.染料敏化太陽能電池 1991年瑞士科學家M.Graetzel發明「染料敏化太陽能電池」,以便

太阳能电池材料的研究现状及未来发展

太阳能电池材料的研究现状及未来发展 太阳能是人类取之不尽,用之不竭的可再生能源,它不产生任何环境污染,是清洁能源.太阳光辐射能转化电能是近些年来发展最快,最具活力的研究,人们研制和开发了不同类型的太阳能电池.太阳能电池其独特优势,超过风能、水能、地热能、核能等资源,有望成为未来电力供应主要支柱.制造太阳能电池材料的禁带宽E:应在1.1eV-13W之间,以1.5eV左右为佳,最好采用直接迁移型半导体,较高的光电转换效率(以下简称“效率”),材料性能稳定,对环境不产生污染,易大面积制造和工业化生产. 1954年美国贝尔实验室研制了世界上第一块实用半导体太阳能电池,不久后用于人造卫星.经近半个世纪努力,人们为太阳电池的研究、发展与产业化做出巨大努力.硅太阳电池于1958年首先在航天器上得到应用.在随后10多年里,空间应用不断扩大,工艺不断改进.20世纪70年代初,硅太阳电池开始在地面应用,到70年代末地面用太阳电池产量己经超过空间电池产量,并促使成本不断降低.80年代初,硅太阳电池进入快速发展,开发的电池效率大幅度提高,商业化生产成本进一步降低,应用不断扩大.20世纪80年代中至今,薄膜太阳能电池研究迅速发展,薄膜电池被认为大幅度降低成本的根本出路,成为 今后太阳能电池研究的热点和主流,并逐步向商业化生产过渡. 1.不同材料太阳电池分类及特性简介 太阳能电池按材料可分为品体硅太阳电池、硅基薄膜太阳电池、化合物半导体薄膜太阳电池和光电化学太阳电池等儿大类.开发太阳能电池的两个关键问题就是:提高效率和降低成本. 1晶体硅太阳电池 晶体硅太阳电池是PV(Photovoltaic)市场上的主导产品,优点是技术、工艺最成熟,电池转换效率高,性能稳定,是过去20多年太阳电池研究、开发和生产主体材料.缺点是生产成本高.在硅电池研究中人们探索各种各样的电池结构和技术来改进电池性能,进一步提高效率.如发射极钝化、背面局部扩散、激光刻槽埋栅和双层减反射膜等,高效电池在这些实验和理论基础上发展起来的. 2硅基薄膜太阳电池 多晶硅(ploy-Si)薄膜和非晶硅(a-Si)薄膜太阳电池可以大幅度降低太阳电池价格.多晶硅薄膜电池优点是可在廉价的衬底材料上制备,其成本远低于晶体硅电池,效率相对较高,不久将会在PV市场上占据主导地位.非晶硅是硅和氢(约10%)的一种合金,具有以下优点:它对 厚,材料的需求量大大减少,沉积温度低(约200'C),阳光的吸收系数高,活性层只有1m 可直接沉积在玻璃、不锈钢和塑料膜等廉价的衬底材料上,生产成本低,单片电池面积大,便于工业化大规模生产.缺点是由于非晶硅材料光学禁带宽度为1.7eV,对太阳辐射光谱的长

相关文档
最新文档