初等数论 研究数的规律

初等数论 研究数的规律
初等数论 研究数的规律

20102725984 王涛不定方程

论不定方程

王涛 20102725984

摘要:不定方程是数论的一个分支,它有着悠久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。

正文:初等数论是研究数的规律,特别是整数性质的数学分支。它是数论的一个最古老的分支。它以算术方法为主要研究方法,主要内容有整数的整除理论、同余理论、连分数理论和某些特殊不定方程。换言之,初等数论就是用初等、朴素的方法去研究数论。另外还有解析数论(用解析的方法研究数论。)、代数数论(用代数结构的方法研究数论)。

初等数论已经有2000年的历史,公元前300年,欧几里得发现了素数是数论的基石,他自己证明了有无穷多个素数。公元前250年古希腊数学家埃拉托塞尼发明了一种筛法。2000年来,数论学的一个最重要的任务,就是寻找一个可以表示所有素数的统一公式,

或者称为素数普遍公式,为此,人类耗费了巨大的心血。後来发现埃拉托塞尼筛法可以转

古希腊数学家丢番图于三世纪初就研究过若干

这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969年,莫德尔较系统地总结了这方面的研究成果。了指标和估计问题——表示论的雏形。

不定方程是数论中最古老的分支之一。

古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程。Diophantus,古代希腊人,被誉为代数学的鼻祖,流传下来关于他的生平事迹并不多。今天我们称整系数的不定方程为「Diophantus方程」,内容主要是探讨其整数解或有理数解。他有三本著作,其中最有名的是《算术》,当中包含了189个问题及其答案,而许多都是不定方程组 (变量的个数大于方程的个数)或不定方程式 (两个变数以上)。丢番图只考虑正有理数解,而不定方程通常有无穷多解的。

基础知识

1.不定方程问题的常见类型:

(1)求不定方程的解;

(2)判定不定方程是否有解;

(3)判定不定方程的解的个数(有限个还是无限个)。

2.解不定方程问题常用的解法:

(1)代数恒等变形:如因式分解、配方、换元等;

(2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;

(3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;

(4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;

(5)无穷递推法。

一次不定方程

二元一次不定方程的一般形式为ax+by=c。其中a,b,c 是整数,ab ≠ 0。此方程有整数解的充分必要条件是a、b的最大公约数整除c。若a、b 互质,即它们的最大公约数为1,(x0,y0)是所给方程的一个解,则此方程的解可表为{(x=x0-bt,y=y0+at)|t为任意整数}。

S(≥2)元一次不定方程的一般形式为a1x1+a2x2+…+asxs=n0a1,…,as,n为整数,且

a1…as≠0。此方程有整数解的充分必要条件是a1,…,as的最大公约数整除n。

埃拉托塞尼筛法产生的素数普遍公式是一次不定方程公元前300年,古希腊数学家欧几里得就发现了数论的本质是素数,他自己证明了有无穷多个素数,公元前250年古希腊数学家埃拉托塞尼发明了一种筛法:

(一)“要得到不大于某个自然数N的所有素数,只要在2---N中将不大于√N的素数的倍数全部划去即可”。后来人们

(二)将上面的内容等价转换:“如果N是合数,则它有一个因子d满足1

(三)再将(二)的内容等价转换:“若自然数N不能被不大于(根号)√N的任何素数整除,则N是一个素数”。见(代数学辞典[上海教育出版社]1985年。屉部贞世朗编。259页)。

(四)上面这句话的汉字可以等价转换成为用英文字母表达的公式:

N=p1m1+a1=p2m2+a2=......=p k m k+a k 。(1)

其中p1,p2,.....,p k表示顺序素数2,3,5,,,,,。

a≠0。即N不能是2m+0,3m+0,5m+0,...,p km+0形。若N

(五)可以把(1)等价转换成为用同余式组表示:

N≡a1(modp1),N≡a2(modp2),.....,N≡ak(modpk)。(2)

例如,29,29不能够被根号29以下的任何素数2,3,5整除,29=2x14+1=3x9+2=5x5+4。29≡1(mod2),29≡2(mod3),29≡4(mod5)。29小于7的平方49,所以29是一个素数。

以后平方用“*”表示,即:㎡=m*。

由于(2)的模p1,p2,....,pk 两两互素,根据孙子定理(中国剩余定理)知,(2)在p1p2.....pk 范围内有唯一解。

例如k=1时,N=2m+1,解得N=3,5,7。求得了(3,3*)区间的全部素数。

k=2时,N=2m+1=3m+1,解得N=7,13,19;N=2m+1=3m+2,解得N=5,11,17,23。求得了(5,5*)区间的全部素数。

k=3时,

---------------------| 5m+1-|- 5m+2-| 5m+3,| 5m+4.|

---------------------|---------|----------|--------|---------| n=2m+1=3m+1= |--31----|--7, 37-|-13,43|--19----| n=2m+1=3m+2= |-11,41-|-17,47-|--23---|---29---|

------------------------------------------------------------ 求得了(7,7*)区间的全部素数。仿此下去可以求得任意大的数以内的全部素数。二次不定方程二次不定方程

二元二次不定方程本质上可以归结为求二次曲

另一类特殊的二次不定方程是所谓佩尔方程x2-Dy2=1,D是非平方的正整数。利用连分数理论知此方程永远有解。这类方程就是求双曲线上的有理点。

最后一类就是平方剩余问题,即求x^2-py=q 的整数解,用高斯的同余理论来描述,就是求x^2≡q(mod p) 的剩余类解。高斯发现的著名二次互反律给出了次方程是否有解的判定方法。这类方程就相当于求抛物线上的整点。

圆锥曲线对应的不定方程求解可以看做椭圆曲线算术性质的一种特例。

(二)高次不定方程(组)及其解法

1.因式分解法:对方程的一边进行因式分解,另一边作质因式分解,然后对比两边,转而求解若干个方程组;

2.同余法:如果不定方程有整数解,则对于任意,其整数解满足,利用这一条件,同余可以作为探究不定方程整数解的一块试金石;

3.不等式估计法:利用不等式工具确定不定方程中某些字母的范围,再分别求解;

4.无限递降法:若关于正整数的命题对某些正整数成立,设是使成立的最小正整数,可以推出:存在,使得成立,适合证明不定方程无正整数解。

方法与技巧:

1.因式分解法是不定方程中最基本的方法,其理论基础是整数的唯一分解定理,分解法作为解题的一种手段,没有因定的程序可循,应具体的例子中才能有深刻地体会;

2.同余法主要用于证明方程无解或导出有解的必要条件,为进一步求解或求证作准备。同余的关键是选择适当的模,它需要经过多次尝试;

3.不等式估计法主要针对方程有整数解,则必然有实数解,当方程的实数解为一个有界集,则着眼于一个有限范围内的整数解至多有有限个,逐一检验,求出全部解;若方程的实数解是无界的,则着眼于整数,利用整数的各种性质产生适用的不等式;

4.无限递降法论证的核心是设法构造出方程的新解,使得它比已选择的解“严格地小”,由此产生矛盾。

(三)特殊的不定方程

1.利用分解法求不定方程整数解的基本思路:

将转化为后,若可分解为

,则解的一般形式为,再取舍得其整数解;

2.定义2:形如的方程叫做勾股数方程,这里为正整数。

对于方程,如果,则,从而只需讨论的情形,此时易知两两互素,这种两两互素的正整数组叫方程的本原解。

定理3.勾股数方程满足条件的一切解可表示为:

,其中且为一奇一

偶。

推论:勾股数方程的全部正整数解(的顺序不加区别)可表示为:

其中是互质的奇偶性不同的一对正整数,是一个整数。

勾股数不定方程的整数解的问题主要依据定理来解决。

3.定义3.方程且不是平方数)是的一种特殊情况,称为沛尔(Pell)方程。

这种二元二次方程比较复杂,它们本质上归结为双曲线方程的研究,其中都是整数,且非平方数,而。它主要用于证明问题有无数多个整数解。对于具体的可用尝试法求出一组成正整数解。如果上述pell方程有正整数解,则称使的最小的正整数解为它的最小解。

定理4.Pell方程且不是平方数)必有正整数解,且若设它的最小解为,则它的全部解可以表示成:

.

上面的公式也可以写成以下几种形式:

(1);(2);(3).

定理5.Pell方程且不是平方数)要么无正整数解,要么有无穷多组正整数解,且在后一种情况下,设它的最小解为,则它的全部

解可以表示为

定理6.(费尔马(Fermat)大定理)方程

为整数)无正整数解。

费尔马(Fermat)大定理的证明一直以来是数学界的难题,但是在1994年6月,美国普林斯顿大学的数学教授A.Wiles完全解决了这一难题。至此,这一困扰了人们四百多年的数学难题终于露出了庐山真面目,脱去了其神秘面纱。

典例分析

例1.求不定方程的整数解。

解:先求的一组特解,为此对37,107运用辗转相除法:

,,

将上述过程回填,得:

由此可知,是方程的一组特解,于是,是方程的一组特

解,因此原方程的一切整数解为:。

例2.求不定方程的所有正整数解。

解:用原方程中的最小系数7去除方程的各项,并

移项得:

因为是整数,故也一定是整数,于是有

,再用5去除比式的两边,得,

令为整数,由此得。

经观察得是最后一个方程的一组解,依次回代,可求得原方程的一组特解:,所以原方

程的一切整数解为:。

参考文献:

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

难点探究专题:整式中的规律探究(选做)

难点探究专题:整式中的规律探究(选做) ——从特殊到一般,探寻多方规律 ◆类型一 整式规律探究 一、有规律的一列数 1.(雅安模拟)已知一组数:1,3,5,7,9,…按此规律,第n 个数是 . 2.观察下列一组数:32,1,710,917,11 26,…它们是按一定规律排列的,那么这组数的第 n 个数是 (n 为正整数). 二、有规律的一列单项式 3.有一组单项式:a 2 ,-a 32,a 43,-a 54,a 6 5 …,则第10个单项式是 ,第n 个单 项式是 . 4.(富顺县校级模拟)有一个多项式为-a +2a 2-3a 3+4a 4-5a 5+…按照这样的规律写下去,第2016项为 ,第n 项为 . 5.(临沂中考)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第2015个单项式是【方法18①】( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 2015 三、数的循环规律或式中的规律 6.(河南模拟)如图是钢琴键盘的一部分,若从4开始,依次弹出4,5,6,7,1,4,5,6,7,1,…按照上述规律弹到第2016个音符是 . 7.设a n 为正整数n 的n 4的末位数,如a 1=1,a 2=6,a 3=1,a 4=6,则a 1+a 2+a 3+…+a 24+a 25= . 8.(滨州中考)观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; … 可猜想第2016个式子为________________________________________. 四、数表中的规律 9.(东莞市一模)如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n 的值是( ) A .48 B .56 C .63 D .74

4月浙江自考初等数论试题及答案解析试卷及答案解析真题

1 浙江省2018年4月高等教育自学考试 初等数论试题 课程代码:10021 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.20被-30除的余数是( ) A .-20 B .-10 C .10 D .20 2.176至545的正整数中,13的倍数的个数是( ) A .27 B .28 C .29 D .30 3.200!中末尾相继的0的个数是( ) A .49 B .50 C .51 D .52 4.从以下满足规定要求的整数中,能选取出模20的简化剩余系的是( ) A .2的倍数 B .3的倍数 C .4的倍数 D .5的倍数 5.设n 是正整数,下列选项为既约分数的是( ) A . 3144 21++n n B . 121 -+n n C .2 512+-n n D .1 31++n n 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.d(120)=___________。 2.314162被163除的余数是___________。 3.欧拉定理是___________。 4.同余方程3x ≡5(mod13)的解是___________。 5.不定方程10x-8y=12的通解是___________。

2 6.ο ___________)1847 365 ( = 7.[-π]=___________。 8.为使n-1与3n 的最大公因数达到最大的可能值,则整数n 应满足条件___________。 9.如果一个正整数具有21个正因数,问这个正整数最小是___________。 10.同余方程x 3+x 2-x-1≡0(mod 3)的解是___________。 三、计算题(本大题共4小题,每小题10分,共40分) 1.解同余方程组 ???? ?? ?≡≡≡≡) 9(mod 4)7(mod 32)4(mod 23) 25(mod 1x x x x 2.解不定方程15x+10y+6z=19。 3.试求出所有正整数n ,使得2n -1能被7整除。 4.判断同余方程 x 2≡-1457(mod 2389) 是否有解? 四、证明题(本大题共2小题,每小题10分,共20分) 1.证明形如4n+3的素数有无穷多个。 2.证明不定方程 x 2+y 2+z 2=x 2y 2 没有正整数解。

2013年春_西南大学《初等数论》作业及答案(共4次_已整理)

2013年春西南大学《初等数论》作业及答案(共4次,已整理) 第一次作业 1、设n,m为整数,如果3整除n,3整除m,则9()mn。 A:整除 B:不整除 C:等于 D:小于 正确答案:A 得分:10 2、整数6的正约数的个数是()。 A:1 B:2 C:3 D:4 正确答案:D 得分:10 3、如果5|n ,7|n,则35()n 。 A:不整除 B:等于 C:不一定 D:整除 正确答案:D 得分:10 4、如果a|b,b|a ,则()。 A:a=b B:a=-b C:a=b或a=-b D:a,b的关系无法确定 正确答案:C 得分:10 5、360与200的最大公约数是()。 A:10 B:20 C:30 D:40 正确答案:D 得分:10 6、如果a|b,b|c,则()。 A:a=c B:a=-c C:a|c D:c|a

正确答案:C 得分:10 7、1到20之间的素数是()。 A:1,2,3,5,7,11,13,17,19 B:2,3,5,7,11,13,17,19 C:1,2,4,5,10,20 D:2,3,5,7,12,13,15,17 正确答案:B 得分:10 8、若a,b均为偶数,则a + b为()。 A:偶数 B:奇数 C:正整数 D:负整数 正确答案:A 得分:10 9、下面的()是模12的一个简化剩余系。 A:0,1,5,11 B:25,27,13,-1 C:1,5,7,11 D:1,-1,2,-2 正确答案:C 得分:10 10、下面的()是模4的一个完全剩余系。 A:9,17,-5,-1 B:25,27,13,-1 C:0,1,6,7 D:1,-1,2,-2 正确答案:C 得分:10 11、下面的()是不定方程3x + 7y = 20的一个整数解。 A:x=0,y=3 B:x=2,y=1 C:x=4,y=2 D:x=2,y=2 正确答案:D 得分:10 12、设a,b,c,d是模5的一个简化剩余系,则a+b+c+d对模5同余于()。 A:0 B:1 C:2 D:3 正确答案:A 得分:10 13、使3的n次方对模7同余于1的最小的正整数n等于()。 A:6 B:2

中考复习篇之《专题四 规律探索题》

专题四 规律探索题 类型一 数式规律探索 (2017·安徽)【阅读理解】我们知道,1+ 2+3+…+n =n (n +1) 2,那么12+22+32+…+n 2结果等于多少呢? 在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n 行n 个圆圈中数的和为n +n +…+nn 个n ,即n 2 .这样,该三角形数阵中共有n (n +1) 2 个圆圈,所有圆圈中数的和为12+22+ 32+…+n 2.

图1 图2 【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数[如第(n-1)行的第一个圆圈中的数分别为n-1,2,n],发现每个位置上三个圆圈中数的和均为________,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=________,因此,12+22+32+…+n2=________. 【解决问题】根据以上信息发现,计算: 12+22+32+…+2 0172 的结果为________. 1+2+3+…+2 017

【分析】 第一空只需将n -1,2,n 相加即可,∵每个三角形数阵中共有 n (n +1) 2个圆圈,而每个位置上三个圆圈中数的和均为2n +1,∴三个三角形数阵中所有圆圈中数的总和为(2n +1)·n (n +1) 2,从而第二空,第三、四空易求. 【自主解答】 【方法点拨】解决规律探究型问题的一般思路是通过对所给的具体结论进行全面、细致的观察、分析、比较,从中发现规律,并猜想出一般性结论,其中关于等式的规律探索:用含字母的代数式进行归纳,注意字母往往还具有反映等式序号的作用. 1.(2019·合肥二模)观察下列等式: 第1个等式:42-12-92=3,第2个等式:52-22-92=6,第3个等式: 62-32-9 2=9,第4个等式:72-42-9 2=12,按照以上规律,解决下列问题: (1)写出第5个等式:________;

初等数论试卷模拟试题和答案

初等数论试卷一 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,, ,n a a a 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =- =+ =±± B.00,,0,1,2, ;a b x x t y y t t d d =+= -=±± C.00,,0,1,2, ;b a x x t y y t t d d =+= -=±± D.00,,0,1,2, ;b a x x t y y t t d d =-= -=±± 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112 2 11mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2, ,9; B.1,2,3,,10;

欧拉定理

欧拉定理 认识欧拉 欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等,至今沿用。欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E 即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”?欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式...... 初等数论中的欧拉定理

初等数论第2版习题答案

第一章 §1 1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n )1()1()2)(1(/6+-+++∴n n n n n n 从而可知 )12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则 S b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r by ax by ax ++∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ).,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 00/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

初等数论定理

初等数论 1. 整除性质 a) 若a|b,a|c,则a|(b±c)。 b) 若a|b,则对任意c,a|bc。 c) 对任意非零整数a,±1|a,±a|a。 d) 若a|b,b|a,则|a|=|b|。 e) 如果a能被b整除,c是任意整数,那么积ac也能被b整除。 f) 如果a同时被b与c整除,并且b与c互质,那么a一定能被积bc整除,反 过来也成立。 g) 如果a∣b且b∣c,则a∣c。 h) 如果c∣a且c∣b,则c∣ua+vb,其中u,v是整数。 i) 对任意整数a,b,b>0,存在唯一的数对q,r,使a=bq+r,其中0≤r0是两个不全为零的整数a,b的公因子,如果a,b的任何公因子都整除c,则c称为a,b的最大公因子,记为c= (a,b). a) (a,b)=(-a,b)=(a,-b)=(-a,-b) b) (0,a)=a c) 设a,b是两个不全为零的整数,则存在两个整数u,v,使 (a,b)= ua+vb. 4. 欧几里德除法(辗转相除法): 已知整数a,b,记r0=a,r1=b, r0=q1r1+r2,0 ≤r2<r1=b; r1=q2r2+r3,0 ≤r3<r2; … r n-2=q n-1r n-1+r n,0 ≤r n<r n-1; r n-1=q n r n

规律探究专题训练

1 数学专题复习(一):规律探索性问题 1.观察下列图形,则第n 个图形中三角形的个数是( ) A .22n + B .44n + C .44n - D .4n 2.有一列数12 34 251017 --,,,, …,那么第7个数是 . 3.观察算式: 221.4135-=?;222.5237-=?;223.6339-=?224.74311-=?;………… 则第n (n 是正整数)个等式为________. 4、(2009年益阳市)如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成. - 5.观察下面的一列单项式:x ,22x -,3 4x ,48x -,…根据你发现的规律,第7个式子为 ; 第n 个式子为 6.观察下列一组数:21,43,65,87 ,…… ,它们是按一定规律排列的. 那么这一组数的第k 个 数是 . 7.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图 形需要黑色棋子的个数是 . 8、如图,第10个图形白色纸片________张;⑵ 第n 个图案台有白色纸片________张. 9.如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________ 10.一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打 开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是___________. 11. (2009年梅州市)如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个. 12、已知点A 、B 在数轴上对应的数如图 1,动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,以此类推,……点P 能够移动与A 、B 重合的位置吗?若能,请探索第几次移动时重合,若不能,请说明理由。 13、已知等边三角形ABC 在数轴上的位置如图,点A 、C 对应的数分别为0和-1,将此三角形绕着 顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则翻转2019次后,点C 所对应的数是多少呢? 14、正方形ABCD 在数轴上的位置如图,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶 点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2018次后,数轴上数2018所对应的点是哪个点? 第1个 第2个 第3个 …… … … 第1幅 第2幅 第3幅 第n 幅 第二轮复习 资 料 第1个 第2个 第3个 (1) (2) (3) ……

(完整word版)初等数论练习题一(含答案)

《初等数论》期末练习二 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C (mod )ac bc m ≡/ D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 7、如果a b ,b a ,则( ). A b a = B b a -= C b a ≥ D b a ±= 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 10、模7的最小非负完全剩余系是( ). A -3,-2,-1,0,1,2,3 B -6,-5,-4,-3,-2,-1 C 1,2,3,4,5,6 D 0,1,2,3,4,5,6 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 12、同余式)593(mod 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 二、填空题 1、有理数 b a ,0,(,)1a b a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.

第五节初等数论中的几个重要定理

第五节 初等数论中的几个重要定理 基础知识 定义(欧拉(Euler)函数)一组数s x x x ,,,21 称为是模m 的既约剩余系,如果对任意的s j ≤≤1,1),(=m x j 且对于任意的Z a ∈,若),(m a =1,则有且仅有一个j x 是a 对模m 的剩余,即)(mod m x a j ≡。并定义},,2,1{)(m s m ==?中和m 互质的数的个数,)(m ?称为欧拉(Euler )函数。 这是数论中的非常重要的一个函数,显然1)1(=?,而对于1>m ,)(m ?就是1,2,…,1-m 中与m 互素的数的个数,比如说p 是素数,则有1)(-=p p ?。 引理:∏? =为质数)-(P |P 11)(m P m m ?;可用容斥定理来证(证明略)。 定理1:(欧拉(Euler )定理)设),(m a =1,则)(mod 1)(m a m ≡?。 证明:取模m 的一个既约剩余系))((,,,,21m s b b b s ?= ,考虑s ab ab ab ,,,21 ,由于a 与m 互质,故)1(s j ab j ≤≤仍与m 互质,且有i ab )1(s j i ab j ≤<≤?,于是对每个 s j ≤≤1都能找到唯一的一个s j ≤≤)(1σ, 使得)(mod )(m b ab j j σ≡,这种对应关系σ是一一的,从而)(mod )(mod )(11)(1m b m b ab s j j s j j s j j ∏∏∏===≡≡σ,∴))(mod ()(11m b b a s j j s j j s ∏∏==≡。 1),(1=∏=s j j b m ,)(mod 1m a s ≡∴,故)(mod 1)(m a m ≡?。证毕。 分析与解答:要证)(mod 1)(m a m ≡?,我们得设法找出)(m ?个n 相乘,由)(m ?个数我们想到m ,,2,1 中与m 互质的)(m ?的个数:)(21,,,m a a a ? ,由于),(m a =1,从而)(21,,,m aa aa aa ? 也是与m 互质的)(m ?个数,且两两余数不一样,故)(21m a a a ???? ≡)(21,,,m aa aa aa ? ≡)(m a ?)(21m a a a ???? (m mod ),而 ()(21m a a a ???? m )=1,故)(mod 1)(m a m ≡?。 这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。

2020中考数学规律探索专题复习(含解析)

规律探索 一.选择题 1.(2019?湖北省鄂州市?3分)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3… B n在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为() A.22n B.22n﹣1C.22n﹣2D.22n﹣3 【分析】直线y=x与x轴的成角∠B1OA1=30°,可得∠OB2A2=30°,…,∠OB n A n=30°,∠OB1A2=90°,…,∠OB n A n+1=90°;根据等腰三角形的性质可知A1B1=1,B2A2=OA2=2,B3A3=4,…, B n A n=2n﹣1;根据勾股定理可得B1B2=,B2B3=2,…,B n B n+1=2n,再由面积公式即可求 解; 【解答】解:∵△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形, ∴A1B1∥A2B2∥A3B3∥…∥A n B n,B1A2∥B2A3∥B3A4∥…∥B n A n+1,△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形, ∵直线y=x与x轴的成角∠B1OA1=30°,∠OA1B1=120°, ∴∠OB1A1=30°, ∴OA1=A1B1, ∵A1(1,0), ∴A1B1=1, 同理∠OB2A2=30°,…,∠OB n A n=30°, ∴B2A2=OA2=2,B3A3=4,…,B n A n=2n﹣1, 易得∠OB1A2=90°,…,∠OB n A n+1=90°, ∴B1B2=,B2B3=2,…,B n B n+1=2n, ∴S1=×1×=,S2=×2×2=2,…,S n=×2n﹣1×2n=; 故选:D. 【点评】本题考查一次函数的图象及性质,等边三角形和直角三角形的性质;能够判断阴影三角形是直角三角形,并求出每边长是解题的关键. 2.(2019?四川省达州市?3分)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为 =﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差

0初等数论试卷及答案

初等数论考试试卷 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,, ,n a a a 的公因数中最大的称为最大公因数; < B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗】 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d =- =+=±± B.00,,0,1,2, ;a b x x t y y t t d d =+=-=±± C.00,,0,1,2, ;b a x x t y y t t d d =+=-=±± D.00,,0,1,2, ;b a x x t y y t t d d =-=-=±± ( 4.下列各组数中不构成勾股数的是( D ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡

初等数论习题与答案、及测试卷

1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n 1()1()2)(1(/6+-+++∴n n n n n n 从而可知 12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r ax by ax + +∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

欧拉定理

欧拉定理

————————————————————————————————作者: ————————————————————————————————日期:

欧拉定理 认识欧拉 欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f(x)等等,至今沿用。欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”? 欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式...... 初等数论中的欧拉定理

七年级数学专题规律探究题

七年级数学专题-----规律探究题

————————————————————————————————作者:————————————————————————————————日期:

七年级数学专题-----规律探究题 题型一:数字变化类问题 1.观察下列按顺序排列的等式:,,,,…,试猜想第n个等式(n为正整数):a n=__________. 2.下表中的数字是按一定规律填写的,表中a的值应是. 1 2 3 5 8 13 a … 2 3 5 8 13 21 34 … 3.观察下面的单项式:a,﹣2a2,4a3,﹣8a4,…根据你发现的规律,第8个式子是. 4.有一组等式: 2222222222222222 1233,2367,341213,452021 ++=++=++=++=……请观察它们的构成规律,用你发现的规律写出第8个等式为_________ 5.把奇数列成下表, 根据表中数的排列规律,则上起第8行,左起第6列的数是. 5.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。而计数制方 法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据。已知二进位制与十进位制的比较如下表: 十进位 制 0 1 2 3 4 5 6 … 二进 制0 1 1 1 1 100 101 110 … 请将二进制数10101010 (二) 写成十进制数为 .

6.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,… 7.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是.8.有这样一组数据a1,a2,a3,…a n,满足以下规律: ,(n≥2且n为正整数),则a2013的值为______(结果用数字表示). 9.观察下列各式的计算过程: 5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, ………… 请猜测,第n个算式(n为正整数)应表示为____________________________.10.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是 A.M=mn B.M=n(m+1) C.M=mn+1 D.M=m(n+1) 11.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34…+32013的末位数字是() A.0 B.1 C.3 D.7 12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所 填整数之和都相等,则第2013个格子中的整数是. -4 a b c 6 b - 2 …

初等数论1习题参考答案

附录1 习题参考答案 第一章习题一 1. (ⅰ) 由a b知b = aq,于是b = (a)(q),b = a(q)及b = (a)q,即a b,a b及a b。反之,由a b,a b及a b 也可得a b; (ⅱ) 由a b,b c知b = aq1,c = bq2,于是c = a(q1q2),即a c; (ⅲ) 由b a i知a i= bq i,于是a1x1a2x2a k x k = b(q1x1 q2x2q k x k),即b a1x1a2x2a k x k;(ⅳ) 由b a知a = bq,于是ac = bcq,即bc ac; (ⅴ) 由b a知a = bq,于是|a| = |b||q|,再由a 0得|q| 1,从而|a| |b|,后半结论由前半结论可得。 2. 由恒等式mq np= (mn pq) (m p)(n q)及条件m p mn pq可知m p mq np。 3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为s, s 1, , s 9, s 10,其中必有一个能被11整除。 4. 设不然,n1= n2n3,n2p,n3p,于是n = pn2n3p3,即p3n,矛盾。 5. 存在无穷多个正整数k,使得2k1是合数,对于这样的k,(k1)2

不能表示为a2p的形式,事实上,若(k 1)2= a2p,则(k 1 a)( k 1 a) = p,得k 1 a = 1,k 1 a = p,即p = 2k 1,此与p为素数矛盾。 第一章习题二 1. 验证当n =0,1,2,… ,11时,12|f(n)。 2.写a = 3q1r1,b = 3q2r2,r1, r2 = 0, 1或2,由3a2b2 = 3Q r12r22知r1 = r2 = 0,即3a且3b。 3.记n=10q+r, (r=0,1,…,9),则n k+4-n k被10除的余数和r k+4-r k=r k(r4-1)被10 除的余数相同。对r=0,1,…,9进行验证即可。 4. 对于任何整数n,m,等式n2 (n 1)2 = m2 2的左边被4除的余数为1,而右边被4除的余数为2或3,故它不可能成立。 5 因a4 3a2 9 = (a2 3a 3)( a2 3a 3),当a = 1,2时,a2 3a 3 = 1,a4 3a2 9 = a2 3a 3 = 7,13,a4 3a2 9是素数;当a 3时,a2 3a 3 > 1,a2 3a 3 > 1,a4 3a2 9是合数。 6. 设给定的n个整数为a1, a2, , a n,作 s1 = a1,s2 = a1a2,,s n = a1a2a n, 如果s i中有一个被n整除,则结论已真,否则存在s i,s j,i < j,使得s i与s j 被n除的余数相等,于是n s j s i = a i + 1a j。

初等数论中的几个重要定理 引理 和推论

初等数论中的几个重要定理 基础知识 定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模的剩余,即。并定义中和互质的数的个数, 称为欧拉(Euler)函数。 这是数论中的非常重要的一个函数,显然,而对于,就是1,2,…, 中与互素的数的个数,比如说是素数,则有。 引理:;可用容斥定理来证(证明略)。 定理1:(欧拉(Euler)定理)设=1,则。 分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而 也是与互质的个数,且两两余数不一样,故 (),而()=1,故。 证明:取模的一个既约剩余系,考虑,由 于与互质,故仍与互质,且有,于是对每个都能找到唯一的一个,使得,这种对应关系 是一一的,从而,。

,,故。证毕。 这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。 定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。 设为质数,若是的倍数,则。若不是的倍数,则 由引理及欧拉定理得,,由此即得。 定理推论:设为质数,是与互质的任一整数,则。 定理3:(威尔逊(Wilson)定理)设为质数,则。 分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。 证明:对于,在中,必然有一个数除以余1,这是因为 则好是的一个剩余系去0。 从而对,使得; 若,,则,,故 对于,有。即对于不同的对应于不同的,即 中数可两两配对,其积除以余1,然后有,使,即与它自己配对,这时,,或, 或。 除外,别的数可两两配对,积除以余1。故。

初等数论计算题答案

初等数论第三次作业 计算题 1. 求75与105的最大公因数。 解:因为75 = 3错误!未找到引用源。52,105 = 3错误!未找到引用源。5错误!未找到引用源。7, 所以75与105的最大公因数是15。 2. 求66与121的最大公因数。 解:因为66=6×11,121=11×11, 所以66与121的最大公因数是11 3.求不定方程3x - 4y = 1的一切整数解。 答;因为(3,4)= 1,所以不定方程有整数解。 观察知x = 3,y = 2是其一个整数解。 由公式知其一切整数解为???+=+=t y t x 3243,t 为整数。 4.求不定方程7x + 2y = 1的一切整数解。 答;因为(7,2)=1,1|1,所以不定方程有解。观察知其一个整数解是 0013 x y =??=-?。 于是其一切整数解为1237x t y t =+??=--? ,t 取一切整数。 5.解同余式3x ≡ 1 (mod 7)。 答;因为(3,7)= 1,所以同余式有解且有一个解。 由3x - 7y = 1得???+=+=t y t x 3275, 所以同余式的解为)7(mod 5≡x 6.解同余式3x ≡ 8 (mod 10)。

答;因为(3,10)=1,1|8,所以同余式有解,并且只有一个解。由3108x y -=得 一个解00 61x y =??=?,所以同余式的解为6(mod10)x ≡。 7.解同余式28x ≡ 21 (mod 35)。 答:因为(28,35) = 7,而7|21,所以同余式28x ≡ 21(mod 35)有解,且有7个解。同余式28x ≡ 21(mod 35)等价于4x ≡ 3(mod 5),解4x ≡ 3(mod 5)得x ≡ 2(mod 5),故同余式28x ≡ 21(mod 35)的7个解为x ≡ 2,7,12,17,22,27,32(mod 35)。 8.解同余式组: ???≡≡) 5(mod 2)3(mod 1x x 。 答;由)3(mod 1≡x 得13+=k x ,将其代入)5(mod 2≡x 得)5(mod 213≡+k , 解得)5(mod 2≡k ,即25+=t k , 所以715+=t x ,所以解为)15(mod 7≡x 。 9. 求不定方程3x + 2y = 2的一切整数解。 解:因为(3,2) = 1,所以不定方程有整数解。 显然1,0==y x 是其一个特解, 所以不定方程的一切整数解为错误!未找到引用源。,其中t 取一切整数。 10.解同余式)5(mod 14≡x 答;因为(4,5)= 1,所以同余式有解且有一个解。 由4x - 5y = 1得???+=+=t y t x 3275, 所以同余式的解为)7(mod 5≡x

相关文档
最新文档