区构造特征及构造应力场、应变场分析

区构造特征及构造应力场、应变场分析
区构造特征及构造应力场、应变场分析

地质构造应力场分析方法与原则

地质构造应力场分析方法与原则 发表时间:2019-01-04T10:34:05.383Z 来源:《基层建设》2018年第34期作者:郭建锐[导读] 摘要:构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。 赤峰市利拓矿业有限公司内蒙古赤峰市 024000摘要:构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。本次研究针对地质构造应力场的测量方法水力压裂法、井壁崩落法、磁组构法进行分析,并对地质构造应场力分析原则进行阐述,继而进一步丰富构造应力场的理论。 关键词:地质构造;构造应场力;应场力引言:构造应力场就是在一个空间范围内构造应力的分布。构造应力场是作用在地壳某一地区内部的和由于这一地区某种变形的构造单元的发育而出现的应力总和。应力场是一种物理场,它和其他物理场,如重力场、电滋场、位势场等一样,也是物质存在的一种形式。场不是空间,而是在空间范围内某个物理量的按势分布。随着时间的变化,场内各点的强度和方向也将发生变化。构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。 1.地质构造应力场概述 构造应力场概念是由我国地质学家李四光率先提出的。1947年李四光提出用构造形迹反推构造应力场,并研究各种不同力学性质的构造形迹与应力方向、应力作用方式之间的相互关系。1940年格佐夫斯基也提出研究构造应力场,并把用赤平投影求主应力轴方向的方法引进构造应力场的研究。1950年一1996年国内外地质工作者结合地震地质的研究工作开展了构造应力测量,经多年努力,通过野外与室内实测证实了构造应力的存在,并探索、研究了行之有效的构造应力测量技术方法,完善了构造应力测量的理论基础,建立了可靠的测量技术方法和数据处理系统。万天丰(1999)、武红岭(1999,2003)等将矿场构造应力场研究的方法延伸到盆地构造研究领域,取得了人量的研究认识和资料,极大地丰富了构造应力场研究理论,也为盆地构造应力场研究积累了丰富的地质认识和方法。1970年构造应力场的研究有长足进展,逐渐深入到地质学的多个领域。1980年以后,构造应力场问题越来越受到国内外地质学界的重视,研究内容多涉及板块、大陆,大洋地区的构造应力场。1990年以来,全球大陆与海洋科学钻探计划开始研究现今构造应力和古应力状态和岩石圈动力学问题。 2.地质构造应力场分析方法 构造应力场研究的主要内容是在确定各地的点应力状态(应力方向和应力大小)的基础上,研究在一定区域范围内各个构造活动时期的构造应力分布特征。古应力测量可通过构造形迹分析法、古地磁法、节理测量法来确定古构造应力作用方向,利用声发射法。晶格位错法等可确定古地应力值的大小(导致地层变形时的最大水平古应力)。现今应力测量可利用震源机制解法、水力压裂法、井壁崩落法等来确定现今构造应力最大主应力方向,利用声发射法、经验公式法可确定现今地应力大小。 2.1.1水力压裂法 水力压裂测量地应力的方法首先在美国发展起来,1977年B.Haimson在井深5.1Km处进行了水力压裂地应力测量。我国学者葛洪魁(1998)、康红普(2014)均在研究中采用水力压裂测量法进行验证。水力压裂(Hydraulic fracturing)地应力测量是通过在井眼周围地层中诱发人工裂缝来获取地应力的一种方法,测试精度受多种因素的影响,如测试层位筛选、施工仪器设备、施工方案的选择以及测试数据的分析等。 2.1.2井壁崩落法 井壁崩落椭圆法的理论依据为崩落椭圆是由地壳内的构造应力场形成的,所以二者之间存在确定的关系。它的基本原理是,由于地壳内存在水平差应力,致使钻井壁形成应力集中,在垂直于最大水平主应力(压应力为正)方向的井壁端切向应力最大,当该处切向应力达到或超过岩石的破裂极限强度时,即发生破裂,从而形成井壁崩落椭圆。1970年加拿大Bell在研究阿尔伯达油田四臂井径测量的地层倾角测井资料后,发现井眼扩大方向与区域内的最小水平主应力方向平行,Gough等也发现了这种现象。1985年,Zoboek使用井下电视观测证实了Boll的发现,并与B.Haimson等人对井眼崩落机制进行研究,说明了井壁崩落法是测量水平主应力方向的可行方法。shulnberger测井公司研究应用测井资料解释地层压力问题,并用于解释石油工程中的地层破裂压力、地层坍塌压力及油层出砂等问题。这种用测井资料解释地应力剖面的方法,己经能够解决石油工程中的许多问题。 2.1.3磁组构测量法 磁组构是指磁性颗粒或晶格的定向排列或组合,其实质是岩石磁化率各向异性。岩石磁化率各向异性是指岩石的磁化强度随方向的变化性质,包括感应磁化率各向异性与剩余磁化率各向异性。GrahamJ.w(1954)提出,儿乎所有岩石都可以观测到磁各向异性。研究表明,岩石的磁化率一般表现为磁化率数量椭球的形状和方向。椭球可以反映岩石内部铁磁性颗粒长轴的主要分布方向,与沉积搬运和充填方式、岩浆岩流动构造、变质岩类型和变质程度、页理、线理、褶皱轴方向等存在一定对应关系,是地史时期定向应力和温度作用的结果,是岩组分析和有限应变测量的重要手段之一。 3.地质构造应力场分析原则 3.1时间局限性原则 一般认为根据不同构造形变的切错和叠加等关系可以确定构造应力场的分期,即相对活动次序。可以根据组成构造形变的最新地层时代和角度不整合面之上的最老上覆地层的时代,来确定构造应力场作用的大致时间。如果有地层或侵入体同位素年代的资料时,构造应力作用的时间可以确定得更准确些。即使如此,构造应力作用的时间还是不可能确定得十分精确。 如果已知组成某一构造形变的最新地层年代和侵蚀了构造形变的不整合面之上的最老上覆地层的年代,构造形变肯定是在不整合形成期间发生的;但两个沉积地层的年代之间,发生了许多变化:老地层沉积之后要下沉、硬结成岩;受构造应力作用后造成构造形变;隆起遭受剥蚀;地壳重新下降,接受新的沉积。可以看出在整个不整合的形成过程中造成构造形变的构造应力作用只局限在一个较短的时间内。如果再考虑到同位素年代的不精确性(由于采样、测试方法等原因),要准确测定构造应力作用的时间实际上目前还难以实现。 3.2空间动态性原则

应力场分析与裂缝预测

《应力场分析与裂缝预测》教学大纲 (2004年制定,2012年第二次修改) 课程名称:应力场分析与裂缝预测 课程英文名称:Stress Field Analysis and Fracture Prediction 课内学时:32 课程学分:2 课程性质:学位课开课学期:每学年第一学期 教学方式:课堂讲授考核方式(考试/考查):考试 大纲执笔人:曾联波主讲教师:曾联波 师资队伍:曾联波、童亨茂、陈书平 一、课程内容简介 《应力场分析与裂缝预测》是地质学专业和资源勘探与地质工程专业硕士研究生的一门专门课程。讲授古、现应力场和储层裂缝的研究方法及其在油气勘探与开发中的应用,包括应力与应力场的基础概念、古构造应力场分析方法、现今地应力测量方法、裂缝的基础知识,裂缝定量预测方法、古应力场在油气勘探中的应用、现今地应力和裂缝在低渗透油气田开发中的应用。本门课程为32学时,2学分。 二、课程目的和基本要求 课程的目的是培养学生掌握古、今应力场分析与储层裂缝预测的基本理论和方法分析油田应力场分布及进行储层裂缝预测的基本能力。《应力场分析与裂缝预测》课程涉及构造地质学、地质力学、储层地质学、岩石力学、石油地质学和油气藏工程等多方面的基本知识,要求学生系统学习了大学本科地质类专业的构造地质学、固体力学、石油地质学和储层地质学等课程。 学完本课程后,应达到以下基本要求: 1.了解应力、应力场和裂缝的基本概念及基本分布特征; 2.掌握古应力场研究方法及进展,并能运用这些基本方法分析油田古应力场分布和指导油气勘探; 3.掌握现今地应力测量方法,并能运用这些方法分析低渗透油气田的地应力分布和指导油气田开发。 4. 掌握储层裂缝的研究和预测方法,并能运用这些方法研究和预测低渗透储层裂缝的分布规律。 三、课程主要内容 §1. 应力场分析和裂缝预测的基础知识(4学时) §1.1应力、应力场和裂缝的基本概念。 §1.2应力场和裂缝研究的基本内容与方法。 §1.3应力场分析和裂缝预测的研究现状与发展趋势。 §1.4应力场分析和裂缝预测的研究意义。 §2. 现今地应力测量方法(4学时) §2.1现场地应力测量方法。 §2.2岩心地应力测量方法。 §2.3测井地应力分析方法。 §2.4地应力的分布规律及影响因素 §3. 古构造应力场分析方法(6学时) §3.1古构造应力方向分析方法。

华北地区构造应力场研究

科技信息2011年第27期 SCIENCE &TECHNOLOGY INFORMATION 华北地区构造应力场研究 李富涛1孟昭焕2贾宝刚1 (1.山东省煤田地质局物探测量队山东泰安271021;2.莱芜市国土资源局山东莱芜271100) 【摘要】本文结合相关数据、模型和软件分别利用重力场、重力垂线偏差与构造应力场的内在关系式对华北地区陆地构造应力值进行了计算,通过对相关数据结果进行对比分析,总结并得出了华北地区重力总水平梯度、构造应力场和研究方法本身的一些规律和特征。 【关键词】重力场;重力水平梯度;垂线偏差;构造应力 0引言构造应力场是地球动力学研究领域一个重要的组成部分。由于我 们不能直接测量得到浅层地表以外的岩石圈构造应力场,一些学者于 是另辟蹊径,以可以直接测量得到的相关区域重力数据为参考,通过 研究构造应力场与重力场之间的内在关系的方法而最终获得构造应 力场数据。在这方面,典型的代表人物有游永雄、向文、方剑等。游永雄 曾利用重力场研究了包括华北地区在内的多个地区的构造应力场情 况,本文即利用近似方法专门针对华北地区东经[106°,124°]、北纬[31° 43°]范围的大陆构造应力场进行更加细致地研究[1],以期使得对该区 域构造应力场及其变化规律和研究手段本身认识得更加详尽。 1 重力和垂线偏差场转换构造应力场公式1.1利用重力场计算华北地区构造应力场 游永雄推导了重力场转换构造应力场的公式即[2]:Δσxx =g ρx ,y m g x (1)其中,Δσxx 代表构造应力;g 为正常重力;f 为引力常量;ρx ,y 为均衡 改正的单位均衡柱体密度;ρm 为地幔密度;g x 为重力总水平梯度,其水 平分量Δg x 和Δg y 值可用下面公式计算[2][3]: Δg x =-1+∞-∞乙+∞-∞乙(x-x')Δg z [(x-x')2+(y-y')2+H 2]32dx'dy 'Δg y =-12π+∞-∞乙+∞-∞乙(y -y ')Δg z [(x-x')2+(y-y')2+H 2] 32dx'dy 乙乙乙乙乙乙乙乙乙乙乙'(2)Δg z 是得到的重力异常值,x'和y '是流动坐标,遍及整个测量区 域,H 是空间延拓高度, 积分面积可以有限化和离散化,以适应计算,本文即以离散化后 2度范围为积分区域来计算。 求g x 的值的计算式为:g x =(Δg x )2+(Δg y )2 姨(3)1.2利用重力垂线偏差计算构造应力场公式 利用垂线偏差计算构造应力场公式如下[2]: Δσxx =-g 24πf ρx ,y ·u ρm ·ρ (4)式中,u 代表重力垂线偏差;ρ=206265rad ·s 。 u 的值根据下式计算[4]:u =(ξ2+η2) 1/2(5)其中,ξ为南北垂线偏差(垂线偏差子午圈分量);η为西东垂线偏 差(垂线偏差卯酉分量)。 2 计算华北地区构造应力场2.1利用重力场计算华北地区构造应力场 本文利用华北地区5′×5′分辨率的DTM 数据、360阶重力场模型 EGM96并借助于PALGrav1.0软件[5]求得该区域布格重力异常值Δg z , 然后计算得到重力总水平梯度g x 。在此基础上,再利用重力延拓知识[6], 并根据式(1)分别计算得到了华北地区地表、20公里和40公里深度 处的构造应力值。以下分别是该区5′×5′分辨率DTM 图、重力总水平 梯度图和地表、20公里、40公里深度构造应力场图。 2.2利用重力垂线偏差计算华北地区构造应力场 利用上述同样DTM 数据、重力场模型和软件计算南北垂线偏差 ξ和东西垂线偏差η,然后计算重力垂线偏差u 。根据公式(4)进一步 计算得到该区构造应力值。以下分别是利用垂线偏差计算得到的华北 地区重力总水平梯度图和地表构造应力场图。3分析和讨论 图1华北地区DTM 图(单位:m )图 2 华北地区重力总水平梯度矢量图(单位:E ) 图3华北地区重力总水平梯度等值线图(单位:E )图4华北地区地表构造应力场矢量图(单位:MPa ) ○科教前沿○

地壳动力学在石油开发中的应用_四_构造应力场与石油勘探

地壳动力学在石油开发中的应用 ———(四)构造应力场与石油勘探 安 欧 (中国地震局地壳应力研究所 北京 100085) 摘要 本文综述了构造应力场在石油勘探中的应用,包括油田应力测算、成藏构造分析、裂缝分布估测、有利应力区划等,这些正是分析形成油藏的诸因素,用地壳动力学的理论对认识石油生、运、储系统以及油藏的形成帮助我们找到更多的高产油田。 一、油田应力测算 11构造应力场测量 (1)古构造应力测量 要分析测区石油在地质时期的生成、运移、储集规律,须测量该时期的古构造应力场。裂面擦痕法可用来测量古构造应力场中主应力大小和方向。若地区的地形高差小,剪裂面上的擦痕产状受后来构造运动的影响不大,则由区内露头和定向岩心上同一地质时期形成的剪裂面上擦痕方向的统计,可求得裂面形成时期构造应力主分量的方向和大小。 把地理坐标系O 2X YZ 的原点O 取在剪裂面上,X 轴向东,Y 轴向北,Z 轴铅直向上(图1)。图1 岩体剪裂面上盘单位滑动矢量方向在下盘裂面上的几何表示剪裂面的方位用单位法向矢量n 表示,n 在水平面上投影的指向为倾向,用与X 轴的夹角θn 表 示,从X 轴到此投影以逆时针方向为正;n 与水平 面的夹角

应力状态与应变状态分析

第8章典型习题解析 1. 试画出下图所示简支梁A 点处的原始单元体。 图8.1 解:(1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A 点偏上和偏下的一对与xz 平行的平面。截取出的单元体如图(d)所示。 (2)分析单元体各面上的应力: A 点偏右横截面的正应力和切应力如图(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为: z M y I σ= b I QS z z *= τ 由切应力互等定律知,单元体的上下面有切应力τ ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A 点单元体如图(d)。 2.图(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解:(1)求斜截面上的正应力 ?30-σ和切应力?30-τ

由公式 MPa 5.64)60sin()60()60cos(2100 5021005030-=?---?---++-= ?-σ MPa 95.34)60cos()60()60sin(2100 5030=?--+?---= ?-τ (2)求主方向及主应力 8 .010050120 22tan -=----=-- =y x x σστα ?-=66.382α ?=? -=67.7033.1921αα 最大主应力在第一象限中,对应的角度为 070.67α=?,主应力的大小为 1 5010050100cos(270.67)(60)sin(270.67)121.0MPa 22σ= ??--??=-+--+ 由 y x σσσσαα+=+2 1 可解出 2 1 (50)100(121.0)71.0MPa x y ασσσσ=+=-+-=-- 因有一个为零的主应力,因此 )33.19(MPa 0.7133?--=第三主方向=ασ 画出主单元体如图8.2(b)。 (3)主切应力作用面的法线方向 25 .1120100 502tan =---= 'α ?='34.512α ?='? ='67.11567.2521αα 主切应力为 ' 2 ' 1 MPa 04.96)34.51cos()60()34.51sin(2100 50ααττ-=-=?-+?--= 此两截面上的正应力为 MPa 0.25)34.51sin()60()34.51cos(2100 502100501 =?--?--++-= 'ασ MPa 0.25)34.231sin()60()34.231cos(2100 502100502 =?--?--++-= 'ασ 主切应力单元体如图所示。

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析 一、选择题 1、对于图示各点应力状态,属于单向应力状态的是(A )。 20 (MPa ) 20 d 20 (A )a 点;(B )b 点;(C )c 点;(D )d 点 。 2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。 (A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。 3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。 (A )AC AC /2,0 ττσ==; (B )AC AC /2,/2τ τσ==; (C )AC AC /2,/2τ τσ==;(D )AC AC /2,/2ττσ=-=。 4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。关

于它们的正确性,现有四种答案,正确答案是( D )。 (b) (a) (A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的; (C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。 5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。 τ (a) (b) (c) (A)三种应力状态均相同;(B)三种应力状态均不同; (C)(b)和(c)相同;(D)( a)和(c)相同; 6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。 (A) (B) (D) (C) 解答: max τ发生在 1 σ成45o的斜截面上 7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。 (A)脆性材料;(B)塑性材料; (C)材料为各向同性,且处于线弹性范围内;(D)任何材料;

本章应力和应变分析与强度理论的知识结构框图

本章应力和应变分析与强度理论重点、难点、考点 本章重点是应力状态分析,要掌握二向应力状态下斜截面上的应力、主应力、主平面方位及最大切应力的计算。能够用广义胡克定律求解应力和应变关系。理解强度理论的概念,能够

按材料可能发生的破坏形式,选择适当的强度理论。 难点主要有 ① 主平面方位的判断。当由解析法求主平面方位时,结果有两个相差 90 ”的方位角,一般不容易直接判断出它们分别对应哪一个主应力,除去直接将两个方位角代人式中验算确定的方法外,最简明直观的方法是利用应力圆判定,即使用应力圆草图。还可约定y x σσ≥,则两个方位中绝对值较小的角度对应max σ所在平面。 ② 最大切应力。无论何种应力状态,最大切应力均为2/)(31max σστ-=,而由式( 7 一 l )中第二式取导数0d d =α τα得到的切应力只是单元体的极值切应力,也称为面内最大切应力,它仅对垂直于Oxy 坐标平面的方向而言。面内最大切应力不一定是一点的所有方位面中切应力的最大值,在解题时要特别注意,不要掉人“陷阱”中。 本章主要考点: ① 建立一点应力状态的概念,能够准确地从构件中截取单元体。 ② 二向应力状态下求解主应力、主平面方位,并会用主单元体表示。会计算任意斜截面上的应力分量。 ③ 计算单元体的最大切应力。 ④ 广义胡克定律的应用。 ⑤ 能够选择适当的强度理论进行复杂应力状态下的强度计算,会分析简单强度破坏问题的原因。 本章习题大致可分为四类: ( l )从构件中截取单元体这类题一般沿构件截面截取一正六面体,根据轴力、弯矩判断横截面上的正应力方向,由扭矩、剪力判断切应力方向,单元体其他侧面上的应力分量由力平衡和切应力互等定理画完整。特别是当单元体包括构件表面(自由面)时,其上应力分量为零。 ( 2 )复杂应力状态分析一般考题都不限制采用哪一种方法解题,故最好采用应力圆分析,它常常能快速而有效地解决一些复杂的问题。 ( 3 )广义胡克定律的应用在求解应力与应变关系的题目中,不论构件的受力状态,均采用广义胡克定律,即可避免产生不必要的错误,因为广义胡克定律中包含了其他形式的胡克定律。 ( 4 )强度理论的应用对分析破坏原因的概念题,一般先分析危险点的应力状态,根据应力状态和材料性质,判断可能发生哪种类型的破坏,并选择相应的强度理论加以解释。计算题一般为组合变形构件的强度分析(详见第 8 章)与薄壁容器的强度分析,薄壁容器可利用平衡条件求出横截面与纵向截面上的正应力,由于容器的对称性,两平面上无切应力,故该应力即为主应力,并选择第三或第四强度理论进行强度计算。

坝体的有限元建模与应力应变分析1

Project2 坝体的有限元建模与应力应变分析 计算分析模型如图2-1 所示, 习题文件名: dam 。 图2-1 坝体的计算分析模型 选择单元类型Solid Quad 4node 42 Options… →select K3: Plane Strain 定义材料参数EX:2.1e11, PRXY:0.3 模型施加约束 ? 分别给下底边和竖直的纵边施加x 和y 方向的约束 ? 给斜边施加x 方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result 窗口中出现{X},写入所施加的载荷函数:1000*{X}; 3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file :将需要的.func 文件打开,任给一个参数名,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取斜边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷参数名→OK 单元控制 纵边20等分;上下底边15等分 结果显示 ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape… → select Def + Undeformed →OK (back to Plot Results window)→Contour Plot →Nodal Solu… →select: DOF solution, UX,UY, Def + Undeformed , Stress ,SX,SY,SZ, Def + Undeformed →OK

相关文档
最新文档