欧拉公式教案黎宁

欧拉公式教案黎宁
欧拉公式教案黎宁

研究性课题:多面体欧拉定理的发现授课教师:北京市陈经纶中学黎宁

授课地点:北京市陈经纶中学多功能厅

授课班级:北京市陈经纶中学高二(5)班

授课时间:2005年4月6日

研究性课题:多面体欧拉定理的发现

北京市陈经纶中学黎宁

教学活动目标:

1.了解欧拉公式的发现过程,掌握欧拉公式的证明方法和公式内容。2.初步了解数学概念和结论的产生过程,提高发现、提出、解决数学问题的能力;发展学生的创新意识和创新能力;进一步培养学生的空间想象能力和逻辑思维能力,协作交流能力。

3.以多面体欧拉公式的探索为载体,体验数学研究的过程和创造的激情;建立严谨的科学态度和不怕困难的顽强精神;体验数学的简洁美。

教学活动的重点:欧拉公式的发现和证明

教学活动的难点:

1.欧拉公式的发现过程

2.拓扑变换的想象和欧拉公式的证明

3.学生探究的主动性

教学活动的方法:

完全开放式、自主探究式

教学活动手段:

多媒体、实物投影

教学活动过程:

一.课前准备

1.布置指导:

教师布置课题,简要介绍科学的研究方法,全班分成8个小组(各选一名组长,各确定一名主讲人),课题内容有4个问题,各小组可以从中任选一个或多个进行研究,具体任务有:

(1)欧拉生平及欧拉主要研究成果(数学方面)。

(2)模型制作:五种正多面体的模型。

(3)证明公式:自主证明欧拉公式或查找关于欧拉公式的证明,其中两个小组研究课本上提供的两种证明方法,另外两个小组寻找其他证明方法)。(4)资料搜索及研究相关问题:可以上网或通过图书馆等方式搜索有关的内容、资料,研究以下问题:

分子中,正五边形和①欧拉定理在研究化学分子结构中的应用(一个C

60

正六边形各有多少个?)

②为什么只有五种正多面体?

③有没有棱数为 7的简单多面体?

2.讲解本次活动的评价标准:

①小组成员是否全员参加;

②学生自主探究、合作学习的能力;

③课堂展示的水平、课堂交流与研讨的程度;

④学生的创新意识。

具体评价表:

序号

全员性 (10分) 分工与合作 (20分) 课件或模型 (20分) 课堂展示 (30分) 课堂交流与研讨(20分) 总分 4、时间安排:

研究阶段(3月28日~4月4日);4月5日进行课题研究成果汇总,并评选出优秀课题研究成果(要求制作成课件);自4月6日起进行课题研究成果展评。

二. 课堂活动过程;

(一)创设情景,提出问题

1.创设情景

足球在缝制过程中,需要很多张牛

皮制作的正五边形和正六边形平面 。

已知将他们缝合以后成为一个多面体

(充气以后变成球),这个多面体共有

60个顶点,每个顶点处有3 条棱。请

问缝制一个足球需要多少个正五边形

和多少个正六边形平面?

假如有六十个碳原子,如何才能将他们组成一个完美的分子C 60?它为什么又叫“足球烯”?——引出课题。

2.复习提问:

(1)什么叫正多面体?特征?

( 正多面体是一种特殊的凸多面体,它包括两个特征:

①每个面都是有相同边数的正多边形;②每个顶点都有相同数目的棱数。 )

(2)正多面体有哪几种?

(正多面体只有5种:正四面体、正六面体、正八面体、正十二面体、正二十面体。)

【学生研究小组展示自己制作的5种正多面体的模型。】

为什么只有5种正多面体呢? 瑞士数学家欧拉早在1750年就研究过这一问题,并得出多面体欧拉公式。

【学生研究小组介绍数学家欧拉 】

欧拉在多面体研究中发现并证明了欧拉公式,下面我们就来沿着欧拉的足迹来探索这个公式。

(二)观察归纳,提出猜想

1. 图1中有5个多面体,分别数出它们的顶点(V ertex ) 、面(F ace ) 和棱(E dge ) 的个数,并填表。(多媒体演示)

分组讨论,展示交流成果的基础上,归纳出:2V F E +-=.

2.进一步验证猜想:

随意取几个棱柱或棱锥,上面猜想中顶点数V 、面数F 及棱数E 之间的规

观察下图中两个多面体,上面猜想中顶点数V 、面数F 及棱数E 之间的规

律还成立吗?

图(1) 图(2)

(三)辅以反例,深入探究

2V F E +-=是不是对所有的多面体都成立呢?我们作进一步探究。 观察下图中两个多面体,(图(3)为带洞的多面体)分别数出它们的顶点数

V、面数F及棱数E,并填表。

看来关系2

+-=不是对所有的多面体都能成立。它对于什么样的多

V F E

面体成立呢?观察图(3)(4)中的多面体,并将他们与前面出现的多面体进行比较,你有什么发现?

(四).回顾反思,完善猜想

【个人思考,分组讨论, 代表发言】

视情况教师可适当引导:如果以上多面体的表面都是用橡皮薄膜制作的,并且可以向它们的内部充气,观察这些多面体连续(不破裂)变形,最后其表面可变为什么样的形状?

教师指出:欧拉研究多面体有一种特别有创意的方法,那就是假设它的表面是用橡胶薄膜做成的,然后充气,在连续变形且不破裂的前提下,把平面变成了曲面。

像以上那样的连续变形中,表面能变为一个球面的多面体,其顶点数V、面数F及棱数E满足公式2

+-=;图(3)为带洞的多面体就不满

V F E

足此公式.顺势得出简单多面体的概念——表面经过连续变形可变为球面的多面体,叫做简单多面体。

将前面的问题联系起来,你能得出什么猜想?

猜想:简单多面体的顶点数V、面数F及棱数E之间有关系:+-=。

2

V F E

(五)证明猜想,得出结论

如何证明?

【研究小组代表上台展示自主证明或查阅资料的关于欧拉公式的证明,其他小组可以提问和质疑,本组其他成员在需要时可以帮助解说和答疑】

定理:简单多面体的顶点数V、面数F及棱数E间有关系:V+F-E=2这个定理叫做欧拉定理(其关系是叫做欧拉公式)。

在欧拉公式中,令f(p)=V+F-E

f(p)叫做欧拉示性数。上述多面体欧拉定理告诉我们,简单多面体的欧拉示性数f(p)=2

(七)小结归纳,布置作业

小结:

1.过去我们研究的几何问题主要涉及到长度、距离、面积、全等度量问题,而欧拉公式与度量无关,在它的背后是数学的一个分支——拓扑学。2.定理的发现及证明研究的过程也是体验数学大师是如何运用数学思想方法的过程。

3.定理证明的方法是新颖的,将三维问题转化为二维问题。这种拓扑的证明给人以数学奇特美的享受,同时,证明的简化也体现了数学的简洁美。4.通过查阅资料和课堂学习,学生对数学史有了进一步的了解,倡导学生

学习数学大师献身科学、勇于探索的科学研究精神。

作业:

课后可分小组研究:

1.必做题:

分子中,正五边形和①欧拉定理在研究化学分子结构中的应用(一个C

60

正六边形各有多少个?)

②为什么只有五种正多面体?

③有没有棱数为 7的简单多面体?

2.选做题:充气后,表面经过连续变形能够变为环面的多面体,它的顶点数V、面数F及棱数E之间有没有规律?如果有,是什么?

高二数学欧拉公式-word文档

高二数学欧拉公式 教学目标: 1、了解简单多面体的概念,掌握多面体的欧拉公式。 2、会用欧拉公式解题,了解欧拉公式的证明方法。 3、通过学生的主动参与,培养他们观察发现规律并证明所得猜想的能力 教学重点:简单多面体的欧拉公式 教学难点:简单多面体概念,欧拉公式的应用 教学过程 复习引入 ⑴什么是多面体?多面体的面?多面体的棱?多面体的顶点? 问题1:课本P52有5个多面体,试分别写出它们的顶点数V,面数F和棱数E ⑶观察上述数据,写出你发现的规律 二.新课讲解 欧拉公式 问题2:从上看出有V+E-F=2,再看课本P57表格上方的几个多面体,分别写出它们的顶点数V,面数F和棱数E,并回答它们是否满足上面的规律。 问题3:若上面的多面体的表面都是用橡皮簿膜制作的,并且可以向它们的内部充气那么那些多面体能够连续变形,最后其表面可变为一个球面?那些变为环面?那些变为对接的

球面? 简单多面体:在连续的变形中,表面可变为一个球面的多面体,叫做简单多面体 思考:前面的多面体中那些是简单多面体?棱锥,棱柱,正多面体,凸多面体是不是简单多面体? 将问题1、2、3联系起来,能得出什么猜想?用式子表示你的猜想? V+F﹣E=2此公式叫做欧拉公式 二、欧拉公式的证明 ⑴将多面体转化为由多边形组成的平面图形 ⑵变形中的不变量 ⑶计算多边形的内角和 ①设多面体的F个面分别是n1,n2,nF边形,各个面的内角总和是多少? ②n1+n2++nF和多面体的棱数E有什么关系? ③设图中的最大的多边形为m边形,则它的内角和是多少?它的内部包含的其他多边形的顶点数是多少?所有其他多边形内角总和是多少? ④图中所有多边形的内角总和是多少?它是否等于 (V-2)360? 从上有(E-F)360=(V-2)360 所以V+F-E=2

多面体欧拉公式的发现(一)

●教学时间 第九课时 ●课题 §9.9.1 研究性课题:多面体欧拉公式的发现(一) ●教学目标 (一)教学知识点 1.简单多面体的V、E、F关系的发现. 2.欧拉公式的猜想. 3.欧拉公式的证明. (二)能力训练要求 1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律. 2.使学生能通过进一步观察验证所得的规律. 3.使学生能从拓扑的角度认识简单多面体的本质. 4.使学生能通过归纳得出关于欧拉公式的猜想. 5.使学生了解欧拉公式的一种证明思路. (三)德育渗透目标 1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求. 2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力. ●教学重点 欧拉公式的发现. ●教学难点 使学生从中体会和学习数学大师研究数学的方法. ●教学方法 指导学生自学法 首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识从中寻找规律,问题2让学生作进一步观察、验证得出规律,问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明. 以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法. ●教具准备 投影片三张 第一张:课本P56的问题1及表1(记作§9.9.1 A) 第二张:课本P57的问题2及表2(记作§9.9.1 B) 第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C) ●教学过程 Ⅰ.课题导入 瑞士著名的数学家,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方 程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别

多面体欧拉公式的发现(二)共9页

●教学时间 第十课时 ●课题 §9.9.2 研究性课题:多面体欧拉公式的发现(二) ●教学目标 (一)教学知识点 1.欧拉公式的证明. 2.欧拉公式的应用. (二)能力训练要求 1.使学生能理解多面体欧拉公式的证明过程并能叙述其证明思路. 2.使学生掌握多面体欧拉公式并灵活地将其应用于解题中. (三)德育渗透目标 继续培养学生寻求规律、发现规律、认识规律、并利用规律解决问题的能力. ●教学重点 欧拉公式的应用. ●教学难点 欧拉公式的证明思路. ●教学方法 学导式 本节课继续上节课对欧拉公式的研究活动,遵循寻求规律——发现规律——认识规律——应用规律的学习过程,对上节课已猜想出的欧拉公式

进一步深入研究,探索它的证明思路,让学生了解这种证明思想,进而达到熟练掌握欧拉公式的目标,以便于学生得心应手地将欧拉公式应用到各种问题的解决中. ●教具准备 投影片三张 问题5(1)(2)(记作§9.9.2 A) 第一张:课本P 59 第二张:本课时教案例1(记作§9.9.2 B) 第三张:本课时教案例2(记作§9.9.2 C) ●教学过程 Ⅰ.课题导入 [师]上节课我们已经猜想出了欧拉公式并且同学们也已自学了它的证明过程,这节课我们继续对它的证明方法及其重要应用进行学习和探讨. Ⅱ.讲授新课 的欧拉公式的证明进行了自学,那么,[师]上节课我们已对课本P 58 谁能说一下课本中的证明思路和关键是什么? [生]将立体图形转化为平面图形. [师]好,前面,我们经常使用把不在同一平面中的几何图形的问题转化为同一平面中图形的问题,所以此处如果能把求一个简单多面体的V、F、E三者之间的关系问题,转化为平面中的问题就会前进一大步了. 那么课本中是怎样实现转化的呢? [生]把多面体想成是用橡皮膜做成的,即课本P 图9—85的多面体, 58

欧拉公式推导

欧拉公式推导: 图4.3所示的两端铰支杆件,受轴向压力N 作用而处于中性平衡微弯状态,杆件弯曲后截面中产生了弯矩M 和剪力V ,在轴线任意点上由弯矩产生的横向变形为1y ,由剪力产生的横向变形为2y ,总变形21y y y +=。 y 图4.3 两端铰支的轴心压杆临界状态 设杆件发生弯曲屈曲时截面的临界应力小于材料比例极限p f ,即p f ≤σ(对理想材料取y p f f =)。由材料力学可得: EI M dz y d -=2 12 由剪力V 产生的轴线转角为: dz dM GA V GA dz dy ?=?==ββγ2 式中 A 、I ——杆件截面面积、惯性矩; E 、G ——材料的弹性模量、剪切模量; β—— 与截面形状有关的系数。 因为 222 22dz M d GA dz y d ?=β 所以 2222122222d y d y d y M d M dz dz dz EI GA dz β=+=-+? 由 y N M ?=得: 2222dz y d GA N y EI N dz y d ?+?-=β

01=?+??? ??-''y EI N GA N y β 令 ??? ??-=GA N EI N k β12 得常系数线性二阶齐次方程 20y k y ''+= 其通解为:sin cos y A kz B kz =+ 由边界条件:;0,0==y z 0=B ,kz A y sin =。再由0,==y l z 得: 0sin =kl A 上式成立的条件是0=A 或0sin =kl ,其中0=A 表示杆件不出现任何变形,与杆件微弯的假设不符。由0sin =kl ,得πn kl =(=n 1,2,3…),取最小值=n 1,得π=kl ,即 2 221N k N l EI GA πβ==??- ??? 由此式解出N ,即为中性平衡的临界力cr N 12222222211Ι11γππβππ?+?=?+?=l ΕΙl ΕGA l ΕΙl ΕΙ N cr (4.6) 临界状态时杆件截面的平均应力称为临界应力cr σ 12 22211γλπλπσ?+?==ΕΑΕA N cr cr (4.7) 式中 1γ——单位剪力时杆件的轴线转角,)/(1GA βγ=; l ——两端铰支杆得长度; λ——杆件的长细比,i l /=λ; i ——杆件截面对应于屈曲轴的回转半径,A I i /=。 如果忽略杆件剪切变形的影响(此影响很小)则式(4.6)、(4.7)变为: 22cr E πσλ = (4.8)

欧拉公式的证明(整理)Word版

欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有: a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2

多面体欧拉公式的发现1

【课题】研究性课题:多面体欧拉公式的发现(1)【教学目标】 1、能通过观察具体简单多面体的V、E、F从中寻找规律. 2、能通过进一步观察验证所得的规律. 3、能从拓扑的角度认识简单多面体的本质. 4、能通过归纳得出关于欧拉公式的猜想. 【教学重点】欧拉公式的发现. 【教学难点】从中体会和学习数学大师研究数学的方法. 【教学过程】 一、复习引入 欧拉是瑞士著名的数学家,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支。比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方程、欧拉常数、欧拉方法、欧拉猜想等。其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别代表一简单多面体的顶点、棱和面的数目,这就是我们今天要学习的欧拉定理。 二、讲解新课 (一)简单多面体 1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它就会连续(不破裂)变形,最后可变为一个球面如图:象这样,表面经过连续变形可变为球面的多面体,叫做简单多面体 说明:棱柱、棱锥、正多面体等一切凸多面体都是简单多面体。

(二)五种正多面体的顶点数、面数及棱数: 发现:它们的顶点数V 、面数F 及棱数E 有共同的关系式:2V F E +-=. 上述关系式对简单多面体都成立 欧拉定理:简单多面体的顶点数V 、面数F 及棱数E 有关系式: 2V F E +-= 证明1:以四面体ABCD 为例来说明: 将它的一个面BCD 去掉,并使其变为平面图形,四面体的顶点数V 、棱数E 与剩下的面数()111F F F =-变形后都没有变。因此,要研究V 、E 和F 的关系,只要去掉一个面,将它变形为平面图形即可。 对平面图形,我们来研究: (1)去掉一条棱,就减少一个面。例如去掉BC ,就减少一个面ABC 。同理,去掉棱CD 、 BD ,也就各减少一个面ACD 、ABD 。 所以1F E -、V 的值都不变,因此1V F E +-的值也不变 (2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点。例如去掉CA ,就减少一个顶点C .同理,去掉DA 就减少一个顶点D ,最后剩下AB (如图)。

简单多面体的欧拉公式优秀教学设计

简单多面体的欧拉公式 新课程倡导教师对学生最重要的价值引导就是“会做数学”比“会说数学”更重要,课堂始终以“做数学”为主旋律,教师不断地创设有意义的问题情境或教学活动,激励学生在解决问题中学习。与传统数学相比,现代数学的巨大变化还表现在,通过观察作出猜想、建立模型、然后进行修改调整,成为现代数学家以及应用数学家、工程技术人员的基本思维。 “研究性课题:多面体欧拉定理的发现”是一个探究式、自主学习的课题,在这节课中,我利用网络资源,不断地创设一系列问题情境,引导学生独立自主地发现问题——解决问题——应用知识,提高了学习的效率。在教学中,我设计了以下几个环节,愿与大家探讨。 一、创设情境提出问题 歌尼斯堡问题是学生在课前搜集相关资料的时候找到的一个相关问题,由于它是平面的问题,比较简单易懂。在课堂上学生积极地向其他同学介绍这个有意思的问题。不仅扩充了课程资源,也渗透了与图形大小、长短无关的一类几何问题,为接下去的学习活动提供了良好的教学情境。 二、问题驱动自主探究 接下来,以网页课件为媒体,开展以下活动: 活动一:问题驱动引出定理 通过一系列问题,引领学生体验从二维到三维的类比推广,把问题引向未研究过的的领域,并通过学生自己的实践(数正多面体的棱数、面数、顶点数)总结出、有价值的规律。学生相互交流思考问题。师生交流后教师给出密码,提供比较完整的问题解答,实现了师生互动与交流。 活动二:实例验证加深理解 学生在知道了欧拉定理后,以正四面体为例,通过课件的提示帮助,体会“平面法”验证欧拉定理的思想。 教师布置任务:以同样的思想方法,以正六面体为例,验证欧拉定理。汇总各小组的研究方案,选代表在黑板上演示,并宜从一些不成立的步骤着手,引导学生找出问题所在,在逐步矫正中,加深学生对“平面法”的理解。 随后由教师提供密码,给出比较完善的方案。 活动三:知识应用解决问题 用欧拉定理解决所提出的问题:正多面体为什么只有五种?由学生自己阅读,教师加以点拨即可。 随后以一些实际应用的例题体会欧拉定理在各学科中的应用。 三、总结提炼拓展延伸 四、反思总结 活动课中让学生探讨一些具有挑战性的问题,引导学生通过观察,进行猜想,进一步验证猜想。通过一系列的思维活动,让学生主动地获取知识,理解数学的思想方法、思维方式;引导学生体会发现规律的过程,体现了课堂教学的实验性、探索性,实现了

欧拉公式的证明和应用

数学文化课程报告 欧拉公式的证明与应用 一.序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 极限法 --------------------------------------3 指数函数定义法-------------------------------4 分离变量积分法-------------------------------4 复数幂级数展开法-----------------------------4 变上限积分法---------------------------------5 类比求导法-----------------------------------7 三.欧拉公式的应用 求高阶导数-----------------------------------7 积分计算------------------------------------8 高阶线性齐次微分方程的通解------------------9 求函数级数展开式----------------------------9 三角级数求和函数----------------------------10 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言

多面体的欧拉公式

多面体的欧拉公式 在数学历史上有很多公式都是欧拉(Leonhard Euler)发现的,它们都叫做欧拉公式,分散在各个数学分支之中。 欧拉13岁进入瑞士巴塞尔大学读书,15岁获得学士学位,16岁又获得巴塞尔大学哲学硕士学位,轰动了当时的科学界。但是,他的父亲却希望他去学神学。直到小欧拉19岁时获得了巴黎科学院的奖学金之后,父亲才不再反对他读数学。欧拉是一位创作性超群的数学家,后来从瑞士转赴俄国和德国工作,因此三个国家都声称他是本国的科学家。 有许多关于欧拉的传说。比如,欧拉心算微积分就像呼吸一样简单。有一次他的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉创作文章的速度极快,通常上一本书还没有印刷完,新的手稿就写好了,导致他的写作顺序与出版顺序常常相反,让读者们很郁闷。而且,收集这些数量庞大的手稿也是一件困难的事情。瑞士自然科学会计划出一部欧拉全集,这本全集编了将近100年,终于在上个世纪90年代基本完成,没想到圣彼得堡突然又发掘出一批他的手稿,使得这本全集至今仍未完成。欧拉28岁时一只眼睛失明了,后来另一只眼睛也看不见了,据说是因为操劳过度,也有一说是因为观察太阳所致。尽管如此,他仍然靠心算完成了大量论文。 下面来看看欧拉公式中最著名和优美的一个。 拓扑学的欧拉公式描述了多面体顶点(Vertex),边(Edge)和面(Face)之间的关系: V - E + F = X 其中,V是多面体的顶点个数,E是多面体的棱的条数,F是多面体的面数, X是多面体的欧拉示性数(Euler characteristic)。 X是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。X 的值依赖于几何物体的形态和曲面的取向。 可定向性——大部分我们在物理世界中遇到的曲面是可定向的。例如平面,球面与环面是可定向的。但是莫比乌斯带(M?bius strip)不可定向,它在三维空间中看起来都只有一“侧”。假设一只蚂蚁在莫比乌斯带上爬行,它可以在不穿过边界的情况下爬到曲面的另一侧。 亏格(Genus)——可定向曲面的亏格是一个整数。如果沿一个几何曲面的任意一条简单闭合曲线切开,都能把曲面切断,那么这个曲线的亏格就是0。如果存在一条简单闭合曲线在切开后,曲面没有分成两个部分,那么亏格就是1。进一步的在亏格为1的曲面上切开一条曲线后,还能再找到一条这样的曲线,那么亏格为2。依次类推。

欧拉公式的证明

欧拉公式的证明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

欧拉公式的证明 着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:??? 设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是 e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有:

多面体欧拉公式与球

第 48 讲 多面体、欧拉公式与球 (第课时) 多面体、欧拉公式与球 ????? ????? ? ? ?? ? ? ????? ????? ???????多面体的内切球 体积面积计算球面距离截面球的性质球的概念球正多面体的概念欧拉公式多面体的概念 多面体 2.欧拉公式;3.球的概念和性质。 2.了解多面体的欧拉公式;3.了解球的概念,掌握球 2.有关球的考查一般以小题出现。 围成多面体的各个多边形叫做面,两个面的公共边叫棱,棱的端点叫顶点,不在同一个面内的两个顶点间的线段叫对角线。有n 个面的多面体叫n 面体(4≥n )。 凸多面体:若把一个多面体的任意一个面沿展成平面,其余各面都在这个平面的同侧时,则称这个多面体为凸多面体。 简单多面体:表面能通过连续变形变为球面的多面体,叫做简单多面体。 2.欧拉公式 对于简单多面体,有: 顶点数(V )+面数(F)-棱数(E )= 2 。 例.一个正n 面体共有8个顶点,每个顶点处共有3条棱,则n 等于 ( ) A . 4 ; B . 5 ; C . 6 ; D . 7 。 分析: 先计算正n 面体的棱数,然后应用欧拉公式来解。

解:由题意有 8=V ,122 8 3=?= E ,则 682122=-+=-+=V E F ,故选C 。 例.已知铜的单晶的外形是简单几何体,单晶铜有三角形和八边形两种晶面,如果铜的单晶有24个顶点,每个顶点处都有3条棱,计算单晶铜的两种晶面的数目。 解 设:三角形晶面有x 个,八边形晶面有y 个。 3.正多面体 ⑴ 定义:每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体,叫做正多面体。 ⑵ 名称 面的形状 每个顶点的棱 顶点数(V ) 面数(F) 棱数(E) 正四面体 正三角形 3 4 4 6 正六面体 正方形 3 8 6 12 正八面体 正三角形 4 6 8 12 正十二面体 正五边形 3 20 12 30 正二十面体 正三角形 5 12 20 30 4.球 ⑴ 定义 ① 球面: 半圆绕它的直径旋转一周所生成的曲面叫做球面。 ② 球: 球面围成的几何体叫球。 ③球面距离:经过球面两点的大圆在这两点间的劣弧的长叫做这两点的球面距离。 ⑵ 性质 ① 球的任意截面都是圆。其中过球心的截面叫大圆,不过球心的截面叫小圆。 ② 球心和截面圆心的连线垂直于截面,并且球心到截面的距离 2 2 r R d -= ,其中R 是球半径,r 是截面半径。 ⑶ 面积公式 球面的面积:等于球的大圆面积的4倍,即 24R S π=球面 ,其中R 是球半径。 ⑷ 体积公式 球的体积:等于三分之四乘以3R π,即 33 4 R V π=球 ,其中R 是球半径。 ⑸ 球的直观图的画法 ① 如图,画三条坐标轴x 、y 、z ;

欧拉公式的证明

欧拉公式的证明(是我摘录的) 2008/10/23 16:49 看到了q239urju空间里关于欧拉公式的证明。本着为人民服务的思想,我在此做一些补充: 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的)(就是q239urju空间里的那个) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。

a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2 由1,2得ρ=1,点P[a^(it)]在单位圆上,a^(it)可表达为: a^(it)=cosθ+isinθ 3 设t=u(θ),对3微商有: [a^(it)]*(lna)*u'(θ)*i=-sinθ+icosθ整理有: [a^(it)]*(lna)*u'(θ)*i=(cosθ+isinθ)(cosπ/2+isinπ/2)约去a^(it)有: u'(θ)=logae 4 4取积分有: T=(logae)*θ+Ψ 5 θ→0时,t=limt=Ψ,带入3有: a^(iΨ)=1 即: Ψ=0 6 6代入5有: T=(logae)*θ 7 7代入3有: [a^(logae)]^(iθ)=cosθ+isinθ化简得欧拉公式: e^(iθ)=cosθ+isinθ (后两者才是真正让我震惊的!!!!)

立体几何同步训练14多面体及欧拉公式.

立体几何同步训练 14 多面体及欧拉公式 班级______ 姓名_____________ 一、选择题 1、关于正多面体的概念,下列叙述正确的是( ) (A) 每个面都是正多边形的多面体(B) 每个面都是有相同边数正多边形的多面体 (C) 每个面都是相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的多面体 (D) 每个面都是具有相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体 2、一个凸n 面体共有8 条棱,5 个顶点,则n 等于( ) (A) 4 (B) 5 (C)6 (D) 7 3、一个凸多面体的棱数为30,面数为12,则它的各面多边形内角和为( ) (A)5400 0 (B)6480 0 (C)7200 0 (D)7920 0 4、一个简单多面体的各面都是三角形,且有6 个顶点,则这个简单多面体的面数是( ) (A)4 (B)6 (C)8 (D)10 5、一个凸多面体的面都是四边形,则它的顶点数与面数的差为( ) (A) 0 (B) 1 (C) 2 (D) 4 6、已知一个简单多面体的每个面均是五边形,且它共有30 条棱,则此多面体的面数F 和顶点数V 分别等于( ) (A) F=6 V=26 (B) F=20 V=12 (C) F=12 V=26 (D) F=12 V=20 二、填空题 7、一个简单多面体每个顶点处都有3条棱,则它的顶点数V和面数F的关系是______________ 8、每个面都是三角形的正多面体有____________ 个。 9、正四面体的外接球的球心到底面的距离与此正四面体高的比为10、命题( 1)底面是正多边形,且侧棱章与底面边长相等的棱锥为正多面体。 ( 2)正多面体的面不是三角形就是正方形。( 3)若长方体的各个侧面都是正方形时, 这就是正多面体。( 4)正三棱锥就是正四面体。其中正确的序号是________________ 。

研究性课题 多面体欧拉公式的发现

研究性课题 多面体欧拉公式的发现 【教材分析】 教材结合9.8节关于多面体的分类而编,目的在于以学生主动参与的发现式学习活动,培养他们通过观察发现规律并证明所得猜想的能力。 【学情分析】 该公式的证明较抽象,前后知识的联系较少,学生理解上有较大难度。但在前面立 几教学中学生已有将空间问题转化为平面问题来研究的降维思想和转化策略的基础,所以本节课采用多媒体辅助教学,降低空间想象的难度,突破降维过程中的变与不变的难点,从而达到降低教学难度的目的。 【教学目标】 1、知识目标:培养学生观察,归纳,大胆猜想的能力,了解欧拉公式的发现及其 法。 2、能力目标 掌握公式证明体现的思想方法。使学生领悟转化、化归思想,从空 间到平面的降维策略,学会从一般到特殊和特殊到一般的分析问题和解决问题的方法,增强学生应用数学知识解决实际问题的的意识和能力。 3、情意目标 通过教学使学生了解和感知欧拉公式发现的历程,激发学生热爱科学 勤奋学习热情,培养学生勇于探索的创新意识。 【教学重点】 欧拉公式和它的证明,证明的思想方法是重点。 【教学难点】 证明过程是难点。 【教学过程】 问题1:下面6个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表1。 (1) (2) (3) (4) (5) (6) D 1 C 1 B 1A 1 A B C D B 1D 1 C 1E 1 A 1A B C D E

观察表1中各组数据,猜想V 、F 、E 之间的规律:___________。 是否任意一个多面体都有上述规律吗? 问题是数学的心脏。创设问题情境,让学生在解决问题的过程中去观察、猜想、探索;让学生以类似或模拟科学研究的方式进行学习,使学生形成探究性学习的习惯,培养和锻炼学生的探究能力。 问题2:下面3个多面体,分别数出它们的顶点数V 、面数F 和棱数E ,并填出表2。 (7) (8) (9) 简单直观的问题情景能一下子激发学生探索的兴趣。学生进入问题情景,发现问题,在问题的驱动下,进入探究性活动。 问题3:比较前面问题1和问题2中的图形,如果这些多面体的表面都是用橡皮膜制成的,并且可以向它们的内部充气,那么其中哪些多面体能够连续(不破裂、不粘连)变形,最后其表面可变为一个球面?哪些能变为一个环面?哪些可变为两个对接球面? 教师向学生提供材料,学生收集证据。观察、实验、调查、分析处理,教师引导学生大胆质疑,提出问题,提出各种猜想和假设。 引入“简单多面体”的概念: 假设多面体的表面是橡皮膜制成的,可以向它们的内部充气,那么能够连续(不破裂、不粘连)变形,表面能变为一个球面的多面体,叫做简单多面体。

多面体欧拉定理的发现 (1)2

多面体欧拉定理的发现 我们知道,平面多边形由它的边围成,它的顶点数与边数相等,按边数可以对多边形进行分类,同类的多边形具有某些相同的性质。 多面体是由它的面围成立体图形,这些面的交线形成棱,棱与棱相交形成顶点。在研究多面体的分类等问题中,人们逐步发现它的顶点数,面数和棱数之间有特定的关系。以下我们将体验这种关系的发现及证明过程。 探索研究 问题1:下列共有五个正多面体,分别数出它们的顶点数V、面数F和棱数E,并填表1

观察表中填出的数据,请找出顶点数V、面数F及棱数E之间的规律。 教师巡视指导,如正十二面体,先定面数E=12;再定棱数,每个面有5条棱,共有12×5=60条,由于每条棱都是两个面的公共边,所以上面的计算每条棱被算过两次,于是棱数E=60/2=30;最后算顶点数,每个顶点处连有三条棱,所以它共有3V条棱,又因为每条棱连着两个顶点,所以上面的计算每条棱被算过两次,因此实际上只有3V/2条棱,即E=3V/2,所以V=20。 表1中多面体的面数F都随顶点数目V的增大而增大吗?(不一定). 请举例说明.(如八面体和立方体的顶点数由6增大到8,而面数由8减小到6). 此时棱的数目呢?(棱数都是一样的). 所以我们得到:棱的数目也并不随顶点数目的增大而增大. 大家从表中还发现了其他的什么规律,请积极观察,勇于发言.

(当多面体的棱数增加时,它的顶点与面数的变化也有一定规律). 上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系. (积极验证,得出) V+F-E=2 以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证. (许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等. (教师应启发学生展开想象,举出更多的例子) 一个三棱锥截去含3条棱的一个顶得到的图形、一个立方体截去一个角所得的图形等. 好,同学们现在想象,例如:n棱锥在它的n边形面上增加一个“屋顶”或截去含n条棱的一个顶后,刚才的猜想是否成立?能证明吗? 所得的多面体的棱数E为3n条,顶点数V为2n个,面数V为

多面体欧拉定理

多面体欧拉定理 定理简单多面体的顶点数V、棱数E及面数F间有关系对于简单多面体,有著名的欧拉公式:V-E+F=2 简单多面体即表面经过连续变形可以变为球面的多面体。 多面体 欧拉定理 式中V表示多面体的顶点数,E表示棱数,F表示面数。定理一证 分析:以四面体ABCD为例。 将它的一个面BCD去掉,再使它变为平面图形,四面体的顶点数V、棱数E与剩下的面数F1变形后都没有变(这里F1=F-1)。因此,要研究V、E和F的关系,只要去掉一个面,将它变形为平面图形即可。 只需平面图形证明:V+F1-E=1 (1)去掉一条棱,就减少一个面,V+F1-E的值不变。例如去掉BC,就减少一个面ABC。同理,去掉棱CD、BD,也就各减少一个面ACD、ABD,由于V、F1-E的值都不变,因此V+F1-E的值不变 (2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点,V+F1-E的值不变。例如去掉CA,就减少一个顶点C。同理去AD就减少一个顶点D,最后剩下AB。 在以上变化过程中,V+F1-E的值不变, V+F1-E=2-0-1=1, 所以V+F-E= V+F1-E+1=2。 对任意的简单多面体,运用这样的方法,都是只剩下一条线段。公式对任意简单多面体都是正确的。 定理意义 (1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律; (2)思想方法创新训练:在定理的发现及证明过程中,在观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;在方法上将底面剪掉,然后其余各面拉开铺平,化为平面图形(立体图→平面图)。 (3)引入拓扑新学科:“拉开图”与以前的展开图是不同的,从立体图到拉开图,各面的形状,以及长度、距离、面积、全等等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。 事实上,定理在引导大家进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。 (4)给出多面体分类方法: 在欧拉公式中,令f(p)=V+F-E,f(p)叫做欧拉示性数。定理告诉我们,简单多面体的欧拉示性数f (p)=2。 除简单多面体外,还有不是简单多面体的多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为一个球面,而能变为一个环面,它的欧拉示性数为f (p)=16+16-32=0,所以带一个洞的多面体的欧拉示性数等于零。 定理二证 如图(1)多面体,设顶点数V,面数F,棱数E。剪掉一个面,将其余的面拉平,使它变为平面图形,如图(2)我们在两个图中求所有面的内角总和Σα 一方面,在图(1)中利用面求内角总和。 设有F个面,各面的边数分别为n1,n2,…,nF, 各面的内角总和为: Σα = [(n1-2)·1800+(n2-2)·1800 +…+(nF-2) ·1800] = (n1+n2+…+nF -2F) ·1800

多面体欧拉公式(1)

研究性课题:多面体欧拉公式的发现(一) ●教学目标 (一)教学知识点 1.简单多面体的V、E、F关系的发现. 2.欧拉公式的猜想. 3.欧拉公式的证明. (二)能力训练要求 1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律. 2.使学生能通过进一步观察验证所得的规律. 3.使学生能从拓扑的角度认识简单多面体的本质. 4.使学生能通过归纳得出关于欧拉公式的猜想. 5.使学生了解欧拉公式的一种证明思路. (三)德育渗透目标 1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学 生对科学的热爱和对理想的追求. 2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力. ●教学重点 欧拉公式的发现. ●教学难点 使学生从中体会和学习数学大师研究数学的方法. ●教学方法 指导学生自学法 首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识并从中寻找规律;问题2让学生作进一步观察、验证得出规律;问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现 规律的证明. 以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的 思想和方法. ●教具准备 投影片三张: 第一张:课本P56的问题1及表1(记作§9.9.1 A) 第二张:课本P57的问题2及表2(记作§9.9.1 B) 第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C) ●教学过程 Ⅰ.课题导入

瑞士著名的数学家欧拉,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别代表一简单多面体的顶点、棱和面的数目,今天我们就去体验当年的数学大师是如何运用数学思想和方法发现欧拉公式并给予理论上的推理证明等研究活动,希望大家在活动中要充分展开自己的想象,展开热烈的讨论互相进行数学交流. Ⅱ.讲授新课 [师]我们先从一些常见的多面体出发,对它们的顶点数V、面数F、棱数E列出表,请大家观察后 填写表1 (打出投影片§9.9.1 A) (学生观察,数它们的顶点数V、面数F、棱数E,填入表1) [师]好,大家填的快速而准确,继续观察表1的各组数据,找出顶点数V、面数F及棱数E的关系 如何? (学生寻找,可能一时不易得到,教师应给予适当点拨提问) [师]表1中多面体的面数F都随顶点数目V的增大而增大吗? [生]不一定. [师]请举例说明. [生]如八面体和立方体的顶点数由6增大到8,而面数由8减小到6. [师]此时棱的数目呢? [生]棱数都是一样的. [师]所以我们得到:棱的数目也并不随顶点数目的增大而增大. 大家从表中还发现了其他的什么规律,请积极观察,勇于发言. [生]当多面体的棱数增加时,它的顶点与面数的变化也有一定规律. [师]举例说明. [生甲]如图中(1)和(2)的棱数由6增大到12,面数由4增大到6,此时的顶点数也在随棱数的增加而 增加,即由4增大到8. [师]生甲叙述得严格吗?有不同意见吗? [生乙]顶点数和面数并不是严格按棱数的增大而增大的. [师]请试说说你归纳出来的规律. [生乙]我发现并认为:当顶点数随棱数的增加而减小时,它的面数一定是随棱数的增加而增加的; 当面数随棱数的增加而减小时,它的顶点数却是随棱数的增加而增加. [师]生乙归纳得如何?大家对他的叙述同意吗? (可能会有其他想法,教师应给学生充分的时间,让他们畅所欲言,表达他们的新发现,并予以一一指 导) [师]上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系. [生](积极验证,得出) V+F-E=2 [师]以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证. [生](许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.

多面体的欧拉公式球

多面体的欧拉公式球 多面体的欧拉公式: 一.重点、难点提示 1.多面体的概念若干个平面多边形围成的几何体叫做多面体.把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体.一个多面体至少有四个面. 2.正多面体每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体叫做正多面体. 正多面体分别是正四面体、正六面体、正八面体、正十二面体和正二十面体共五种,其中正四面体、正八面体和正二十面体的各个面都是全等的正三角形,正六面体又叫做正方体,其各个面都是全等的正方形而正十二面体的各面是全等的正五边形. 3. 欧拉公式如果简单多面体的顶点数为V,面数为F,棱数为E,那么V+F-E=2. 二.考点指要 理解多面体、凸多面体、简单多面体和正多面体的概念,能运用欧拉公式进行有关的判断和计算. 球: 一.重点、难点提示 1.球面的概念半圆以它的直径为旋转轴,旋转所成的曲面叫做球面,半圆的圆心叫做球心.连结球心和球面上任意一点的线段叫做球半径,连结球面上两点且经过球心的线段叫做球的直径. 球面也可以看作与定点(圆心)的距离等于定长(半径)的所有点的集合,如果一个球的球心为O,我们可以把这个球记作球O. 2.球的概念球面所围成的几何体叫做球体,简称球. 3.球的截面及其性质用一个平面截一个球,截面是圆面,球的截面有如下性质: (1)球心与截面圆心的连线垂直于截面; (2)球心到截面的距离d与球的半径及及截面的半径r有下面的关系:。 4.球面上的大圆和小圆球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆,地球上的赤道就是一个大圆,北极圈就是一个小圆。 球面上两点距离的概念:

相关文档
最新文档