热力学第二定律的演变历程及其在生活中的应用

热力学第二定律的演变历程及其在生活中的应用
热力学第二定律的演变历程及其在生活中的应用

热力学第二定律的演变历程及其在生活中的应用

张俊地信一班1009010125 摘要:热力学第二定律是热力学的基本定律之一,是指热永远都只是由热处转到冷处(自然状态下)。它是关于在有限空间和时间内,一切和热运动有关的物理化学过程具有不可逆性的经验总结。

关键词:热力学第二定律,演变历程,生活应用

引言:热力学第二定律是人们在生活实践,生产实践和科学实验的经验总结,他们既不涉及物质的微观结构,也不能用数学家易推倒和证明,但它的正确性已被无数次的实验结果所证实。而且,从热力学严格的推导出的结论都是非常精确和可靠的。有关该定律额发现和演变历程是本文讨论的重点。热力学第二定律是有关热和功等能量形式相互转化的方向和限度的规律,进而推广到有关物质变化过程的方向与限度的普遍规律。

1.热力学第二定律的建立

19 世纪初,巴本、纽可门等发明的蒸汽机经过许多人特别是瓦特的重大改进,已广泛应用于工厂、矿山、交通运输,但当时人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步被发现的,并用于解决与热现象有关的过程进行方向的问题。1824 年,法国陆军工程师卡诺在他发表的论文“论火的动力”中提出了著名的“卡诺定理”,找到了提高热机效率的根本途径。但卡诺在当时是采用“热质说”的错误观点来研究问题的。从1840 年到1847 年间,在迈尔、焦耳、亥姆霍兹等人的努力下,热力学第一定律以及更普遍的能量守恒定律建立起来了。“热动说”的正确观点也普遍为人们所接受。1848 年,开尔文爵士(威廉·汤姆生) 根据卡诺定理,建立了热力学温标(绝对温标)。它完全不依赖于任何特殊物质的物理特性,从理论上解决了各种经验温标不相一致的缺点。这些为热力学第二定律的建立准备了条件。

1850 年,克劳修斯从“热动说”出发重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的“克劳修斯表述”。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的“开尔文表述” 。上述对热力学第二定律的两种表述是等价的,由一种表述的正确性完全可以推导出另一种表述的正确性。他们都是指明了自然界宏观过程的方向性,或不可逆性。克劳修斯的说法是从热传递方向上说的,即热量只能自发地从

高温物体传向低温物体,而不可能从低温物体传向高温物体而不引起其他变化。这里“不引起其他变化”是很重要的。利用致冷机就可以把热量从低温物体传向高温物体,但是外界必须做功。开尔文的说法则是从热功转化方面去说的。功完全转化为热,即机械能完全转化为内能可以的,在水平地面上运动的木块由于摩擦生热而最终停不来就是一个例子。但反过来,从单一热源吸取热量完全转化成有用功而不引起其他影响则是不可能的。所谓“单一热源”,是指温度均匀并且保持恒定的热源,如果热源的温度不是均匀的,则可以从温度较高处吸收热量,又向温度较低处放出一部分,这就等于工作在两个热源之间了。所谓“不产生其他影响”,是指除了从单一热源吸热,这些热量全部用来做功以外,其他都没有变化。如果没有“不产生其他影响”这个限制,从单一热源吸热而全部转化为功是可以做到的,例如理想气体在等温膨胀过程中,气体从热源吸热而膨胀做功,由于这过程中理想气体保持温度不变,而理想气体又不考虑分子势能,因此气体的内能保持不变,从热源吸收的热量就全部转化成了功,但是这过程中气体的体积膨胀了,因此不符合“不产生其他影响”的条件。由此,热力学第二定律建立。

2.热力学第二定律的发展

热力学第二定律的两个表述自然界自发进行的过程具有方向性,总是由非平衡态走向平

衡态1. 开尔文表述(1851 年):不可能制成一种循环动作的热机,只从单一热源吸取热量,使之完全变成有用的功而不产生其他影响。2.克劳休斯表述:热量不可能自动地从低温物体传到高温物体。其实这2种表述是等价的,而这2中表述的区别在于克氏表述指出:热传导过程是不可逆的。开氏表述指出:功变热(确切地说,是机械能转化为内能)的过程是不可逆的。两种表述其实质就是分别挑选了一种典型的不可逆过程,指出它所产生的效果不论用什么方法也不可能使系统完全恢复原状,而不引起其他变化。比如,制冷机(如电冰箱) 可以将热量Q 由低温T2 处(冰箱内)向高温T1 处(冰箱外的外界)传递,但此时外界对制冷机做了电功W 而引起了变化,并且高温物体也多吸收了热量Q(这是电能转化而来的)。这与克氏表述并不矛盾。

不可理过程有几个典型例子,比如焦耳的热功当量实验。这是一个不可逆过程。在实验中,重物下降带动叶片转动而对水做功,使水的内能增加。但是,我们不可能造出这样一个机器:在其循环动作中把一重物升高而同时使水冷却而不引起外界变化。由此即可得热力学第二定律的“普朗克表述”。再如焦耳-汤姆生(开尔文)多孔塞实验中的节流过程和各种爆炸过程等都是不可逆过程。热力学第二定律的含义对上面所列举的不可逆过程以及自然界中

其他不可逆过程,我们完全能够由某一过程的不可逆性证明出另一过程的不可逆性,即自然界中的各种不可逆过程都是互相关联的。我们可以选取任一个不可逆过程作为表述热力学第二定律的基础。因此,热力学第二定律就可以有多种不同的表达方式。但不论具体的表达方式如何,热力学第二定律的实质在于指出:一切与热现象有关的实际宏观过程都是不可逆的,并指出这些过程自发进行的方向。热力学第二定律,也可以确定一个新的态函数——熵。可以用熵来对第二定律作定量的表述。第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人们就用态函数熵来描述这个差异,从理论上可以进一步证明: 可逆绝热过程 Sf=Si,不可逆绝热过程 Sf>Si,式中 Sf 和 Si 分别为系统的最终和最初的熵。也就是说,在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。这个规律叫做熵增加原理。这也是热力学第二定律的又一种表述。熵的增加表示系统从几率小的状态向几率大的状态演变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。熵体现了系统的统计性质。(1)该系统是线性的;第二定律在有限的宏观系统中也要保证如下条件:(2)该系统全部是各向同性的。

3.热力学第二定律的应用

热力学第二定律的适用范围(1)热力学第二定律是宏观规律,对少量分子组成的微观系统是不适用的。(2)热力学第二定律适用于“绝热系统”或“孤立系统”,对于生命体(开放系统)是不适用的。早在1851 年开尔文在叙述热力学第二定律时,就曾特别指明动物体并不像一架热机一样工作,热力学第二定律只适用于无生命物质。(3)热力学第二定律是建筑在有限的空间和时间所观察到的现象上,不能被外推应用于整个宇宙。19 世纪后半期,有些科学家错误地把热力学第二定律应用到无限的、开放的宇宙,提出了所谓“热寂说”。他们声称:将来总有一天,全宇宙都是要达到热平衡,一切变化都将停止,从而宇宙也将死亡。要使宇宙从平衡状态重新活动起来,只有靠外力的推动才行。这就会为“上帝创造世界”等唯心主义提供了所谓“科学依据”。当然,这些只是些题外话。热力学第二定律在日常生活中也有很多的应用,比如电冰箱,空调等热机,又比如磁悬浮列车,超导等都用到了热力学第二定律的知识。又有热力学第二定律破解第二类永动机神话,让人们不会被蒙蔽,这个算不算它的应用呢?(开个玩笑)

参考文献:《物理学史》,郭奕玲、沈慧君著,清华大学出版社,2000年版;

《改变世界的物理学》,倪光炯等著,复旦大学出版社,1999年版;

《现代物理知识》,2001年第3期。

热力学第二定律习题详解

习题十一 一、选择题 1.你认为以下哪个循环过程是不可能实现的 [ ] (A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。 答案:D 解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。 2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。丙说:由热力学第一定律可以证明任何可逆热机的效率都等于2 1 1T T -。丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于2 1 1T T - 。对于以上叙述,有以下几种评述,那种评述是对的 [ ] (A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。 答案:D 解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。乙的说法是对的,这样就否定了B 。丁的说法也是对的,由效率定义式2 1 1Q Q η=-,由于在可逆卡诺循环中有2211Q T Q T =,所以理想气体可逆卡诺热机的效率等于21 1T T -。故本题答案为D 。 3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ] (A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。 答案:A 解:绝热自由膨胀过程,做功为零,根据热力学第一定律2 1V V Q U pdV =?+?,系统内能 不变;但这是不可逆过程,所以熵增加,答案A 正确。 4.在功与热的转变过程中,下面的那些叙述是正确的?[ ] (A )能制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用功;

第二章 热力学第二定律

第二章热力学第二定律 一、单选题 1) 理想气体绝热向真空膨胀,则() A. ?S = 0,?W = 0 B. ?H = 0,?U = 0 C. ?G = 0,?H = 0 D. ?U =0,?G =0 2) 对于孤立体系中发生的实际过程,下式中不正确的是() A. W = 0 B. Q = 0 C. ?S > 0 D. ?H = 0 3) 理想气体经可逆与不可逆两种绝热过程,则() A. 可以从同一始态出发达到同一终态。 B. 不可以达到同一终态。 C. 不能确定以上A、B中哪一种正确。 D. 可以达到同一终态,视绝热膨胀还是绝热压缩而定。 4) 1mol,100℃及p?下的水向真空蒸发为p?,373K的水蒸汽,过程的△A为( )K J A. 0 B. 0.109 C.-3.101 D.40.67 5) 对于封闭体系的热力学,下列各组状态函数之间的关系中正确的是:() (A) A > U; (B) A < U; (C) G < U; (D) H < A。 6) 将氧气分装在同一气缸的两个气室内,其中左气室内氧气状态为p1=101.3kPa,V1=1dm3,T1=273.2K;右气室内状态为p2=101.3kPa,V2=1dm3,T2=273.2K;现将气室中间的隔板抽掉,使两部分气体充分混合。此过程中氧气的熵变为: ( ) A. ?S >0 B. ?S <0 C. ?S =0 D. 都不一定 7)1mol理想气体向真空膨胀,若其体积增加到原来的10倍,则体系、环境和孤立体系的熵变分别为( )J·K-1 A. 19.14, -19.14, 0 B. -19.14, 19.14, 0 C. 19.14, 0, 19.14 D. 0 , 0 , 0 8) 1 mol,373 K,p?下的水经下列两个不同过程变成373 K,p?下的水蒸汽,(1) 等温等压可逆蒸发,(2) 真空蒸发,这两个过程中功和热的关系为:( ) (A) W1> W2Q1> Q2(B) W1< W2Q1> Q2 (C) W1= W2Q1= Q2(D) W1> W2Q1< Q2 9)封闭系统中, W'= 0,恒温恒压下的化学反应可用( )计算系统的熵变. A. ΔS=Q/T; B. ΔS=ΔH/T; C. ΔS=(ΔH-ΔG)/T D. ΔS=nRln( V2/V1) 10) 理想气体经历等温可逆过程,其熵变的计算公式是:( ) A. ?S =nRT ln(p1/p2) B. ?S =nRT ln(V2/V1) C. ?S =nR ln(p2/p1) D. ?S =nR ln(V2/V1) 11) 固体碘化银(AgI)有α和β两种晶型,这两种晶型的平衡转化温度为419.7K,由α型转化为β型时,转化热等于6462J·mol-1,由α型转化为β型时的熵变?S 应为:( ) J·K-1 A. 44.1 B. 15.4 C. -44.1 D. -15.4 12) dA= -SdT-PdV适用的过程是()。 A.理想气体向真空膨胀B.-10℃,100KPa下水凝固为冰 C.N2(g)+3H2(g) = 2NH3(g)未达平衡D.电解水制取氧 13) 封闭系统中发生等温等压过程时,系统的吉布斯函数改变量△G等于() A.系统对外所做的最大体积功, B. 可逆条件下系统对外所做的最大非体积功, C.系统对外所做的最大总功, D. 可逆条件下系统对外做的最大总功. 14) 在p?下,373K的水变为同温下的水蒸汽。对于该变化过程,下列各式中哪个正确:( ) A.?S体+?S环> 0 B. ?S体+?S环 < 0 C.?S体+?S环 = 0 D. ?S体+?S环的值无法确定 15) 某体系等压过程A→B的焓变?H与温度 T无关,则该过程的:() (A) ?U与温度无关 (B) ?S与温度无关 (C) ?A与温度无关;(D) ?G与温度无关。 16) 1mol理想气体从p1,V1,T1分别经:(1) 绝热可逆膨胀到p2,V2,T2;(2) 绝热恒外压下膨胀到p2′,V2′,T2′,若p2 = p2′ 则:( ) A.T2′= T2, V2′= V2, S2′= S2 B.T2′> T2, V2′< V2, S2′< S2 C.T2′> T2, V2′> V2, S2′> S2 D.T2′< T2, V2′< V2, S2′< S2

第五章--热力学基础Word版

第五章 热力学基础 一、基本要求 1.掌握理想气体的物态方程。 2.掌握内能、功和热量的概念。 3.理解准静态过程。 4.掌握热力学第一定律的内容,会利用热力学第一定律对理想气体在等体、等压、等温和绝热过程中的功、热量和内能增量进行计算。 5.理解循环的意义和循环过程中的能量转换关系。掌握卡诺循环系统效率的计算,会计算其它简单循环系统的效率。 6.了解热力学第二定律和熵增加原理。 二、本章要点 1.物态方程 理想气体在平衡状态下其压强、体积和温度三个参量之间的关系为 RT M m PV = 式中是m 气体的质量,M 是气体摩尔质量。 2.准静态过程 准静态过程是一个理想化的过程,准静态过程中系统经历的任意中间状态都是平衡状态,也就是说状态对应确定的压强、体积、和温度。可用一条V P -曲线来表示 3.内能 是系统的单值函数,一般气体的内能是气体温度和体积的函数),(V T E E =,而理想气体的内能仅是温度的函数)(T E E =。 4.功、热量 做功和传递热量都能改变内能,内能是状态参量,而做功和传递热量都与过程有关。气体做功可表示为 ?=2 1 V V PdV W 气体在温度变化时吸收的热量为 T C M m Q ?= 5.热力学第一定律 在系统状态发生变化时,内能、功和热量三者的关系为 W E Q +?= 应用此公式时应注意各量正负号的规定:0>Q ,表示系统吸收热量,0?E 表示内能增加,0W 系统对外界做功,0

6.摩尔热容 摩尔热容是mol 1物质在状态变化过程中温度升高K 1所吸收的热量。对理想气体来说 dT dQ C V m V = , dT dQ C P m P =, 上式中m V C ,、m P C ,分别是理想气体的定压摩尔热容和定体摩尔热容,两者之差为 R C C m V m P =-,, 摩尔热容比:m V m P C C ,,/=γ。 7.理想气体的几个重要过程 8.循环过程和热机效率 (1)循环过程 系统经过一系列变化后又回到原来状态的过程,称为循环过程。 (2)热机的效率 吸 放吸 净Q Q Q W - == 1η (3)卡诺循环 卡诺循环由两个等温过程和两个绝热过程组成。其效率为 1 2 1T T - =η 工作在相同的高温热源和相同低温热源之间的热机的效率与工作物质无关,且以可逆卡诺热机的效率最高。

物理化学第二章 热力学第一定律

第二章 热力学第一定律 一.基本要求 1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系 统性质、功、热、状态函数、可逆过程、过程和途径等。 2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中 的, , Q W U ?和H ?的值。 3.了解为什么要定义焓,记住公式, V p U Q H Q ?=?=的适用条件。 4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学 第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中, , , , U H W Q ??的计算。 二.把握学习要点的建议 学好热力学第一定律是学好化学热力学的基础。热力学第一定律解决了在恒 定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一 些基本概念。这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做 习题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。 例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这 个概念,还要强调是系统与环境之间发生的传递过程。功和热的计算一定要与变 化的过程联系在一起。譬如,什么叫雨?雨就是从天而降的水,水在天上称为云, 降到地上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说, “雨”是一个与过程联系的名词。在自然界中,还可以列举出其他与过程有关的 名词,如风、瀑布等。功和热都只是能量的一种形式,但是,它们一定要与传递 的过程相联系。在系统与环境之间因温度不同而被传递的能量称为热,除热以外, 其余在系统与环境之间被传递的能量称为功。传递过程必须发生在系统与环境之 间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种 形式变为另一种形式。同样,在环境内部传递的能量,也是不能称为功(或热) 的。例如在不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、 燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所 以0, 0, 0Q W U ==?=。这个变化只是在系统内部,热力学能从一种形式变为

热力学第二定律的发展与应用

浅论热力学第二定律的发展与应用

————————————————————————————————作者:————————————————————————————————日期:

热工学课程论文 题目浅论热力学第二定律的发展与应用 学院工程技术学院 专业机械设计制造及其自动化 年级2012级 学号 姓名 指导教师 成绩 2014年12 月

目录 摘要 (5) 1 前言 (5) 2 热力学第二定律的建立及其发展 (5) 2.1 热力学第二定律建立的历史过程 (5) 2.2 热力学第二定律的实质 (6) 2.2.1可逆过程与不可逆过程 (6) 2.2.2开氏与克氏的两种表述 (6) 2.3 热力学第二定律的含义 (7) 3 热力学第二定律的应用 (7) 3.1 通过熵增原理,理解能源危机 (7) 3.2 理解时间的流逝 (8) 3.3 黑洞温度的发现 (8) 3.4 形成宇宙的耗散结构理论 (9) 4 总结 (9) 参考文献: (9)

浅论热力学第二定律的发展与应用 xxx xxx 西南大学工程技术学院 2012级机械设计制造及其自动化1班 摘要:热力学第二定律是热力学的基本定律之一,是指热不可能自发地、不付代价地从低温物体传到高温物体或者说不可能制造出只从一个热源取得热量,使之完全变成机械能而不引起其他变化的循环发动机。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。本文综述了该定律的提出、演变历程、并介绍了它在工农业生产和生活中的应用。 关键词:热力学第二定律演变历程应用 1 前言 热力学第二定律,不仅决定了能量转移的方向问题,对信息技术,生命科学以及人文科学的发展都起到了非常重要的作用,应用极其广泛。热力学第二定律对新世纪的科学技术乃至整个社会的发展都产生重要影响。 2 热力学第二定律的建立及其发展 2.1 热力学第二定律建立的历史过程 19世纪初,巴本、纽可门等发明的蒸汽机经过许多人特别是瓦特的重大改进,已广泛应用于工厂、矿山、交通运输,但当时人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步

热力学第二定律复习题

热力学第二定律 (r δ/0Q T =∑)→熵函数引出 0< (不可能发生的过程) 0= (可逆过程) 0>(自发、不可逆过程) S ?环) I R ηη≤ 不等式:) 0A B i A B S →→?≥ 函数G 和Helmholtz 函数A 的目的 A U TS ≡-,G H TS ≡- d d d d d d d d T S p V T S V p S T p V S T V p -+---+ W ' =0,组成恒定封闭系统的 可逆和不可逆过程。但积分时 要用可逆途径的V ~p 或T ~S 间 的函数关系。 应用条件: V )S =-(?p /?S )V , (?T /?p )S =(?V /?S )p V )T =(?p /?T )V , (?S /?p )T =-(?V /?T )p 应用:用易于测量的量表示不 能直接测量的量,常用于热力 学关系式的推导和证明 <0 (自发过程) =0 (平衡(可逆)过程) 判据△A T ,V ,W ’=0 判据△G T ,p ,W ’=0 <0 (自发过程) =0 (平衡(可逆)过程)

基本计算公式 /()/ r S Q T dU W T δδ ?==- ??, △S环=-Q体/T环△A=△U-△(TS) ,d A=-S d T-p d V △G=△H-△(TS) ,d G=-S d T-V d p 不同变化过程△S、△A、△G 的计算简单pVT 变化(常压 下) 凝聚相及 实际气体 恒温:△S =-Q r/T;△A T≈0 ,△G T≈V△p≈0(仅对凝聚相) △A=△U-△(TS),△G=△H-△(TS); △A≈△G 恒压变温 2 1 , (/) T p m T S nC T dT ?=?nC p,m ln(T2/T1) C p,m=常数 恒容变温 2 1 , (/) T V m T S nC T dT ?=?nC V,m ln(T2/T1) C V,m=常数 △A=△U-△(TS),△G=△H-△(TS); △A≈△G 理想气体 △A、△G 的计算 恒温:△A T=△G T=nRT ln(p2/p1)=- nRT ln(V2/V1) 变温:△A=△U-△(TS),△G=△H-△(TS) 计算△S△S=nC V,m ln(T2/T1)+nR ln(V2/V1) = nC p,m ln(T2/T1)-nR ln(p2/p1) = nC V,m ln(p2/p1)+ nC p,m ln(V2/V1) 纯物质两 相平衡时 T~p关系g?l或s两相 平衡时T~p关系 任意两相平衡T~p关系: m m d/d/ p T T V H ββ αα =??(Clapeyron方程) 微分式:vap m 2 d ln d H p T RT ? =(C-C方程) 定积分式:ln(p2/p1)=-△vap H m/R(1/T2-1/T1) 不定积分式:ln p=-△vap H m/RT+C 恒压相变化 不可逆:设计始、末态相同的可逆过程计 S=△H/T;△G=0;△A ≈0(凝聚态间相变) =-△n(g)RT (g?l或s) 化学 变化 标准摩尔生成Gibbs函数 r m,B G ?定义 r m B m,B B S S ν ?=∑,r m B f m,B B H H ν ?=? ∑, r m r m r m G H T S ?=?-?或 r m B f m,B G G ν ?=? ∑ G-H方程 (?△G/?T)p=(△G-△H)/T或[?(△G/T)/?T]p=-△H/T2 (?△A/?T)V=(△A-△U)/T或[?(△A/T)/?T]V=-△U/T2 积分式:2 r m0 ()//ln1/21/6 G T T H T IR a T bT cT ?=?+-?-?-? 应用:利用G-H方程的积分式,可通过已知T1时的△G(T1)或 △A(T1)求T2时的△G(T2)或△A(T2) 微分式 热力学第三定律及其物理意义 规定熵、标准摩尔熵定义 任一物质标准摩尔熵的计算

热力学第二定律有两种常用表述

读热学第二定律的建立及其意义有感 热力学第二定律有两种常用表述: (1)克劳修斯在1850年在研究热机的工作原理的基础上提出了热力学第二定律的一种表述:不可能使热量从低温物体传递到高温物体,而不引起其他变化。这里的“不引起其他的变化”和“自发地”是等价的。 (2)开尔文在1851年提出了热力学第二定律的另一种表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。它也可以表述为第二类永动机是不可能制成的。由于自然界的自发过程都是有联系的,是相互依存的。描述自发过程方向性的第二定律也是等价的。 热力学第二定律揭示了有大量分子参与的宏观过程的方向性,对于我们认识自然、利用自然有重要的指导意义。 两种表述等价的证明: 如果假设热量由高温传向低温的不可逆性消失了,即热量能自动地经过某种假想装置从低温传向高温。这是我们可以设计一部热机,使它在一次循环中由高温热库(热源)吸热,对外做功,向低温热库放热(),这种热机能自动进行动作,然后利用那个假想装置使热量自动地传给高温热库,而使低温热库恢复原来状态。当我们把该假想装置与此热机看成一个整体时,它们就能从热库吸出热量而全部转变为对外做的功,而不引起其他任何变化。这就是说,功变热的不可逆性也消失了。 同理,反之也成立。 热力学第二定律是独立于热力学第一定律的另一实验定律,它指出系统变化进行的可能方向和达到平衡的必要条件,是自然界最基本、最普遍的规律之一。 引入熵,热力学第二定律可表述为: 在孤立系内,任何变化不可能导致熵的总值减少,即 ΔS ≥0 (孤立系) “=”号---绝热可逆等熵过程 “>”号---绝热不可逆熵增加过程

热力学第二定律习题解析

第二章热力学第二定律 习题 一 . 选择题: 1. 理想气体绝热向真空膨胀,则 ( ) (A) △S = 0,W = 0 (B) △H = 0,△U = 0 (C) △G = 0,△H = 0 (D) △U = 0,△G = 0 2. 熵变△S 是 (1) 不可逆过程热温商之和 (2) 可逆过程热温商之和 (3) 与过程无关的状态函数 (4) 与过程有关的状态函数 以上正确的是() (A) 1,2 (B) 2,3 (C) 2 (D) 4 3. 对于孤立体系中发生的实际过程,下式中不正确的是:() (A) W = 0 (B) Q = 0 (C) △S > 0 (D) △H = 0 4. 理想气体经可逆与不可逆两种绝热过程() (A) 可以从同一始态出发达到同一终态 (B) 不可以达到同一终态 (C) 不能断定 (A)、(B) 中哪一种正确 (D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定 5. P?、273.15K 水凝结为冰,可以判断体系的下列热力学量中何者一定为零? (A) △U (B) △H (C) △S (D) △G 6. 在绝热恒容的反应器中,H2和 Cl2化合成 HCl,此过程中下列各状态函数的变 化值哪个为零? ( ) (A) △r U m (B) △r H m (C) △r S m (D) △r G m 7. 在绝热条件下,用大于气筒内的压力,迅速推动活塞压缩气体,此过程的熵变为: ( ) (A) 大于零 (B) 等于零 (C) 小于零 (D) 不能确定 8. H2和 O2在绝热钢瓶中生成水的过程:() (A) △H = 0 (B) △U = 0 (C) △S = 0 (D) △G = 0

热力学第二定律的发展与应用

热力学第二定律的发展和应用 引言:热力学第二定律是热力学的基本定律之一,它广泛地应用于各个学科、生活领域。本文回顾了其建立的历史背景及经过,它的准确的表述和含义,及它的一些应用。 一、热力学第二定律的建立和表述 在生产实践中, 法国人巴本发明了第一部蒸汽机, 其后经瓦特改进的蒸汽 机在 19 世纪得到了广泛应用,随着蒸汽机在工业生产中起着愈来愈重要的作用,但是关于蒸汽机的理论却并未形成。人们在摸索和试验中不断改进着蒸汽机,经过大量的失败和挫折虽然一定程度地提高了机械效率,但人们始终不明白提高热机效率的关键是什么,以及效率的提高有没有界限.如果有,这个界限的值有多大……这些问题成为当时生产领域中的重要课题。 19 世纪 20 年代, 法国陆军工程师卡诺( S. Car not , 1796~1832) 从理论上研究了热机的效率问题。他在他发表的论文“论火的动力”中提出了著名的“卡诺定理”,找到了提高热机效率的根本途径。但卡诺在当时是采用“热质说”的错误观点来研究问题的。19 世纪50 年代,威廉?汤姆逊( William Thomson , 1824~1907) ( 即开尔文勋爵) 第一次读到了克拉珀龙的文章, 对卡诺的理论留 下了深刻的印象。汤姆逊注意到焦耳热功当量实验的结果和卡诺建立的热机理论之间有矛盾,焦耳的工作表明机械能转化为热,而卡诺的热机理论则认为热在蒸汽机里并不转化为机械能。本来汤姆逊有可能立即从卡诺定理建立热力学第二定律,但由于他也没有摆脱热质说的羁绊。错过了首先发现热力学第二定律的机会。 就在汤姆逊遇到研究瓶颈之际,克劳修斯于1850年率先发表“论热的动力及能由此推出的关于热本性的定律”,“热动说”重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的“克劳修斯表述”——热量可以自发地从较热物体传递至较冷物体,但不能自发地较冷物体传递至较热物体,即在自然条件下这个转变过程是不可逆的,要使热传递方向倒转,只有靠消耗功来实现。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的“开尔文表述”——不可能从单一热源吸取热量使之完全转变为功而

热力学第二定律详解

热力学第二定律(英文:second law of thermodynamics)是热力学的四条基本定律之一,表述热力学过程的不可逆性——孤立系统自发地朝着热力学平衡方向──最大熵状态──演化,同样地,第二类永动机永不可能实现。 这一定律的历史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。定律的数学表述主要借助鲁道夫·克劳修斯所引入的熵的概念,具体表述为克劳修斯定理。 虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到了解释。 这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。定律本身可作为过程不可逆性[2]:p.262及时间流向的判据。而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等 克劳修斯表述 克劳修斯 克劳修斯表述是以热量传递的不可逆性(即热量总是自 发地从高温热源流向低温热源)作为出发点。 虽然可以借助制冷机使热量从低温热源流向高温热源, 但这过程是借助外界对制冷机做功实现的,即这过程除 了有热量的传递,还有功转化为热的其他影响。 1850年克劳修斯将这一规律总结为: 不可能把热量从低温物体传递到高温物体而不产生其他影响。 开尔文表述 参见:永动机#第二类永动机

开尔文勋爵 开尔文表述是以第二类永动机不可能实现这一规律作为 出发点。 第二类永动机是指可以将从单一热源吸热全部转化为 功,但大量事实证明这个过程是不可能实现的。功能够 自发地、无条件地全部转化为热;但热转化为功是有条 件的,而且转化效率有所限制。也就是说功自发转化为热这一过程只能单向进行而不可逆。 1851年开尔文勋爵把这一普遍规律总结为: 不可能从单一热源吸收能量,使之完全变为有用功而不产生其他影响。 两种表述的等价性 上述两种表述可以论证是等价的: 1.如果开尔文表述不真,那么克劳修斯表述不真:假设存在违反开尔文表述 的热机A,可以从低温热源吸收热量并将其全部转化为有用功。假设存在热机B,可以把功完全转化为热量并传递给高温热源(这在现实中可实现)。此时若让A、B联合工作,则可以看到从低温热源流向高温热源,而并未产生任何其他影响,即克劳修斯表述不真。 2.如果克劳修斯表述不真,那么开尔文表述不真:假设存在违反克劳修斯表 述的制冷机A,可以在不利用外界对其做的功的情况下,使热量由低温热源流向高温热源。假设存在热机B,可以从高温热源吸收热量 并将其中的热量转化为有用功,同时将热量传递给低温热源(这在现实中可实现)。此时若让A、B联合工作,则可以看到A与B联合组成的热机从高温热源吸收热量并将其完全转化为有 用功,而并未产生任何其他影响,即开尔文表述不真。 从上述二点,可以看出上述两种表述是等价的。

热力学的第二定律的认识和思考

仲恺农业工程学院 论文题目:热力学的第二定律的认识和思考 论文作者:钟家业 作者学号: 所在院系:机电工程学院 专业班级: 指导老师:

摘要热力学第二定律是热力学的基本定律之一,是指热永远都只能由热处转到冷处(在自然状态下)。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。广义生命演化意义上的熵,体现了生命系统衰落的过程。 关键词热力学第二定律,第二类永动机,熵,时间,生活 1. 热力学第二定律及发展 1.1、热力学第二定律建立的历史过程 19世纪初,人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步被发现的,并用于解决与热现象有关的过程进行方向的问题。1824年,法国陆军工程师卡诺在他发表的论文“论火的动力”中提出了著名的“卡诺定理”,找到了提高热机效率的根本途径。从1840年到1847年间,在迈尔、焦耳、亥姆霍兹等人的努力下,热力学第一定律以及更普遍的能量守恒定律建立起来了。1848年,开尔文爵士(威廉·汤姆生)根据卡诺定理,建立了热力学温标(绝对温标)。这些为热力学第二定律的建立准备了条件。 1850年,克劳修斯从“热动说”出发重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的“克劳修斯表述”。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的“开尔文表述”。上述对热力学第二定律的两种表述是等价的,由一种表述的正确性完全可以推导出另一种表述的正确性。他们都是指明了自然界宏观过程的方向性,或不可逆性。克劳修斯的说法是从热传递方向上说的,即热量只能自发地从高温物体传向低温物体,而不可能从低温物体传向高温物体而不引起其他变化。利用致冷机就可以把热量从低温物体传向高温物体,但是外界必须做功。开尔文的说法则是从热功转化方面去说的。功完全转化为热,即机械能完全转化为内能可以的,在水平地面上运动的木块由于摩擦生热而最终停不来就是一个例子。但反过来,从单一热源吸取热量完全转化成有用功而不引起其他影响则是不可能的。[1] 1.2、热力学第二定律的表述 1.2.1、热力学第二定律的开尔文表述

物理化学答案——第二章-热力学第二定律

第二章 热力学第二定律 一、基本公式和基本概念 基本公式 1. 热力学第二定律的数学表达式----克劳修斯不等式 () A B A B Q S T δ→→?-≥∑ 2. 熵函数的定义 ()R Q dS T δ=, ln S k =Ω 3. 熵变的计算 理想气体单纯,,p V T 变化 22,1122,11 22,,1 1 ln ln ln ln ln ln V m p m p m V m T V S C R T V T p S C R T p V p S C C V p ?=+?=-?=+ 理想气体定温定压混合过程 ln i i i S R n x ?=-∑ 封闭系统的定压过程 2 1 ,d T p m T C S n T T ?=? 封闭系统定容过程 2 1 ,d T V m T C S n T T ?=? 可逆相变 m n H S T ??= 标准状态下的化学反应 ,()r m B m B B S S T θ θ ν ?= ∑ 定压下由1T 温度下的化学反应熵变求2T 温度下的熵变 2 1 ,21()()d T p m r m r m T C S T S T T T ??=?+ ? 4. 亥姆霍兹函数 A U T S ≡- 5. 吉布斯函数 G H T S ≡- 6. G ?和A ?的计算(A ?的计算原则与G ?相同,做相应的变换即可)

定温过程 G H T S ?=?-? 组成不变的均相封闭系统的定温过程 21 d p p G V p ?= ? 理想气体定温过程 21 ln p G nRT p ?= 7. 热力学判据 熵判据:,()0U V dS ≥ 亥姆霍兹函数判据:,,'0(d )0T V W A =≤ 吉布斯函数判据:,,'0(d )0T p W G =≤ 8. 热力学函数之间的关系 组成不变,不做非体积功的封闭系统的基本方程 d d d d d d d d d d d d U T S p V H T S V p A S T p V G S T V p =- =+=--=-+ 麦克斯韦关系 S V p S T V p T T p V S T V p S S p V T S V p T ?????? =- ? ? ???????????? = ? ? ???????????? = ? ? ???????????? =- ? ? ?????? 9. 吉布斯-亥姆霍兹方程 2 ()p G H T T T ??? ????=-??????? 基本概念 1. 热力学第二定律 在研究化学或物理变化驱动力来源的过程中,人们注意到了热功交换的规律,抓住了事物的共性,提出了具有普遍意义的熵函数。根据熵函数以及由此导出的其他热力学函数,可

关于热力学第二定律在生活中的应用

热力学第二定律在生活中的应用 摘要:热力学第二定律作为判定与热现象有关的物理过程进行方向的定律,是物理热学中的一个重要部分。本文分析了热力学第二定律的涵义以及意义,并阐述了它在当今社会的一些应用。 关键词:热力学第二定律;物理过程;应用 引言: 热力学第二定律,不仅决定了能量转移的方向问题,对信息技术,生命科学以及人文科学的发展都起到了非常重要的作用,应用极其广泛。热力学第二定律对新世纪的科学技术乃至整个社会的发展都产生重要影响。 1 热力学第二定律内涵 德国物理学家克劳修斯,在研究和明卡诺定理时, 根据热传导这个不可逆程, 对规律性的内涵提出了一种说法, 这后来被称为热力学第二定律的克劳修斯法: 热可以自发地由高温物体传到低温体, 但不可能由低温物体传到高温物体而引起其它变化。不能简单把克劳修斯说法理解成热不能由低温物传到高温物体,而是在不允许引起其变化和条件下,热不能由低温物体传到高物体,如若允许引起其它变化和话,热是可以由低温物体传到高温物体的。 开尔文是从机械能和内能之间相互转化时具有向性的角度来表述的。通过一定装置,机能可以全部转化成内能。但是,内能却不自发地完全转化成机械能。要实现内能全转化成机械能,必须借助其他物理变化机械能和内能之间的转化是具有方向性的此种表述也包含两层含义,即若从单一源吸收热量,并把它完全用来做功,同时不允许产生其他变化,则这种热力学过程不可能发生的;若允许产生其他变化,则单一热源吸收热量,并把它全部用来做功这种热力学过程是有可能发生的。 热力学第二定律指出了其不可逆过的单向性, 从热力学第二定律的这些表述发, 能够找到一个表征不可逆过程单向性物理量,利用它能够把热力学第二定律用为普遍的形式表示出来。克劳修斯定义一个态函数,认为自发过程的不可逆性决定于过程进行的过程或路径, 而是决定系统的初始状态和最终状态,称之为“熵用 S 表示从一个状态 A 到一个状态 B 。 S 的变化定义为: A B S S -=?A B T dQ / (1) 对无限小过程ds = dq/T 。这样热力学第二律表示为: ds ≥ dq/T 在孤立系统中,任何变化不可能导致熵的问题减小,即ds ≥0。 如果变化过程是可逆的则 ds=0 ,总之熵是有增无减。 2、热力学第二定律的应用 2.1通过熵增原理,理解能源危机

05_第五章 热力学第二定律

【5-1】下列说法是否正确? (1)机械能可完全转化为热能,而热能却不能完全转化为机械能。 (2)热机的热效率一定小于1。 (3)循环功越大,则热效率越高。 (4)一切可逆热机的热效率都相等。 (5)系统温度升高的过程一定是吸热过程。 (6)系统经历不可逆过程后,熵一定增大。 (7)系统吸热,其熵一定增大;系统放热,其熵一定减小。 (8)熵产大于0的过程必为不可逆过程。 【解】 (1)对于单个过程而言,机械能可完全转化为热能,热能也能完全转化为机械能,例如定温膨胀过程。对于循环来说,机械能可完全转化为热能,而热能却不能完全转化为机械能。 (2)热源相同时,卡诺循环的热效率是最高的,且小于1,所以一切热机的热效率均小于1。 (3)循环热效率是循环功与吸热量之比,即热效率不仅与循环功有关,还与吸热量有关。因此,循环功越大,热效率不一定越高。 (4)可逆热机的热效率与其工作的热源温度有关,在相同热源温度的条件下,一切可逆热机的热效率都相等。 (5)系统温度的升高可以通过对系统作功来实现,例如气体的绝热压缩过程,气体温度是升高的。 (6)T Q dS δ>>系统经历不可逆放热过程,熵可能减小;系统经历不可 逆循环,熵不变。只有孤立系统的熵只能增加。系统经历绝热不可逆过程,熵一定增大。 (7)g f dS dS dS +=,而0≥g dS ,系统吸热,0>f dS ,所以熵一定增加;系统放热时,0

浅论热力学第二定律的发展与应用

热工学课程论文 题目浅论热力学第二定律的发展与应用学院工程技术学院 专业机械设计制造及其自动化 年级 2012级 学号 姓名 指导教师 成绩 2014年 12 月

目录 摘要 (3) 1 前言 (3) 2 热力学第二定律的建立及其发展 (3) 2.1 热力学第二定律建立的历史过程 (3) 2.2 热力学第二定律的实质 (4) 2.2.1可逆过程与不可逆过程 (4) 2.2.2开氏与克氏的两种表述 (4) 2.3 热力学第二定律的含义 (5) 3 热力学第二定律的应用 (5) 3.1 通过熵增原理,理解能源危机 (5) 3.2 理解时间的流逝 (6) 3.3 黑洞温度的发现 (6) 3.4 形成宇宙的耗散结构理论 (7) 4 总结 (7) 参考文献: (7)

浅论热力学第二定律的发展与应用 xxx xxx 西南大学工程技术学院 2012级机械设计制造及其自动化1班 摘要:热力学第二定律是热力学的基本定律之一,是指热不可能自发地、不付代价地从低温物体传到高温物体或者说不可能制造出只从一个热源取得热量,使之完全变成机械能而不引起其他变化的循环发动机。它是关于在有限空间和时间,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。本文综述了该定律的提出、演变历程、并介绍了它在工农业生产和生活中的应用。 关键词:热力学第二定律演变历程应用 1 前言 热力学第二定律,不仅决定了能量转移的方向问题,对信息技术,生命科学以及人文科学的发展都起到了非常重要的作用,应用极其广泛。热力学第二定律对新世纪的科学技术乃至整个社会的发展都产生重要影响。 2 热力学第二定律的建立及其发展 2.1 热力学第二定律建立的历史过程 19世纪初,巴本、纽可门等发明的蒸汽机经过许多人特别是瓦特的重大改进,已广泛应用于工厂、矿山、交通运输,但当时人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步

第三章 热力学第二定律讲解学习

第三章热力学第二定律 一、选择题 1.理想气体与温度为T 的大热源接触,做等温膨胀吸热Q,而所做的功是变到相同终态最大功的20%,则体系的熵变为() A.ΔS = 5Q /T B.ΔS = Q /T CΔS= Q/5T D.ΔS =T/Q A 2.下列过程哪一种是等熵过程() A. 1mol 某液体在正常沸点下发生相变 B. 1mol 氢气经一恒温可逆过程 C. 1mol 氮气经一绝热可逆膨胀或压缩过程 D. 1mol 氧气经一恒温不可逆过程 C 3.d G = ?S d T+V d p 适用的条件是() A.只做膨胀功的单组分,单相体系 B. 理想气体 C. 定温、定压 D. 封闭体系 A 4.熵变△S 是 (1) 不可逆过程热温商之和 (2) 可逆过程热温商之和 (3) 与过程无关的状态函数 (4) 与过程有关的状态函数 以上正确的是:() A.1,2 B. 2,3 C. 2 D.4 C 5.体系经历一个不可逆循环后() A.体系的熵增加 B.体系吸热大于对外做功 C.环境的熵一定增加 C环境内能减少 C 6.理想气体在绝热可逆膨胀中,对体系的ΔH 和ΔS 下列表示正确的是()A. ΔH > 0, ΔS > 0 B. ΔH = 0, ΔS = 0 C. ΔH < 0, ΔS = 0 D.ΔH < 0, ΔS < 0 B 7.非理想气体绝热可逆压缩过程的△S() A.=0 B.>0 C.<0 D.不能确定 A 8.一定条件下,一定量的纯铁与碳钢相比,其熵值是() A.S(纯铁)>S(碳钢) B.S(纯铁)

第二章热力学第二定律

第二章 热力学第二定律 ;选择题 1.ΔG=0 的过程应满足的条件是 (A) 等温等压且非体积功为零的可逆过程 (B) 等温等压且非体积功为零的过程 (C) 等温等容且非体积功为零的过程 (D) 可逆绝热过程 答案:A 2.在一定温度下,发生变化的孤立体系,其总熵 (A )不变 (B)可能增大或减小(C)总是减小(D)总是增大答案:D 。因孤立系发生的变化必为自发过程,根据熵增原理其熵必增加。 3.对任一过程,与反应途径无关的是 (A) 体系的内能变化 (B) 体系对外作的功 (C) 体系得到的功 (D) 体系吸收的热 答案:A 。只有内能为状态函数与途径无关,仅取决于始态和终态。 4.下列各式哪个表示了偏摩尔量: (A),,j i T p n U n ??? ???? (B) ,,j i T V n H n ??? ???? (C) ,,j i T V n A n ??? ???? (D) ,,j i i T p n n μ?? ? ? ??? 答案:A 。首先根据偏摩尔量的定义,偏导数的下标应为恒温、恒压、恒组成。只有A 和D 符合此条件。但D 中的i μ不是容量函数,故只有A 是偏摩尔量。 5.氮气进行绝热可逆膨胀 ΔU=0 (B) ΔS=0 (C) ΔA =0 (D) ΔG=0 答案:B 。绝热系统的可逆过程熵变为零。 6.关于吉布斯函数G, 下面的说法中不正确的是 (A)ΔG ≤W'在做非体积功的各种热力学过程中都成立 (B)在等温等压且不做非体积功的条件下, 对于各种可能的变动, 系统在平衡态的吉氏函数最小 (C)在等温等压且不做非体积功时, 吉氏函数增加的过程不可能发生 (D)在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生。答案:A 。因只有在恒温恒压过程中ΔG ≤W'才成立。 7.关于热力学第二定律下列哪种说法是错误的 (A)热不能自动从低温流向高温(B)不可能从单一热源吸热做功而无其它变化(C)第二类永动机是造不成的(D 热不可能全部转化为功 答案:D 。正确的说法应该是,热不可能全部转化为功而不引起其它变化 8.关于克劳修斯-克拉佩龙方程下列说法错误的是 (A) 该方程仅适用于液-气平衡 (B) 该方程既适用于液-气平衡又适用于固-气平衡 (C) 该方程假定气体的体积远大于液体或固体的体积(D) 该方程假定与固相或液相平衡的气体为理想气体 答案:A 9.关于熵的说法正确的是 (A) 每单位温度的改变所交换的热为熵 (B) 可逆过程熵变为零 (C) 不可逆过程熵将增加 (D) 熵与系统的微观状态数有关 答案:D 。(A )熵变的定义/r dS Q T δ=? 其中的热应为可逆热;(B )与(C )均在绝热

热力学第二定律的应用

关于热力学第二定律的学习探究报告 热力学第二定律是热力学的四条基本定律之一,表述热力学过程的不可逆性-----不可能把热从低温物体传到高温物体而不产生其他影响;不可能从单一热源取热使之完全转换为有用的功而不产生其他影响;不可逆热力过程中熵的微增量总是大于零。 自然界自发进行的过程具有方向性总是由非平衡态走向平衡态.热力学第二定律在发展过程中形成了两种表述方式: 一、开尔文表述:不可能制成一种循环动作的热机只从单一热源吸取热量,使之完全变成有用的功而不产生其他影响。 二、克劳休斯表述:热量不可能自动地从低温物体传到高温物体。 其实生活中有很多例子都离不开热二的解释,水往低处流,气体由高压向低压膨胀,热由高温物体传向低温物体等。所以热二在生活和科学研究方面有广泛的应用,通过在网络和图书馆查阅资料,我找到了几个典型的例子。 第一就是在帮助我们理解时间上的应用:我们已经知道,热力学第二定律事实上是所有单向变化过程的共同规律,而时间的变化就是一个单向的不可逆过程,对每个人都一样,时间一去不复还,因此还可以这样理解:时间的方向,就是熵增加的方向。这样,热力学第二定律就给出了时间箭头。物理学的进一步研究表明,能量守恒与时间的均匀性有关。这就是说,热力学第一定律告诉我们,时间是均匀流逝的;热力学第二定律指出,时间是有方向的。这两条定律合在一起告诉我们:时间在向着特定的方向均匀地流逝着。 第二就是在化学反应中的应用:根据热力学第二定律,一切自发过程都是不可逆过程。而一切不可逆过程的发展总是朝着使系统及有关周围物质的熵的总和趋于增大,只有在理想的可逆过程中两者熵的总和保持不变。即有dS+dS0≥0 把热力学第二定律应用于化学反应,就是要判断化学反应进行的方向以及确定达到化学平衡的条件。 第三就是在发现黑洞温度上发挥了很重要的作用:1972年,30岁的英国青年物理学家霍金,提出了黑洞的“面积定理”。证明了黑洞的面积A随时间变化只能增加,不能减少,即这个定理认为,物质落入黑洞、两个黑洞相撞等导致黑洞面积增加的过程,是可以发生的。而一个黑洞分裂为两个黑洞的情况,由于会

相关文档
最新文档