一种基于三角模糊数及层次分析法的评估指标权重确定方法

一种基于三角模糊数及层次分析法的评估指标权重确定方法
一种基于三角模糊数及层次分析法的评估指标权重确定方法

以层次分析法确定各级因素的权重调查

以层次分析法确定各级因素的权重调查 此问卷调查的目的在于确定中华优秀传统文化融入校园文化建设的路径各影响因素之间相对权重。 下面通过4个方面评估. 1、评估“中华优秀传统文化融入校园文化建设”的相对重要性(1~3); 2、评估“中华优秀传统文化融入校园文化建设必要性”的相对重要性(4~6); 3、评估“中华优秀传统文化融入校园文化建设紧迫性”的相对重要性(7~9); 4、评估“中华优秀传统文化融入校园文化建设影响力”的相对重要性(10~11)。 1相对于“中华优秀传统文化融入校园文化建设的必要性”,“紧迫性”显得 非常不重要 很不重要

稍不重要 一般重要 稍重要 重要 很重要 非常重要 2相对于“中华优秀传统文化融入校园文化建设的必要性”,“影响力”显得 非常不重要 很不重要 不重要 稍不重要 一般重要 稍重要 重要 很重要 非常重要 3相对于“中华优秀传统文化融入校园文化建设的紧迫性”,“影响力”显得 非常不重要 很不重要 不重要 稍不重要 一般重要

重要 很重要 非常重要 4相对于“学校管理者对优秀传统文化融入校园文化建设的必要性”,“教师对其的必要性”显得 非常不重要 很不重要 不重要 稍不重要 一般重要 稍重要 重要 很重要 非常重要 5相对于“学校管理者对优秀传统文化融入校园文化建设的必要性”,“学生对其的必要性”显得 非常不重要 很不重要 不重要 稍不重要 一般重要 稍重要 重要 很重要

6相对于“教师对优秀传统文化融入校园文化建设的必要性”,“学生对其的必要性”显得 非常不重要 很不重要 不重要 稍不重要 一般重要 稍重要 重要 很重要 非常重要 7相对于“学校管理者对优秀传统文化融入校园文化建设的紧迫性”,“教师对其的紧迫性”显得 非常不重要 很不重要 不重要 稍不重要 一般重要 稍重要 重要 很重要 非常重要 8相对于“学校管理者对优秀传统文化融入校园文化建设的紧迫性”,“学生对其的紧迫性”显得

基于层次分析法的模糊综合评价模型

基于层次分析法的模糊综 合评价模型 Prepared on 22 November 2020

2016江西财经大学数学建模竞赛A题 城市交通模型分析 参赛队员:黄汉秦、乐晨阳、金霞 参赛队编号:2016018 2016年5月20日~5月25日

承诺书 我们仔细阅读了江西财经大学数学建模竞赛的竞赛章程。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C中选择一项填写):A 我们的参赛队编号为2016018 参赛队员(打印并签名): 队员1.姓名专业班级计算机141 队员2.姓名专业班级计算机141 队员3.姓名专业班级计算机141 日期:2016年5月25日

编号和阅卷专用页 2016年5月15日制定

城市交通模型分析 摘要 随着国民经济的高速发展和城市化进程的加快,我国机动车保有量及道路交通流量急剧增加,交通出行结构发生了根本变化,城市道路交通拥挤堵塞问题已成为制约经济发展、降低人民生活质量、削弱经济活力的瓶颈之一。本篇论文针对道路拥挤的问题采用层次分析法进行数学建模分析,讨论拥堵的深层次问题及解决方案。 首先建立绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。 其次,建立评价集V=(优,良,中,差)。对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u),B(u),C(u),D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5) 然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式 []R W R W R W R W R W W R W O 5 5 4 4 3 3 2 2 1 1 ,,,,==计算出权重值,经过一致性检验公式 RI CI CR = 检验后,均有0.1CR <,由此得出各层次的权向量()12,,T n W W W W =。然后 后,给出建立绩效评价模型(其中O 是评价结果向量),应用模糊数学中最大隶属度原则,对被评价城市交通的绩效进行分级评价。 接着在改进方案中,我们具体以交叉口为中心建立模型,其中包括道路长度、宽度、车辆平均长度、车速等等考虑因素。通过车辆排队长度可以间接判断交通拥堵情况,不需要测量车速、时间等因素而浪费的人力物力和财力,有效的提高了工作成本和效率。为管理城市交通要道提供了良好的模型和依据。 【关键字】交通拥堵层次分析法模糊综合评判绩效评价隶属度 一、问题重述 随着我国经济社会持续快速发展,群众购车刚性需求旺盛,汽车保有量继续呈快速增长趋势,2015年新注册登记的汽车达2385万辆,保有量净增1781万辆,均为历史最高水平。汽车占机动车的比率迅速提高,近五年汽车占机动车比率从%提高到%,群众机动化出行方式经历了从摩托车到汽车的转变,交通出行结构发生了根本性变化。 2015年,小型载客汽车达亿辆,其中,以个人名义登记的小型载客汽车(私家车)达到亿辆,占小型载客汽车的%。与2014年相比,私家车增加1877万辆,增长%。全国有40个城市的汽车保有量超过百万辆,北京、成都、深圳、上海、重庆、天津、苏州、郑州、杭州、广州、西安11个城市汽车保有量超过200万辆。全国平均每百户家庭拥有31辆私家车,北京、成都、深圳等大城市每百户家庭拥有私家车超过60辆。

层次分析法矩阵权重和,根,特征值法,c语言计算

// ???óè¨??2010.cpp : ?¨ò?????ì¨ó|ó?3ìDòμ?è??úμ??£ #include "stdafx.h" //vs2010ò?é?°?±?óD′??? #include"stdio.h" #include"math.h" void sum(int N,double a[13][13]) { double sum[13]={0},pro[13]={0}; int i,j,k; for(i=0;i

} for(k=0;k

层次分析法确定绩效考核指标权重

表4-2 某厂运行部年度部门级绩效考核指标 (1)由1-9比例标度法分别对每一层次的评价指标的相对重要性进行定性描述,确定两两比较判断矩阵。 一级考核指标相对于总的考核指标所得两两比较判断矩阵如下: ????? ???? ???=13/17/1315/1751321321V V V V V V V A 二级考核指标相对于其所属一级考核指标所得的两两判断矩阵分别如下所示: ????? ???? ???=13/15/1313/153113121113121111v v v v v v V B

?? ? ?? ?? ?????????=12/14/15/1213/14/14313/15431242322212423222122v v v v v v v v V B 33132331321 31/31V v v B v v ????=?????? (2)运用和积法(方根法)求解各判断矩阵,得出单一准则下各级考核指标的相对权重。 1)一级指标两两判断矩阵A 的求解 一级指标的权重向量: w =(1w ,2w ,3w )T =(0.637,0.258,0.103)T 最大特征根:3 max 1()3i i i Aw w λ==∑ =3.037 一致性检验: 3.0373 0.018531 CI -= =-,0.58RI = 则0.0320.1CR =<,说明判断矩阵A 具有满意的一致性。 2)二级评价指标的两两判断矩阵的求解: ①判断矩阵1B 求解结果如下: 1B 下二级指标的权重向量: 1w =(11w ,21w ,31w )T =(0.6548,0.2499,0.0953)T 最大特征根:3 1max 1()3i i i B w w λ==∑ =3.0182 一致性检验: 3.01823 0.009131 CI -= =-,0.58RI = 则0.0160.1CR =<,这表明判断矩阵具有非常令人满意的一致性。 ②判断矩阵B 2求解结果如下: 权重向量: 2w =(21w ,22w ,32w ,24w )T =(0.5318,0.2701,0.1221,0.0760)T 最大特征根:4 2max 1()4i i i B w w λ==∑ =4.0753 一致性检验: 4.07534 0.025141 CI -= =-,0.9RI = 则0.0280.1C R =< ,这说明判断矩阵B 2具有令人满意的一致性。 ③判断矩阵B 3求解结果如下: 权重向量:

模糊层次分析法

模糊层次分析法理论基础 FAHP及计算过程层次分析法(AHP)是20世纪70年代美国运筹学家T.L. Saaty教授提出的一种定性与定量相结合的系统分析方法,该方法对于量化评价指标,选择最优方案提供了依据,并得到了广泛的应用。然而, AHP存在如下方面的缺陷:检验判断矩阵是否一致非常困难,且检验判断矩阵是否具有一致性的标准CR < 0. 1缺乏科学依据;判断矩阵的一致性与人类思维的一致性有显著差异。为此,本文结合模糊数学理论,首先介绍了模糊层次分析法(Fuzzy - AHP) FAHP ,然后用FAHP对公共场所安全性指标权重进行了处理。 1. 1 模糊一致矩阵及有关概念[4 ,5 ] 1. 1. 1 定义1. 1 设矩阵R = ( rij) n×n ,若满足: 0 ≤( rij) ≤ 1 , ( i = 1 ,2 , ……n , j = 1 ,2 , ……n),则称R 为模糊矩阵 1. 1. 2 定义1. 2 若模糊矩阵R = ( rij) n×n ,若满足: Πi , j , k 有rij= rik - rij + 0. 5 ,则称模糊矩阵R 为模糊一致矩阵。 1. 1. 3 定理1. 1 设模糊矩阵R = ( rij) n×n是模糊一致矩阵,则有 (1) Πi ( i = 1 ,2 , …n) ,则rij = 0. 5 ; (2) Πi , j ( i = 1 ,2 , …n , j = 1 ,2 , …n) ,有rij + rji= 1 ; (3) R 的第i 行和第i 列元素之和为n ; (4)从R 中划掉任一行及其对应列所得的矩阵仍然是模糊一致矩阵; (5) R 满足中分传递性,即当λ≥0. 5 时,若rij≥λ, rjk ≥λ,则rij ≥λ;当λ≤0. 5 时,若rij ≤λ, rjk ≤λ,则rij ≤λ。(证明见文献1) 。 1. 1. 4 定理1. 2 模糊矩阵R = ( rij) n×n是模糊一致矩阵的充要条件是任意指定行和其余各行对应元素之差是一个常数。 1. 1. 5 定理1. 3 如果对模糊互补矩阵 F = ( f ij) n×n按行求和,记为ri = 6nk = 1f ik ( i = 1 ,2 , …, n) ,并施之如下数学变换:rij =ri - rj2 m + 0. 5 (1),则由此建立的矩阵是模糊一致的。 1. 2 模糊一致判断矩阵的建立 模糊一致判断矩阵的建立R 表是针对上一层某元素,本层次与之有关元素之间相对重要性的比较,假定上一层次元素T 同下一层次元素a1 , a2 ,…, an 有关系,则模糊一致判断矩阵可表示为: rij的实际意义是:元素ai 和元素aj 相对于元素T 进行比较时, ai 和aj 具有模糊关系“…比…重要得多”的隶属度,表1采用0. 1~0. 9 数量标度来说明其模糊关系。

层次分析法

层次分析法简介 层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。尤其适合于对决策结果难于直接准确计量的场合。 在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升学志愿的问题等等。在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游地的景色、景点的居住条件和饮食状况以及交通状况等等。这些因素是相互制约、相互影响的。我们将这样的复杂系统称为一个决策系统。这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。层次分析法是解决这类问题的行之有效的方法。层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析、决策提供定量的依据。 层次分析法定义 所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法,称为层次分析法。 层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。层次分析法的优点 运用层次分析法有很多优点,其中最重要的一点就是简单明了。层次分析法不仅适用于存在不确定性和主观信息的情况,还允许以合乎逻辑的方式运用经验、洞察力和直觉。也许层次分析法最大的优点是提出了层次本身,它使得买方能够认真地考虑和衡量指标的相对重要性。 层次分析法的基本步骤 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。

变异系数_层次分析_各种权重求解法

二、权重的确定方法 在统计理论和实践中,权重是表明各个评价指标(或者评价项目)重要性的权数,表示各个评价指标在总体中所起的不同作用。权重有不同的种类,各种类别的权重有着不同的数学特点和经济含义,一般有以下几种权重。 按照权重的表现形式的不同,可分为绝对数权重和相对数权重。相对数权重也称比重权数,能更加直观地反映权重在评价中的作用。 按照权重的形成方式划分,可分为人工权重和自然权重。自然权重是由于变换统计资料的表现形式和统计指标的合成方式而得到的权重,也称为客观权重。人工权重是根据研究目的和评价指标的内涵状况,主观地分析、判断来确定的反映各个指标重要程度的权数,也称为主观权重。 按照权重形成的数量特点的不同划分,可分为定性赋权和定量赋权。如果在统计综合评价时,采取定性赋权和定量赋权的方法相结合,获得的效果更好。 按照权重与待评价的各个指标之间相关程度划分,可分为独立权重和相关权重。 独立权重是指评价指标的权重与该指标数值的大小无关,在综合评价中较多地使用独立权重,以此权重建立的综合评价模型称为“定权综合”模型。 相关权重是指评价指标的权重与该指标的数值具有函数关系,例如,当某一评价的指标数值达到一定水平时,该指标的重要性相应的减弱;或者当某一评价指标的数值达到另一定水平时,该指标的重要性相应地增加。相关权重适用于评价指标的重要性随着指标取值的不同而发生变化的条件下,基于相关权重建立的综合评价模型被称为“变权模型”。比如评估环境质量多采用“变权综合”模型。 确定权重的方法较多,这里介绍统计平均法、变异系数法和层次分析法,这些也是实际工作种常用的方法。 (一) 统计平均法 统计平均数法(Statistical average method)是根据所选择的各位专家对各项评价指标所赋予的相对重要性系数分别求其算术平均值,计算出的平均数作为各项指标的权重。其基本步骤是: 第一步,确定专家。一般选择本行业或本领域中既有实际工作经验、又有扎实的理论基础、并公平公正道德高尚的专家; 第二步,专家初评。将待定权数的指标提交给各位专家,并请专家在不受外界干扰的前提下独立的给出各项指标的权数值; 第三步,回收专家意见。将各位专家的数据收回,并计算各项指标的权数均值和标准差;

层次分析法的计算步骤

8.3.2 层次分析法的计算步骤 一、建立层次结构模型 运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,把问题条理化、层次化,构造层次分析的结构模型。这些层次大体上可分为3类 1、最高层:在这一层次中只有一个元素,一般是分析问题的预定目标或理想结果,因此又称目标层; 2、中间层:这一层次包括了为实现目标所涉及的中间环节,它可由若干个层次组成,包括所需要考虑的准则,子准则,因此又称为准则层; 3、最底层:表示为实现目标可供选择的各种措施、决策、方案等,因此又称为措施层或方案层。 层次分析结构中各项称为此结构模型中的元素,这里要注意,层次之间的支配关系不一定是完全的,即可以有元素(非底层元素)并不支配下一层次的所有元素而只支配其中部分元素。这种自上而下的支配关系所形成的层次结构,我们称之为递阶层次结构。 递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,一般可不受限制。为了避免由于支配的元素过多而给两两比较判断带来困难,每层次中各元素所支配的元素一般地不要超过9个,若多于9个时,可将该层次再划分为若干子层。 例如,大学毕业的选择问题,毕业生需要从收入、社会地位及发展机会方面考虑是否留校工作、读研究生、到某公司或当公务员,这些关系可以将其划分为如图8.1所示的层次结构模型。 图8.1 再如,国家综合实力比较的层次结构模型如图6 .2: 图6 .2 图中,最高层表示解决问题的目的,即应用AHP所要达到的目标;中间层表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等;最低层表示解决问题的措施或政策(即方案)。 然后,用连线表明上一层因素与下一层的联系。如果某个因素与下一层所有因素均有联系,那么称这个因素与下一层存在完全层次关系。有时存在不完全层次关系,即某个因素只与下一层次的部分因素有联系。层次之间可以建立子层次。子层次从属于主层次的某个因素。它的因素与下一层次的因素有联系,但不形成独立层次,层次结构模型往往有结构模型表示。 二、构造判断矩阵 任何系统分析都以一定的信息为基础。AHP的信息基础主要是人们对每一层次各因素的相对重要性给出的判断,这些判断用数值表示出来,写成矩阵形式就是判断矩阵。判断矩阵是AHP工作的出发点,构造判断矩阵是AHP的关键一步。 当上、下层之间关系被确定之后,需确定与上层某元素(目标A或某个准则Z)相联系的下层各元素在上层元素Z之中所占的比重。 假定A层中因素Ak与下一层次中因素B1,B2,…,Bn有联系,则我们构造的判断矩阵如表8.16所示。 表8.16 判断距阵 Ak B1 B2 …Bn

评价指标体系构建原则及综合评价方法[精品文档]

评价指标体系构建原则及综合评价方法设置评价指标体系时一般要遵循以下原则: (1)区域性原则 衡量一个研究对象的运行情况,要从特定的区域出发因地制宜、发挥优势,评价指标要具有针对性。 (2)动态性原则 研究对象是一个动态的过程,指标的选取不仅要能够静态的反映考核对象的发展现状,还要动态的考察其发展潜力。选取的指标要能够具有动态性,可以衡量同一指标在不同时段的变动情况,并且要求所选指标在较长的时间具有实际意义。 (3)可量化原则 数据的真实性和可靠性是进行监测的前提条件和重要保障,需要大量的统计数据作为支持。选取的指标应该具有可量化的特点,在保证指标有较高反映考核对象的前提下,能够直接查到或者通过计算间接得到指标数据,以保证评价的可操作性,同时数据来源要具有权威性,这样能保证正确评估研究对象。(4)层次性原则 一级指标同时分别设立多个具体的子指标。在众多指标中,把联系密切的指标归为一类,构成指标群,形成不同的指标层,有利于全面清晰的反映研究对象。 综合评价方法的选取: 随着计算机技术飞速发展和普遍应用,用于定量评价多指标问题的多指标

综合评价法被广泛应用到经济、生活的各个方面,特别是SAS 、SPSS 等统计软件的使用更加提高综合评价法的实用性。目前用于分析多指标体系的综合评价方法主要有模糊综合评价法、灰色综合评价法、数据包络分析法(DEA 法)、层次分析法、主成分分析法以及因子分析法以等多种方法,不同方法的评价结果都是依据指数或分值对参评对象的综合状况进行排序评价。 在综合评价过程中,指标权重的确定十分重要。对指标赋值主要有主观赋值和客观赋值,也有将主观、客观赋值法结合起来的。对于指标数量比较大时,采用传统的主观赋值法确定指标的权重则难以全面把握众多指标,依赖主观判断会增大或降低一些指标的重要程度,导致实证的结果难以反映客观实际情况。客观赋值法如主成分分析法、变异系数法、熵值法等,权重的确定是根据各项指标的变异程度或者各指标之间的相互关系。具体采用哪一种方法需要根据所构建指标体系的特点以及实证的目的来确定。 综合评价方法的选取要依据研究对象的特点而定,采用客观赋权法的主成分分析能避免主观因素的影响,且提取主成分也能减少工作量。以下对常用的层次分析和主成分分析两种综合评价方法做简单介绍。 (1)层次分析法 层次分析法(The Analytic Hierarchy Process )简记AHP ,是美国运筹学家T.L.Satty 等人提出的一种定量和定性分析相结合的多准则决策方法,广泛应用于分析复杂的社会、经济以及科学管理领域的问题。其基本原理是通过构造层次分析结构,排列组合得出优劣次序来为决策者提供依据。具体步骤如下:首先构建包括目标层、准则层和指标层三个层次的层次分析结构模型,反映系统各因素之间的关系。其次是构造判断矩阵,将各层因素进行两两比较,对于各 1.0<= RI CI CR

指标选取和分析方法

一、国际贸易(International Trade) 国际贸易亦称“世界贸易”,泛指国际间的商品和劳务(或货物、知识和服务)的交换。它由各国(地区)的对外贸易构成,是世界各国对外贸易的总和。国际贸易在奴隶社会和封建社会就已发生,并随生产的发展而逐渐扩大。到资本主义社会,其规模空前扩大,具有世界性。 二、对外贸易(Foreign Trade) 对外贸易亦称“国外贸易”或“进出口贸易”,是指一个国家(地区)与另一个国家(地区)之间的商品和劳务的交换。这种贸易由进口和出口两个部分组成。对运进商品或劳务的国家(地区)来说,就是进口;对运出商品或劳务的国家(地区)来说,就是出口。这在奴隶社会和封建社会就开始产生和发展,到资本主义社会,发展更加迅速。其性质和作用由不同的社会制度所决定。 国贸与外贸的区别 国贸:国际贸易,外贸:对外贸易。国际贸易是从整个世界的范围来说,对外贸易是从某个国家的角度来说。但是在国内,说到这两个词,给人的感觉概念上差不多,因为我们都是从我们中国的角度来说的。楼上的朋友有一点说得不对,出口中国的产品到国外去只是国贸或外贸的一小部分内容,国贸或外贸不止包括产品的进出口(不仅是出口而已)(或叫有形贸易),还包括无形贸易,比如技术进出口、服务贸易等。1.国际贸易指标主要用来反映我国贸易的开放发展程度,一般是使用具有高度代表性的贸易依存度指标,即开放度(OPE)。本文还选取了制成品出口量占国际贸易出口总额的比重,同时作为国际贸易发展水平的指标,用EX 来代表。金融发展水平指标通常采用金融相关率,即金融资产与GDP的比率,反映金融中介的总体规模。由于我国的证券市场成立时间较晚,发展程度和开放程度都还处于初级阶段,因此本文就银行体系为基础,选取货币和准货币的数量作为金融资产代表,其与GDP的比率用FD 来代表,即金融深度(Financial Depth)。我们试图寻找FD 与OPE、EX 之间的关系,观察OPE 与FD,EX 与FD 的散点图后,用最小二乘估计法对上述变量分别进行回归。 (二)实证分析 1.变量相关性分析 为了清楚地观察各变量间的相关关系, 运用 Eviews5.0 对各变量进行相关性分析 (1)融资成本对国际贸易的影响 (2)货币的流动性对国际贸易的影响 (3)汇率对国际贸易的影响 (4)技术创新对贸易的影响 一) 指标选取 由于研究的目的在于揭示我国金融发展对国际贸易的影响, 选用的指标包括金融发展与国际贸易两个方面。Goldsmith ( 1969) 提出用金融相关率( Financial Interrelation Ratio, FIR) 即

层次分析法计算权重在matlab中的实现

信息系统分析与设计作业 层次分析法确定绩效评价权重在matlab中的实现 小组成员:孙高茹、王靖、李春梅、郭荣1 程序简要概述 编写程序一步实现评价指标特征值lam、特征向量w以及一致性比率CR的求解。 具体的操作步骤是:首先构造评价指标,用专家评定法对指标两两打分,构建比较矩阵,继而运用编写程序实现层次分析法在MATLAB中的应用。 通过编写MATLAB程序一步实现问题求解,可以简化权重计算方法与步骤,减少工作量,从而提高人力资源管理中绩效考核的科学化电算化。 2 程序在matlab中实现的具体步骤 function [w,lam,CR] = ccfx(A) %A为成对比较矩阵,返回值w为近似特征向量 % lam为近似最大特征值λmax,CR为一致性比率 n=length(A(:,1)); a=sum(A); B=A %用B代替A做计算 for j=1:n %将A的列向量归一化 B(:,j)=B(:,j)./a(j); end s=B(:,1); for j=2:n s=s+B(:,j); end c=sum(s);%计算近似最大特征值λmax w=s./c; d=A*w lam=1/n*sum((d./w)); CI=(lam-n)/(n-1);%一致性指标 RI=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45,1.49,1.51];%RI为随机一致

性指标 CR=CI/RI(n);%求一致性比率 if CR>0.1 disp('没有通过一致性检验'); else disp('通过一致性检验'); end end 3 案例应用 我们拟构建公司员工绩效评价分析权重,完整操作步骤如下: 3.1构建的评价指标体系 我们将影响员工绩效评定的指标因素分为:打卡、业绩、创新、态度与品德。 3.2专家打分,构建两两比较矩阵 A = 1.0000 0.5000 3.0000 4.0000 2.0000 1.0000 5.0000 3.0000 0.3333 0.2000 1.0000 2.0000 0.2500 0.3333 0.5000 1.0000 3.3在MATLAB中运用编写好的程序实现 直接在MATLAB命令窗口中输入 [w,lam,CR]=ccfx(A) 继而直接得出 d = 1.3035 2.0000 0.5145 0.3926 w = 0.3102 0.4691 0.1242 0.0966 lam =4.1687

层次分析法可行性研究

层次分析法可行性研究 层次分析法逻辑严密,可以很好地克服在决策过程中主观因素的影响,应用层次分析法,可以计算各个因素对决策结果的权重,反映各个因素的重要程度,优化方案的选择。分析方法自下到上逐步分析,从单排序到总权重,是具有较高精度的判断方法。但是层次分析法只能是在已有的方案中择优选择,不能提出新的策略,这是在应用中的局限性。 可以看出,层次分析法具有很多优点,如:通过分析复杂问题中的不同单之间相互关系,使之层次化、条理化;将专家对每层因素相对重要程度的主观评价通过两两比较定量化,然后利用数学方法权值来反映全部因素的相对重要程度;通过所有层次之间的总排序,确定所有方案的排序;利用组合权向量分配目标可靠性。但是它的缺点也是非常明显的,由于过于依赖专家构造两两比较矩阵,同时矩阵运算非常复杂,导致此方法效率较低,同时由于完全依赖主观评价,没有利用现有的客观数据,使得分配结果主观性过强。 1.系统性的分析方法 层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。 2.简洁实用的决策方法 这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。

AHP层次分析法计算原理

AHP层次分析法计算原理 一般地,可以选用三层结构对发展战略作出整体评价。 第一层为目标层,它是企业要实现的战略目标,第二层是评价因素层,它包括战略目标实现进行评价的所考虑的各种因素以及各因素之间的相对比值,并求出各要素实现总体目标所占的权重。第三层是指标层,即个评价因素需考虑的具体指标。 首先,根据总目标确定各要素之间的相对重要关系,构建两两比较判断矩阵,其基本形式为: 其中,a j表示对于C来说,A对A相对重要性的数值体现,通常a j可取1、2、3……、9以及它们的倒数作为标度。其中, 1――表示两个元素相比,具有同样的重要性; 3――表示两个元素相比,一个元素比另一个元素稍微重要; 5――表示两个元素相比,一个元素比另一个元素明显重要; 7――表示两个元素相比,一个元素比另一个元素强烈重要; 9――表示两个元素相比,一个元素比另一个元素极端重要。 2、4、6、8为上述相邻判断的中值。 矩阵中的元素具有以下特征:①a j >0,②a j二丄,③a H=1o a ji 然后,根据判断矩阵计算相对于战略目标各评价元素的相对重要 性次序的权重,首先计算判断矩阵A的最大特征根入max和其对应的经归一化后的特征向量W=[W i, W2 , W3, , W n ]T,计算的公式为:(8 - 1)

归一化后的特征向量W=[W i, W2, W3, , W n]T即为各评价因素对于总目标的权重。 (8 - 2)W i - n W i i J 其 1 n 中,W = a j (8 - 3) 入max为判断矩阵A的最大特征根,计算公式为: (8 - 4) 其中,(AW)i表示AW的第i个元素。 最后,对矩阵A进行一致性检验。当a q二空时,称判断矩阵为a jk 致性矩阵。判断一致性的指标为C.R.的取值。 C.R.嚅 (8 - 5) (8 - 6) R丄为随机一致性指标,其值是通过多次重复进行随机判断矩阵特征值的计算后得到的。随机一致性指标R丄的取值见表8-2。 表8-2随机一致性指标R.I?的取值表 维数12 345 6 7 8 9 10 J (AW)i i吕nw

评价指标体系构建原则及综合评价方法

评价指标体系构建原则及综合评价方法

评价指标体系构建原则及综合评价方法设置评价指标体系时一般要遵循以下原则: (1)区域性原则 衡量一个研究对象的运行情况,要从特定的区域出发因地制宜、发挥优势,评价指标要具有针对性。 (2)动态性原则 研究对象是一个动态的过程,指标的选取不仅要能够静态的反映考核对象的发展现状,还要动态的考察其发展潜力。选取的指标要能够具有动态性,可以衡量同一指标在不同时段的变动情况,并且要求所选指标在较长的时间具有实际意义。 (3)可量化原则 数据的真实性和可靠性是进行监测的前提条件和重要保障,需要大量的统计数据作为支持。选取的指标应该具有可量化的特点,在保证指标有较高反映考核对象的前提下,能够直接查到或者通过计算间接得到指标数据,以保证评价的可操作性,同时数据来源要具有权威性,这样能保证正确评估研究对象。 (4)层次性原则 一级指标同时分别设立多个具体的子指标。在众多指标中,把联系密切的指标归为一类,构成指标群,形成不同的指标层,有利于全面清晰的反映研究对象。综合评价方法的选取: 随着计算机技术飞速发展和普遍应用,用于定量评价多指标问题的多指标综合评价法被广泛应用到经济、生活的各个方面,特别是SAS、SPSS等统计软件的使用更加提高综合评价法的实用性。目前用于分析多指标体系的综合评价方法

各因素对上层某个因素的影响程度,由于专家确定重要性具有一定的主观性,要对构建的判别矩阵进行一致性检验,即使得 。若检验通过,则按照总排序权量表示的结果进行权重赋值。 (2)主成分分析法 主成分分析法(Principal components )能够通过“降维”作用把k X X X X ??、、、321等众多指标综合成比较重要的几个指标,消除指标间的相关 性。评价的基本思想就是将多个指标信息综合成一个综合指标值进行评价,但并不是指标的简单组合,而是将目标对象的不同侧面,层次以及不同量纲的统计指标转换为相对评价值。当指标体系涉及大量指标时,若只选用研究对象的个别指标,尽管方便但却损失了其他信息;若对研究对象的每一个指标都做出评价,这些评价结果也只是独立的,且各指标间做出的评价有一定的信息重叠。选用主成分分析法可以解决这一问题。 主成分分析的数学模型:按照累计方差贡献率大于等于85%来提取k 个主成分(k

层次分析法与模糊综合评价的区别

层次分析法与模糊综合判别的区别与联系 1、层次分析法 [ 参考文献:吋义成, 柯丽华, 黄德育. 系统综合评价技术及其应用[M]. 北京: 冶金工业出版社,2006] 人们在日常生活中经常要从一堆同样大小的物品中挑选出最重要的物品,如重量最大的物品,即至少要确定各物品的相对重量。这时,经验和常识告诉我们,可以利用两两比较的方法来达到目的。 若在没有称量仪器的条件下对一组物体的重量进行估计,则可以通过爱对比较这组物体相对重量的方法,得出每对物体相对重量比的判断,从而形成比较判断矩阵,再通过求解判断矩阵的最大特征根和它所对应的特征向量问题,就能计算出这组物体的相对重量。 将此方法应用到复杂的社会、经济和科学管理等领域中,就能确定各种方案、措施、政策等 相对于总目标的重要性排序情况,以供领导者决策。 一般的层次分析法模型由图5-1 所示,分为目标层、准则层、指标层、方案层组成。需要注意几点: (1)层次分析法的评价结构并非是上述部分一成不变的,其中的当指标层因素较少时准则层可以省去(图5-2 ),当某一准则对应的指标层元素过多时可以将其指标层细分为“子准则层和指标层”(图5-4 )。由于层次分析法是利用两两比较完成的,为了便于人的比较与判别,每层的元素个数在3~7 之间为佳,超过7 以后增加了比较判断的难度,因此当元素过多时,可以将其分类后分成两层或多层来判别。 (2)准则层与指标层之间的关系可以对比一下图5-1 和图5-4 ,即每个准则可能有独 用的指标体系,也可能是各准则之间共用某几个指标。 (3)层次分析法的特点是基于某个目标,对多个待评价方案进行评价,从而得到方案的重要性排序。具体到某个问题,其并无相应的数据。而模糊综合判别有相应的基础数据。两者可以结合一起用,比如常用的是模糊综合评判过程中,权重可以由层次分析法计算。 层次分析法的骤如下: 1)在作者建立评价模型后,根据经验对每层里的各个元素建立重要性判别矩阵,从判 别矩阵中可以得到某一层中各个指标的归一化权重(表5-1中的W B,W C1,W C2,W C3,W C4)。(表5-1和5-2 的数据为图5-1 模型的) 2)由层与层之间权重的传递可以得到最低层(具体指标层)的综合权重。如图5-1 所示的图中有得到各个C ij的综合权重W ij(表5-2第2列)。 3)最后,在指标层与方案层之间建立判别矩阵,针对每一个指标C ij 都需要建立一个各 方案A i的比较矩阵,判别A针对C j的重要性w A i (表5-2的每一行)。最后将指标C ij的综合权重W ij与W Ai进行乘法求和,从而得到方案A的最终综合权重刀(W ij心Ai),即为续表5-2的最后一行。

模糊层次分析法的Matlab实现

一、引言 层析分析法是将定量与定性相结合的多目标决策法,是一种使用频率很高的方法,在经济管理、城市规划等许多领域得到了广泛应用。由于其结果受主观思维的影响较大,许多科研工作者对其进行了深入的研究,将模糊理论与层次分析法相结合,提出了模糊层次分析法。为克服层次分析法中判断矩阵的一致性与人类思维的一致性存在的显著差异,文献[1-2]引入了模糊一致矩阵。为解决解的精度及收敛问题,文献[3-4]引入幂法来求排序向量。运用模糊层次分析法研究实际问题时,常采用迭代法来得到精度更高的排序向量,这就要求选择合适的初始值并通过大量的计算,为此,文中利用三种方法计算了初始排序向量,并给出了算法的Matlab程序,最后通过实例说明。 二、模糊层次分析法 为解决AHP种所存在的问题,模糊层次分析法引入模糊一致矩阵,无需再进行一致性检验,同时使用幂法来计算排序向量,可以减少迭代齿数,提高收敛速度,满足计算精度的要求.具体步骤: 1.构造优先关系矩阵 采用0.1~0.9标度[2],建立优先判断矩阵 2.将优先关系矩阵转化为模糊一致矩阵 3.计算排序向量 (1)和行归一法: (2)方根法: (3)利用排序法: (4)利用幂法[5-6]求精度更高的排序向量: 否则,继续迭代。 三、模糊层次分析法的程序实现 给出模糊层次分析法的Matlab程序。 clear; clc; E=input('输入计算精度e:') Max=input('输入最大迭代次数Max:')

F=input('输入优先关系矩阵F:'); %计算模糊一致矩阵 N=size(F); r=sum(F'); for i=1:N(1) for j=1:N(2) R(i,j)=(r(i)-r(j))/(2*N(1))+0.5; end end E=R./R'; % 计算初始向量---------- % W=sum(R')./sum(sum(R)); % 和行归一法 %--------------------------------------------------------- for i=1:N(1) S(i)=R(i,1); for j=2:N(2) S(i)=S(i)*R(i,j); end end S=S^(1/N(1)); W = S./sum(S);%方根法%-------------------------------------------------------- % a=input('参数a=?'); %W=sum(R')/(N(1)*a)-1/(2*a)+1/N(1); %排序法 % 利用幂法计算排序向量----V(:,1)=W'/max(abs(W)); %归一化 for i=1:Max V(:,i+1)=E*V(:,i); V(:,i+1)=V(:,i+1)/max(abs(V(:,i+1))); if max(abs(V(:,i+1)-V(:,i)))k=i; A=V(:,i+1)./sum(V(:,i+1)); break Else End End 四、计算实例

相关文档
最新文档