无线功率传输技术

无线功率传输技术

Wireless Power Transmission

Technology

在不久的将来,无线充电将大规模的进入商用时代;而我们的生活方式也将随发生改变,高效、快捷、方便的无线充电时代即将到来。

注:本文档由中北大学徐方良总结整理,仅供学习交流;疏漏和不足之处还望批评指正。

无线功率传输的四种主要方式

1 电磁感应式无线功率传输

1.1 电磁感应式原理

利用电磁感应原理,类似于变压器;在接收和发射端各有一个线圈,电源连接发射端并通交变电流,发射端线圈周围便产生了交变磁场;此时若接收线圈位于此交变磁场中便会产生感应电动势,进而给用电设备供电。电磁感应原理如下图所示。

1.2 电磁感应式研究发展现状

电磁感应式无线充电技术是目前研究和发展最成熟的无线充电技术,并且无线充电联盟(WPC)已经完成了传输功率小于的行业标准也正在制定中,目前多家公司也正在面向汽车行业研究开发更大功率的电磁感应式无线充电技术。目前成熟应用于商业产品的多为小功率产品,如图1.2

实现商用的多是小功率产品,在120W的大功率用电设备中的使用还处于研发和样机试验阶段。图给出的是少量实现商用或者是还处于试验阶段的样机。

1.3 电磁感应式无线充电技术的优劣

优势:a) 短距离传输效率高;

b) 操作简易而且规模容易控制;

c)技术简单。

缺陷:a) 送电距离比较短在数毫米到十几厘米之间(电磁感应式的最大缺点);

b) 输电过程中对原副线圈同轴度要求较高,否则输电效率会急剧下降;

c) 需要考虑散热问题。

如图2.1所示,送电线圈和受电线圈是两个相同的线圈,在送电线圈通上与线圈固有频率同频的交流电时,受电线圈也将感应产生相同的频率交流电流(两个在磁场中共振的线圈在谐振状态下课进行能量交换)。

定量研究了磁共振耦合理论,并且以米之外的一盏60W的灯。

耦合模理论

磁共振式无线功率传输实验原理简图

如图所示,连接A的为一射频源,电源接通后在圆环上将产生一高频交变电流,从而在A附近存在交变的磁场。因而在距离内将产生感应电动势,在线圈内将

I(t)= 其电流I随S的变化曲线如图2所示。当源线圈电流变化频率等于线圈的固有频率时,将引起设备线圈D的共振(S、D为相同且同轴放置的线圈);设备线圈的内的交变电流将会在其附近产生一个交变的磁场,

的磁通量发生改变,从而产生了感应电动势,进而驱动负载(

图2.4所示的为一辆运用磁共振原理进行充电的试运营电车。

运用磁共振式无线功率传输的新型电车

环境的影响也相对较小;

c) 传输效率(75%以下)相对适中,在将来可以通过技术将传输效率进一步提高;

d) 两共振线圈并不一定要求同轴布置,对线圈的位置要求没有磁共振那样高。

技术难点:小型、高效率化比较难,现在的技术能力大约是直径半米的线圈,能在2m左右的距离提供60w的功率。

2.4 电磁感应式与磁共振式无线功率传输对比

从图中可以看出电磁感应式无线功率传输的两线圈距离较近,并且要求两线圈同轴布置;而磁共振式两线圈距离稍远并且不要求两共振线圈同轴布置。

3 电场感应式

3.1 电场耦合式无线功率传输原理

电场耦合方式的无线供电技术与“电磁感应方式”及“磁场共振方式”不同,电场耦合方式利用通过沿垂直方向耦合两组非对称偶极子而产生的感应电场来传输电力。

其基本原理为:

3.2 电产耦合式无线功率传输研究现状

村田制作所的电场耦合方式利用通过沿垂直方向耦合两组非对称偶极子而产生的感应电场来传输电力。村田制作所的方法的特点在于非对称偶极子,需要两组电极。村田制作所将其称为active electrode passive electrode主要起着接地作用。系统通过组合这些电极来传输电力。

如图3.2所示首先由放大器略微提高电

压,然后通过升压电路一举提高至

3.3 电场耦合式无线功率传输的优势和技术难点

优势:a)电极薄,因而易嵌入其他产品;

b) 充电时可实现位置自由

子而产生的感应电场来传输电力,具有抗水平错位能力较强的特点。);

c) 电极部的温度不会上升。因此不仅能够提供便利性,而且还可降低系统成。

技术难点:电场耦合方式今后将被逐渐嵌入机器中。届时技术上将有三个观点变得尤为重要:①无线干扰对策、②安全对策、③向多台机器供电。另外,在将其小型化过程中变压器的小型化是技术难点。

4.2 无线电波式无线功率传输的研究现状

Powercast公司研制出可以将无线电波转化成直流电的接收装置,可在约1米范围内为不同电子装置的电池充电。

日本的龙谷大学发布了一项技术成果:移动式无线充电系统,当时就是使用的频率

是用实车进行的,而是用的一个警车模型,通过微波送电,点亮了行驶中的模型警车的警灯,如图

4.3 无线电波式无线功率传输的优劣

优势:a)可实现远距离小功率无线功率传输;

b)可随时随地充电。

缺陷:a)转换效率低;

b)充电时间长(由于传输功率小)。

5 无线功率传输总结与展望

5.1 总结

一般来说,利用电磁感应原理的无线供电技术最具现实性,并且现在在电动汽车上有实际应用;电磁感应式非接触充电系统存在以下三方面的问题:(1)送电距离比较短,

磁场共振方式,则是现在最被看好、被认为是将来最有希望广泛应用于电动汽车的一种方式;磁场共振式供电,目前技术上的难点是,小型、高效率化比较难。现在的技术能力大约是直径半米的线圈,能在的电力。

电磁波送电方式,现在则提出了利用这种技术的“太空太阳能发电技术”,可以从根本上解决电力问题。

设计最难的部分在于安全。因为无线充电系统与电磁炉一样会发射电磁波能量,有两大问题,一是长期发射,长时间下会造成能源浪费。二是当充电系统上放的金属异物,电磁波对其加热,轻则烧毁装置,重则发生火灾。所以需要有“受电端目标物辨识”,当正确的目标放置时才送电。侦测装置的方法比如:()磁力激活:受电端装磁铁,发射

)感应线圈上的资料传送,也是认为

原理一样,电力传送中识别码一起传送和验证。但解决系统噪声和

无线供电,使得电动汽车可以提供这么一种可能:一辆电动汽车从出厂到它报废为止,终生不用你去理会电力补充问题。电动汽车,在太阳能电池技术、无线供电技术、以及自动驾驶技术的支持下,完全可以颠覆现在

N年以后,在高速公路上,车在自动行驶,而汽车、电脑、手机需要的所有电力都来自从路面下铺装的供电系统、或者来自汽车上的接收装置接收的电磁波。随着电动汽车的发展无线充电技术必定有着广阔的利用空间。

浅谈无线电力传输

浅谈无线电力传输 张业邹代宇陈昊 内容摘要:无线电力传输技术是一项新兴的科技,这项技术未来将很大程度的造福人类。本文将对无线电力传输技术的历史,基本原理,研究现状以及未来前景进行介绍,让人们更好地认识这门新兴技术。 关键词:无线电力传输,电磁感应,耦合,共振,无线充电,改变世界。 一、无线电能传输的发展历史 1820年:安培,安培定理表明电流可以产生磁场。1831年:法拉第,法拉第电磁感应定律是电磁学的一个重要的基本规律。1864年:麦克斯韦建立了统一的电磁场方程,用数学的方法描述电磁辐射。1864年:赫兹证实了电磁辐射的存在。赫兹产生电磁波的设备是VHF和UHF 波段的放电发射机。1891年:特斯拉(NikolaTesla)改善了赫兹的微波发射器的射频功率供应,并申请专利。1893年:特斯拉在芝加哥的哥伦比亚世界博览会展示了他的无线传输的荧光照明灯。1894年:勒布朗(Hutin&LeBlanc)相信可以感应传输电能,并申请了关于一个能传输3KHz电能的系统的美国专利。1894年:特斯拉分别在纽约的第五大道南35号的实验室和休斯敦街46号的实验室通过无线方式点亮了一个单极白炽灯,实验手段用到电力感应、无线共振感应耦合等技术。1894年:钱德拉玻(JagdishChandraBose)使用电磁波信号远距离点燃火药和

触响铃铛,表明不用电线也能传递能量。1895年:钱德拉玻无线传输信号将近一英里远的距离。1896年:特斯拉发射了约48公里(30英里)距离的信号。1897年:马可尼(GuglielmoMarconi)使用超低频无线电发射器传送6公里的摩尔斯电码信号。1897年:特斯拉申请了无线传输的专利。自此,无线电力传输技术真正走上了历史的舞台。 一、无线电能传输的基本原理 无线输电技术根据其应用场合的变化有不同的原理,技术方案也不尽相同。 1.电磁感应原理 此原理与电力系统中常用的变压器原理类似。在变压器的原边通入交变电流,副边会由于电磁感应原理感应出电动势,若副边电路连通,即可出现感应电流,其方向的确定遵从楞次定律,大小可由麦克斯韦电磁理论解出。电力系统中的电压、电流互感器也是采用了类似的原理。相对于无线输电而言,变压器的原边相当于电能发射线圈,副边相当于电能接收线圈,这样就可以实现电能从发射线圈到接收线圈的无线传输。虽然电磁感应原理在电力系统中应用的初衷并不侧重于电能的传输,而是利用能量的转化改变电压、电流的数量级,但其对无线输电确实产生了一定的启发作用, 尤其是电能的小功率、短距离传送。目前使用电磁感应传递电能的主要有电动牙刷, 以及手机、相机、MP3等小型便携式电子设备,由充电底座对其进行无线充电。电能发射线圈安装在充电底座内,接收线圈则安装在电子设备中。这种原理的无

无线能量传输技术

小组成员: 无线能量传输技术简述 摘要: 无线能量传输技术近年来得到了极大的发展,在诸多领域得到了广泛的应用。该技术不依赖于有线的传输媒介,对于有线供电部署困难的场合具有重要的意义。本文将简要介绍了无线能量传输技术的发展、传输方式、国内外的研究现状以及传输中遇到的问题。 关键词: 无线能量传输、电磁感应、电磁共振、电磁辐射 1.引言 1.1技术背景 尼古拉?特斯拉创建了交流电系统后,又基于交流电系统提出了无线能量传输的构想,为此,他搭建了特斯拉铁塔实验平台,以研究无线远距离能量传输。后由于资金匮乏最终未能如愿,但这,足以启发人们对无线能量传输的探索。 随着科学技术的发展,基于特斯拉无线能量传输的构想,很多欧美学者展开研究工作,20世纪60年代,提出了利用微波将太阳能从卫星输送到地面的想法;70年代,利用电磁感应原理的电动牙刷研制成功;90年代,新西兰奥克兰大学成立研究中心,主要研究滑动式无线能量传输系统并获得重大进展,21世纪初,美国麻省理工学院研究人员提出了强耦合电磁共振原理,并实验成功引起世界注目;随后几年,诸多国家掀起了无线能量传输技术的研究热潮。 传统的电能传输方式存在很多不足之处,电源线、电源插头种类各异,不能

通用;插座也有形式和数量的限制;电线插头又存在老化损坏的现象,对人们的生命财产安全造成威胁,特别是在一些大功率应用的工业场合,如井下作业、石油和采炼等,接触中即使再微弱的火花都会造成难以估量的损失。而在这些场合,如果使用无线供电方式,就能消除潜在的安全隐患,因为无线能量传输技术能够在非接触的情况下将电能输送过去,这样得以保证系统安全、可靠以及灵活的运作。 1.2技术应用 无线输电技术应用领域非常广泛,概括起来有以下几个方面: ①医学:把设备放置于体外,对体内设备进行无接触能量传输和控制; ②地下作业:用于海底探测、化石能源采集等活动; ③电池充电:手机、笔记本电脑,太阳能电池板等用电设备的电池充电; ④机器驱动:对区域内用电设备直接供电,如电灯、机器人等。 1.3能量传输方式 无线能量传输主要通过三种方式: ①电磁感应式(InductivelyCoupledPowerTransfer),现已比较成熟,它是由原边线圈通电产生磁场,而副边线圈必须处于这一磁场之中才能有效传输能量,因此传输距离相对较近(数十毫米之内),属于近场无线能量传输技术,但电能传输的效率却很高,能够达到99%,工作频率较低,一般在几十KHz。电力传输过程中使用的变压器就是最直接的应用,变压器原副边线圈实际并未相接,通过互感耦合来实现能量的传递,这种技术要求发射端和接收端的位置保持固定,两侧线圈一旦出现位移情况,那么传输的稳定性以及效率都会骤然下降。 ②电磁共振式(MagneticResonantWirelessPowerTransfer),基于相同频率的振

无线充电技术综述

无线电能技术综述 微航磁电技术有限公司 简要:叙述了无线电能传输的概念和发展历程,着重对电磁感应式、电磁共振式和电磁辐射式三种无线电能传输进行了详细分析;电磁感应式传输距离近、效率低且需要补偿;电磁共振式是对感应式的突破。可以在几米的范围内传输中等,其研究前景较好;电磁辐射式传输距离远,功率较大,但传输较远距离时需要高效整流天线和高方向性天线,其研制难度较大。关键词:无线电能传输;电磁感应;磁谐振;微波 所谓无线电能传输(Wirelss Power Transmission——wPT)就是借助于电磁场或电磁波进行能量传递的一种技术。无线输电分为:电磁感应式、电磁共振式和电磁辐射式。电磁感应可用于低功率、近距离传输;电磁共振适于中等功率、中等距离传输;电磁辐射则可用于大功率、远距离传输。近年来,一些便携式电器如笔记本电脑、手机、音乐播放器等移动设备都需要电池和充电。电源电线频繁地拔插,既不安全,也容易磨损。一些充电器、电线、插座标准也并不完全统一,这样即造成了浪费,也形成了对环境的污染。而在特殊场合下,譬如矿井和石油开采中,传统输电方式在安全上存在隐患。孤立的岛屿、工作于山头的基站,很困难采用架设电线的传统配电方式。在上述情形下,无线输电便愈发显得重要和迫切,因而它被美国《技术评论》杂志评选为未来十大科研方向之一。在无线输电方面,我国的研究才刚刚起步,较欧美落后。在此旨在阐述当前的技术进展,分析无线输电原理,为我国在无线输电方面的深入研究提供参考。 1 无线电能传输技术的发展历程 最早产生无线输能设想的是尼古拉·特斯拉(Nikola Tesla),因而有人称之为无线电能传输之父。1890年,特斯拉就做了无线电能传输试验。特斯拉构想的无线电能传输方法是把地球作为内导体,把地球电离层作为外导体,通过放大发射机以径向电磁波振荡模式,在地球与电离层之间建立起大约8 Hz的低频共振,利用环绕地球的表面电磁波来传输能量。最终因财力不足,特斯拉的大胆构想没能实现.2 J。其后,古博(Goubau)、施瓦固(Sohweing)等人从理论上推算了自由空间波束导波可达到近100%的传输效率,并随后在反射波束导波系统上得到了验证。20世纪20年代中期,日本的H.Yagi和S.Uda发明了可用于无线电能传输的定向天线,又称为八木一宇田天线。20世纪60年代初期雷声公司(Raytheon)的布朗(w.C.Brown)做了大量的无线电能传输研究工作,从而奠定了无线电能传输的实验基础,使这一概念变成了现实J。在实验中设计了一种效率高、结构简单的半波电偶极子半导体二极管整流天线,将频率2.45GHz的微波能量转换为了直流电。1977年在实验中使用GaAs—Pt肖特基势垒二极管,用铝条构造半波电偶极子和传输线,输入微波的功率为8 W,获得了90.6%的微波——直流电整流效率。后来改用印刷薄膜,在频率2.45 GHz时效率达到了85%。自从Brown 实验获得成功以后,人们开始对无线电能传输技术产生了兴趣。1975年,在美国宇航局的支持下,开始了无线电能传输地面实验的5 a计划 ]。喷气发动机实验室和Lewis科研中心曾将30 kW的微波无线输送1.6 km,微波——直流的转换效率达83%。1991年,华盛顿ARCO电力技术公司使用频率35 GHz的毫米波,整流天线的转换效率为72%。1998年,5.8 GHz印刷电偶极子整流天线阵转换效率为82%。前苏联在无线电能传输方面也进行了大量的研究。莫斯科大学与微波公司合作,研制出了一系列无线电能传输器件,其中包括无线电能传输的关键器件——快回旋电子束波微波整流器。近几年,无线电能传输发展更是迅速。Wildcharge、Powercast、SplashPower、东京大学,相继开发出非接触式充电器。MIT在2007年6月宣布,利用电磁共振成功地点亮了一个离电源约2 m远的60 w电灯泡,这项技术被称为WiTricity。该研究小组在实验中使用了两个直径为50 cm的铜线圈,通过调整发射频率使两个线圈在10 MHz产生共振,从而成功点亮了距离电力发射端

无线电能传输(课程设计)实验报告

实验报告 1.实验原理 与无线通信技术一样摆脱有形介质的束缚,实现电能的无线传输是人类多年的一个美好追求。无线电能传输技术(Wireless Power Transfer, WPT)也称之为非接触电能传输技术( Contactless PowerTransmission, CPT),是一种借于空间无形软介质(如电场、磁场、微波等)实现将电能由电源端传递至用电设备的一种供电模式,该技术是集电磁场、电力电子、高频电子、电磁感应和耦合模理论等多学科交叉的基础研究与应用研究,是能源传输和接入的一次革命性进步。 无线电能传输技术解决了传统导线直接接触供电的缺陷,是一种有效、安全、便捷的电能传输方法,因而它被美国《技术评论》杂志评选为未来十大科研方向之一。该技术不仅在军事、航空航天、油田、矿井、水下作业、工业机器人、电动汽车、无线传感器网络、医疗器械、家用电器、RFID识别等领域具有重要的应用价值,而且对电磁理论的发展亦具有重要科学研究价值和实际意义。在中国科协成立五十周年的系列庆祝活动中,无线能量传输技术被列为“10 项引领未来的科学技术”之一。 到目前为止,根据电能传输原理,无线电能传输大致可以分为三类:感应耦合式、微波辐射式、磁耦合谐振式。作为一个新的无线电能传输技术,磁耦合谐振式是基于近场强耦合的概念,基本原理是两个具有相同谐振频率的物体之间可以实现高效的能量交换,而非谐振物体之间能量交换却很微弱。 磁耦合谐振式无线电能传输的传输尺度介于前两者之间,因此也被称之为中尺度(mid-range)能量传输技术,其尺度为几倍的接收设备尺寸(可扩展到几米到几十米)。 除了较大的传输距离,还存在以下优势:由于利用了强耦合谐振技术,可以实现较高的功率(可达到kW)和效率;系统采用磁场耦合(而非电场,电场会发生危险)和非辐射技术,使其对人体没有伤害;良好的穿透性,不受非金属障碍物的影响。因此该技术已经成为无线电能传输技术新的发展方向。

浅谈无线电能传输的发展趋势

龙源期刊网 https://www.360docs.net/doc/815763563.html, 浅谈无线电能传输的发展趋势 作者:李晨晨 来源:《科教导刊·电子版》2013年第36期 摘要文章叙述了无线电能传输的概念和发展历程,着重对电磁感应式、电磁共振式和电磁辐射式三种无线电能传输进行了分析。同时,也总结概括了无线电能传输对我国经济发展的优势以及发展前景。 关键词无线电能传输能量传输感应电能 中图分类号:TM472 文献标识码:A 1无线电能传输的概念及优势 无线电能传输(Wirelss Power Transmission——WPT)是指借助于一种特殊的设备将电源的电能转变为电磁场或电磁波等无线传播的能量,在接收端又将无线能量转变回电能进行传递的一种技术。无线输电分为:电磁感应式、电磁共振式和电磁辐射式。电磁感应可用于低功率、近距离传输;电磁共振适于中等功率、中等距离传输;电磁辐射则可用于大功率、远距离传输。 传统的直接接触式电能传输存在例如产生接触火花,影响供电的安全性和可靠性,甚至引起爆炸,造成重大事故等弊端。同时,近年来,一些便携式电器如笔记本电脑、手机、音乐播放器等移动设备都需要电池和充电。电源电线频繁地拔插,既不安全,也容易磨损,并且错综复杂的电线既限制了设备移动的灵活性,又影响了环境的美观。一些充电器、电线、插座标准也并不完全统一,这样既造成了浪费,也形成了对环境的污染。无线电能传输技术有效克服了传统导体物理接触传输方式带来的磨损、火花、不灵活等一系列缺点和不足,目前得到了广泛关注和研究。 同时随着能源问题的突出,怎样能最好地利用现有的能源,已经越来越多地引起人们的重视和关注,无线电能传输技术作为新型的电能传输技术,是实现能源高效利用的重要途径之一。 2无线电能传输技术分类 到目前为止,根据电能传输原理,无线电能传输可以分为以下三类:(1)电磁感应式,通过一个线圈给另外一个线圈供电,虽然具有传输效率高的优点,但传输距离被限制在厘米级范围内,效率受位置偏差的影响较大,还存在当异物进入时会发热和高频波泄露等问题。这种非接触式充电技术在许多便携式终端里应用日益广泛。(2)谐振耦合式,发射和接收装置通过磁场或电场建立的传输通道相互耦合,在谐振频率下传输效率达到最大,适合用于中等距离的无线电能传输;谐振技术在电子领域应用广泛,但是,在供电技术中应用的不是电磁波或者

无线电能传输系统设计

本科毕业论文(设计) 题目中短距离小功率 无线电力传输系统设计 指导教师张军职称讲师 学生姓名陈昂学号20091526102 专业通信工程(无线移动通信方向) 班级2009级无线移动通信1班 院(系)电子信息工程学院 完成时间2013年4月20日

中短距离小功率无线电力传输系统设计 摘要 移动互联网的井喷式繁荣,移动互联设备(MID)层出不穷的涌现,电池技术瓶颈的限制已难以满足人们的用电需求;物联网的深入发展,越来越广泛的网络节点能量供给等都要求更为先进的无线能量传输技术的发展,尤其是中短距离中小功率的无线电能传输的发展。两者共同昭示着无线电能传输光明的未来。 本文对无线电能传输(WPT)做出了简要但系统的介绍,并对其中的微波输能技术(MPT)做出了深入的探讨,在此基础上建立起了中短距离中小功率无线电力传输系统模型,即为MPT-MDSP式系统的模型。这种系统是由发射和接收两部分组成,发射部分用声表面波射频发生电路将DC转变成RF并通过特制天线辐射出去,接收部分再通过接收天线接收RF能量,用整流电路将RF转变成DC,供应用电设备。 关键词无线电能传输(WPT)/微波输能 (MPT) /天线

MIDDLE DISTANCE & SMALL POWER WIRELESS POWER TRANSPOTAION SYSTEM ABSTRACT The Wireless Power Transportation (WPT) shows a outstanding necessity in our today`s daily life .For one thing The Mobile Internet device (MID) comes out one after another because of The prosperity of Mobile Internet.The limitations of the technology bottleneck in battery capacity can not fit people`s requirement in these devises .For another the booming of Internet of Things brings large quantity of net nodes .These nodes cannot be charged easily.However,WPT will be the best way to solve this problem.Especially,the Middle Distance & Small Power Wireless Power Transportation System(WPT-MDSP) will plays a great role in these scopes. In this paper ,I made a brief but clear introduction of the WPT,and a thorough discussion in Microwave Power Transportation (MPT) ,which was used to leed to the applied system WPT-MDSP .This system contains two parts,the eradiation part and the Receive part .The first part works for changing Direct-current(DC)into R adiofrequency (RF),the other does the converse work.Both of them are designed for exclusive use. They works together to charge the Electrical equipment. Key words Wireless Power Transportation (WPT)/ Microwave Power Transportation (MPT)/Antenna

国外无线电力传输技术进展

86 上 海信息 化 无线电力传输(Wireless Power Transmission,WPT)也称无线能量传输或无线功率传输,主要通过电磁感应、电磁共振、射频、微波、激光等方式实现非接触式的电力传输。随着电力电子器件、功率变换和控制技术的发展,无线电力传输技术在转换率、低辐射等方面逐渐取得突破,无线电力传输在军事、通信、工业、医疗、运输、电力、航空航天、节能环保等领域呈现良好应用前景。 近年来,全球无线电力传输市场规模逐年递增,据IHS iSuppli数据显示,2010年无线充电设备市场收入达到1.2亿美元,到2015年将达到237亿美元。从2011 年开始,全球无线充电模块销量急剧增长,2019年将增长到9.23亿个(见表1)。手机、笔记本电脑等是无线电力传输的主要应用对象,厂商正将无线电力传输技术嵌入到包括智能手机、平板电脑、蓝牙耳机在内的终端。 十九世纪末,尼古拉?特斯拉发明了“特斯拉”线圈,使无线电力传输成为可能。近年来,无线电力传输技术发展迅猛,在军事、通信、工业等各大领域都拥有十分广阔的应用前景。对于消费者来说,无线充电的意义还不仅仅是带来充电方式的便捷化,随着无线充电技术从手机、平板等小功率设备向笔记本电脑、智能电视甚至电动汽车等大型设备的拓展,可以说,无线电力传输技术必将为人们的日常生活带来更多的惊喜。 文/陈 骞 美日两国处于领先地位 美国、日本等国众多企业或研究机构竞相研发无线电力传输技术,探索无线电力传输系统在不同领域的应用,致力于将其实用化,目前,已获得了一定的技术突破,相应产品也陆续面世。 美国电子信息企业对短距离电力传输技术给予极大投入。Power Cast 公司利用电磁波损失小的天线技术,借助二极管、非接触IC 卡和无线电子标签等,实现了效率较高的无线电力传输,将无线电波转化成直流电,并在约1 米范围内为不同电子装置的电池充电。Palm 公司将无线充电应用在手机上,推出充电设备“触摸石”,利用电磁感应原理为手机进行无线充电。Powermat 推出的充电板有桌面式和便携式等多种,主要由底座和无线接收器组成。Fulton 公司开发的eCoupled 无线充电技术,充电器能够自动地通过超高频电波寻找待充电电器,动态调整发射功率。Visteon 公司计划为摩托罗拉手机和苹果的iPod 生产eCoupled 无线充电器。Power 公司开发的电波接收型电能储存装置以美国匹兹堡大学研发的无源型 RFID 技术为基础,通过射频发射 装置传递电能。WildCharge 公司开发的无线充电系统,充 电板的外观像一个鼠标垫,能够放置在桌椅等任何平坦表 数据来源:IHS iSuppli 单位:百万个 表1 全球无线充电应用数量 Oversea View 他山之石

无线能量传输研究现状文献综述

无限能量传输研究现状文献综述 摘要:无线能量传输技术近年来得到了极大的发展,在诸多领域得到了广泛的应用。该技术不依赖于有线的传输媒介,对于有线供电部署困难的场景尤其是人体内部医用装置的供电具有重要的意义。本文将重点介绍无线能量传输技术的发展,传输方式,传输中遇到的问题以及国内外的研究现状。 关键词:无线能量传输;无线供电;电磁耦合;磁场共振 Abstract: In recent years ,wireless energy transmission technology has been a great deal of development, has been widely used in many fields. This technique does not rely on a wired transmission medium, for wired powered deployment difficulties scene especially the power supply of the medical device inside the human body, has important significance. This article will focus on the development of wireless energy transmission technology, transmission mode, the problems encountered in the transmission as well as the research status of the domestic and foreign. Key words: wireless energy transfer, wireless power supply, Electromagnetic coupling,magnetic field resonance. 1.前言 1.1背景简介及其应用 无线能量传输是指通过无线的方式来实现能量从能量源传输到负载的一个过程。事实上,无线能量传输并不是什么新概念,早在1891年,尼古拉〃特斯拉就证实了无线能量传输,2001 年5 月,法国国家科学研究中心的皮格努莱特(G.Pignolet),利用微波无线传输电能点亮40m 外一个200W 的灯泡。2006 年末,物理学教授马林〃索尔贾希克为首的研究团队试制出的无线供电装置,可以点亮相隔7 英尺(约2.1m) 远的60W 电灯泡,能量效率可达到40%。2007年,美国麻省理工学院朝着无线能量传输迈出了革命性的一步,展示了一种能够替代现有笔记本、手机充电的方式,MIT的研究小组将这一概念称之为非辐射电磁场。2008 年8 月的英特尔信息技术峰会(IDF:Intel Developer Forum)上演示了无线供电方式点亮一枚60W 电灯泡,可以在1m距离内隔空给60W 灯泡提供电力,效

无线能量传输的三种方式

无线能量传输技术是将电能从电能发射端传输到负载的一个过程,这个过程不是通过传统的电线完成,而是通过无线实现。 目前在国内外研究的无线能量传输技术,根据其传输原理,大致上可以分为三类:第一类是感应耦合式无线能量传输技术,这种技术主要利用电磁感应原理,采用松耦合变压器或者可分离变压器方式实现功率无线传输。该项技术可以实现较大功率的电能无线传输,但由于传输原理的局限传输距离被限制在毫米等级。 第二类是电磁波无线能量传输技术,例如微波技术,该技术直接利用了电磁波能量可以通过天线发送和接收的原理。该技术优点在于可以实现极高功率的无线传输,但是在能量传输过程中,发射器必须对准接收器,能量传输受方向限制,并且不能绕过或穿过障碍物,微波在空气中的损耗也大,效率低,对人体和其他生物都有严重伤害。 第三类是磁耦合谐振式无线能量传输技术。该技术通过磁场的近场耦合,使接收线圈和发射线圈产生共振,来实现能量的无线传输。该技术最早是由美国麻省理工学院(MIT)物理系助理教授Marin Soljacic的研究小组于2006年11月在美国AIP工业物理论坛上提出,并于2007 年6月,通过实验进行了验证,相隔2.16m隔空将一只60W灯泡点亮,并在<>杂志上发表了题为“Wireless Power Transfer Via Strongly Coupled Magnetic Resonances”。该技术可以在有障碍物的情况下传输,传输距离可以达到米级范围。 目前该技术尚处于基础理论和实验研究阶段,对该技术我们做了一些研究,发现这项技术其很有发展潜力,相信在不久的将来这项技术会进入我们的生活,进入真正的无线时代,让我们试目以待吧。

文无线电能传输文献综述

本科毕业设计论文 文献综述 题目:电能无线传输装置的硬件设计 作者姓名 指导教师 专业班级 学院信息工程学院 提交日期2016年3月7日

电能无线传输装置的硬件设计 姓名:专业班级: 摘要:无线电能传输技术是通过电磁感应、电磁共振、电磁辐射等多种形式实现非接触式的新型电能传输,能帮助使我们摆脱传统的电能传输方式的各种缺点。文章阐述了无线电能传输技术的研究背景,介绍了该传输方式的各种优点,以及在国内外的研究发展历程。之后叙述了现有理论框架下的三种无线电能传输技术,并比较了四种技术的特点。文章的最后,阐述了无线电能传输技术的应用前景和领域。 关键词:无线电能传输;电磁感应;电磁共振;电磁辐射;传输效率 1 研究背景及意义 人类社会自第二次工业革命以来,便进入了电气化时代。大至遍布世界各地的高压线、电网,小至各种各样的家用电气设备,传统的电能传输主要通过金属导线点对点,属于直接接触传输。这种传输方式使用电缆线作为媒介,在电能传输的过程中将不可避免的产生一些问题。例如尖端放电、线路老化等因素导致的电火花,不仅会使线路损耗增大,还会大大降低供电的可靠性和安全性[1],且会缩短设备的寿命。在油田、钻采矿井等场合,用传统的输电方式容易由于摩擦而产生微小电火花,严重时甚至引起爆炸,造成重大的事故。在水下,导线直接接触供电还有电击的危险[2-4]。这一系列的问题都在呼唤着一种摆脱金属电缆的电能传输方式,即无线电能传输。无线电能传输(WPT)是一种有效的新型电能传输方法,通过无线电能传输,不需要使用电缆或其他实物就能进行电能的传输,电能可以通过短距离耦合,中等范围的谐振感应和电磁波感应传输,在很难使用传统电缆的地方也可以实现电能传输[5]。 实现无线电能传输,将使人类在电能方面的应用更加宽广和灵活。电能的无线传输技术将开辟人类能源的另一个新时代,给大众带来非同凡响的意义和影响。

无线电能传输技术

所谓无线电能传输,就是借助于电磁场或电磁波进行能量传递的一种技术。无线 输电分为:电磁感应式、电磁共振式和电磁辐射式。电磁感应可用于低功率、近距离传输;电磁共振适于中等功率、中等距离传输;电磁辐射则可用于大功率、远距离传输。近年来,一些便携式电器如笔记本电脑、手机、音乐播放器等移动设备都需要电池和充电。电源电线频繁地拔插,既不安全,也容易磨损。一些充电器、电线、插座标准也并不完全统一,这样即造成了浪费,也形成了对环境的污染。而在特殊场合下,譬如矿井和石油开釆中,传统输电方式在安全上存在隐患。孤立的岛屿、工作于山头的基站,很困难采用架设电线的传统配电方式。在上述情形下,无线输电便愈发显得重要和迫切,因而它被美国《技术评论》杂志评选为未来十大科研方向之一。在此旨在阐述当前的技术进展,分析无线输电原理。 1无线电能传输技术的发展历程 最早产生无线输能设想的是尼古拉?特斯拉(NikolaTesla),因而有人称之为无线电能 传输之父。1890年,特斯拉就做了无线电能传输试验。特斯拉构想的无线电能传输方法是把地球作为内导体,把地球电离层作为外导体,通过放大发射机以径向电磁波振荡模式,在地球与电离层之间建立起大约8 Hz的低频共振,利用环绕地球的表面电磁波来传输能量。最终因财力不足,特斯拉的大胆构想没能实现。 其后,古博(Goubau)、施瓦固(Sohweing)等人从理论上推算了自由空间波束导波可达到近100%的传输效率,并随后在反射波束导波系统上得到了验证。20世纪20 年代中期,日本的H.Yagi和S.Uda发明了可用于无线电能传输的定向天线,乂称为八木一宇田天 线。20世纪60年代初期雷声公司(Raytheon)的布iM(W.C.Brown)做了大量的无线电能传输研究工作,从而奠定了无线电能传输的实验基础,使这一概念变成了现实。在实验中设计了一种效率高、结构简单的半波电偶极子半导体二极管整流天线,将频率2.45GHz的微 波能量转换为了直流电。1977年在实验中使用GaAs—Pt 肖特基势垒二极管,用铝条构造 半波电偶极子和传输线,输入微波的功率为8 W,获得了90.6%的微波一一直流电整流效率。后来改用印刷薄膜,在频率2.45 GHz时效率达到了85%o 自从Brown实验获得成功以后,人们开始对无线电能传输技术产生了兴趣。1975 年,在美国宇航局的支持下,开始了无线电能传输地面实验的5 ail'划。喷气发动机实验室和Lewis科研中心曾将30 kW的微波无线输送1.6 km,微波一一直流的转换效率达83%。1991

无线电力传输技术的发展

无线电力传输技术的发展 人类追逐自由的本能,在现实面前屡屡受挫。自从广泛使用电能以来,许多人都为了那些电器拖着的长长电线而绞尽脑汁,但无线供电却一直只能作为一个在前方远远招手的梦想。现在,我们也许看到了一线曙光。 在2008年8月的英特尔开发者论坛(IDF,Intel Developer Forum)上,西雅图实验室的约书亚·史密斯(Joshua R. Smith)领导的研究小组向公众展示了一项新技术——基于“磁耦合共振”原理的无线供电,在展示中成功地点亮了一个一米开外的60瓦灯泡,而在电源和灯泡之间没有使用任何电线。他们声称,在这个系统中无线电力的传输效率达到了75%。 大刘在《三体II·黑暗森林》中描绘了一个两百年后的世界。因为人们掌握了可控核聚变技术,可以提供极大丰富的能源,无线供电的损失在可接受范围之内,所以大部分电器都可以采用无线方式来供电,从电热杯一直到个人飞行器都是如此。电像空气一样无处不在,人类再也不用受电线的拖累了。 正如书中所提到的那样,无线供电技术现在也已经出现了。实际上,近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。也许不远的未来,我们还会看到远距离和室内距离的无线供电产品,而不会看到电线杆和高压线,“插头”也将会变成一个历史名词。 好兆头 英特尔的这种无线供电技术,是基于麻省理工大学的一项研究成果而开发的。 2007年6月,麻省理工大学的物理学助理教授马林·索尔贾希克(Marin Soljacic)和他的研究团队公开做了一个演示。他们给一个直径60厘米的线圈通电,6英尺(约1.9米)之外连接在另一个线圈上的60瓦灯泡被点亮了。这种马林称之为“WiTricity”技术的原理是“磁耦合共振”,而他本人也因为这一发明获得了麦克阿瑟基金会2008年的天才奖。

无线能量传输的现状与未来

《科学研究方法》课程学术报告 无线能量传输的现状与未来 龙啸 2012级电子信息工程 2012141451117 摘要:本文首先分析了无线能量传输(Wireless Power Transer,WPT)技术实现的重要意义,现阶段实现无线能量传输的几种主要方式以及该技术的发展历程。综述了国内外在无线能量传输的研究现状以及随着科技进步,依托于无线能量传输的新技术的发展。 1.引言 无线能量传输是一种无接触的能量传输方式,能量从能量源传输到负载不需要通过传统的传输线来实现。从该技术诞生以来,就因为其自身方便安全,且能够满足某些特殊环境下供电的需求而备受各方关注。在能源传输、信息通信、医疗用具、航空航天等领域有着广阔的前景,尤其是在飞速发展的物联网智能家居方面有着极高的实用价值。 2.前景与需求 能量是构成世界的重要要素之一,人类社会的进步无不伴随着对于能量获取方式和传输方式的改变,无线能量传输技术的出现将会对于许多能量应用领域产生深远影响,为人们的生活带来重大变革。 非接触传输的特点,使WPT技术可以在恶劣的工作环境中对设备供能,如太空、海洋、矿井、峡谷、沙漠等复杂环境。该技术可以通过远程非接触式供电的方式,减少人为进入复杂环境的次数,使得对于灾害多发区域大面积投放传感器检测成为可能。 安全稳定的特点,使得使用了WPT供电的设备减少了线路的使用,无通电接点可以避免触电的危险,无外露电力传送元件避免了外界环境对其的侵蚀,极大地延长了设备的使用寿命。 此外,由于通过无线传输,可以实现“一发多收”的电力传输模式,一个能量源可以同时为多个用电器提供能源。有望在日常的家用电器使用中真正的实现“便捷和智能”。

无线充电技术综述

无线充电技术综述 摘要:通常电能的传输主要是通过导线进行的。对电器设备中的蓄电池充电,一般是通过电流电压变换控制电路和插头、插座等接口的物理连来实现的。这种电能传输方式在进行大功率充电时存在高压触电的危险,且在水下,采矿,化工等对防水,防爆要求很高的环境下,这种连接容易受到腐蚀、水、灰尘和污物的影响,使得系统的安全性、可靠性及使用寿命较低,且极易引发事故,极大地限制了恶劣条件下电能的传输。无接触能量传输技术正是为了弥补这些不足而发明的一种基于高频逆变技术和磁耦合技术的新技术。 关键词:无线充电,智能手机,电磁感应,磁共振,无线电波 Summary of wireless charging technology The second group: Li Yujun, Zhang Yanting, Sun Anhui Abstract:Usually electricity transmission is mainly done through a wire. For battery charging of electrical equipment, typically by current voltage change of control circuit and the plug and socket interface physical even. This way of power transmission in existing in high power charging the risk of electric shock, high pressure and under water, mining, chemical industry and so on for waterproof, explosion-proof demanding environment, this kind of connection are susceptible to corrosion, the influence of water, dust and dirt, make the system of safety, reliability and service life is low, and easy to cause accident, greatly limits the harsh conditions of electricity transmission. Contactless energy transmission technology is to make up for these deficiencies and invented a kind of high frequency inverter technology and magnetic coupling technology based on new technology. Keyword: wireless charging, smartphone, electromagnetic induction,magnetic resonance, radio waves 一、无线充电技术的历史及发展现状 早在1890年,著名电气工程师(物理学家)Nikola Tesla就已提出无线传输店里的猜想。 2007年,MIT(Massachusettes Institute of Technology美国麻省理工学院)无线传能实验中发射谐振器和接收谐振器是半径为3mm的铜线缠绕5.25圈、线圈半径300mm、高度200mm,具备分布式电感和电容特性的线圈型谐振器,实验测得其谐振频率为9.90MHz。在谐振器距离2m传输时传输效率约为40%,距离为1m时传输效率可高达90%。用两米外的一个电源,“隔空”点亮了一盏60瓦的灯泡。 MIT用无线传输点亮2m外的60W电灯 2008年12月17日成立无线充电联盟(Wireless Power Consortium),2010年8月

无线电力传输技术复习课程

无线电力传输技术

无线电力传输技术 无线电力传输技术 人类追逐自由的本能,在现实面前屡屡受挫。自从广泛使用电能以来,许多人都为了那些电器拖着的长长电线 而绞尽脑汁,但无线供电却一直只能作为一个在前方远远招手的梦想。现在,我们也许看到了一线曙光。 在2008年8月的英特尔开发者论坛(IDF , Intel Developer Forum )上,西雅图实验室的约书亚史密斯(Joshua R. Smith )领导的研究小组向公众展示了一项新技术一一基于磁耦合共振”原理的无线供电, 在展示中成功地点亮了一个一米开外的60瓦灯泡,而在电源和灯泡之间没有使用任何电线。他们声称,在 这个系统中无线电力的传输效率达到了75%。 大刘在《三体II黑暗森林》中描绘了一个两百年后的世界。因为人们掌握了可控核聚变技术,可以提供极大丰富的能源,无线供电的损失在可接受范围之内,所以大部分电器都可以采用无线方式来供电,从电热杯一直到个人飞行器都是如此。电像空气一样无处不在,人类再也不用受电线的拖累了。 正如书中所提到的那样,无线供电技术现在也已经岀现了。实际上,近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。也许不远的未来,我们还会看到远距离和室内距离的无线供电产品,而不会看到电线杆和高压线,插头”也将会变成一个历史名词。 好兆头 英特尔的这种无线供电技术,是基于麻省理工大学的一项研究成果而开发的。 2007年6月,麻省理工大学的物理学助理教授马林索尔贾希克(Marin Soljacic )和他的研究团队公开做 了一个演示。他们给一个直径60厘米的线圈通电,6英尺(约1.9米)之外连接在另一个线圈上的60瓦灯 泡被点亮了。这种马林称之为WiTricity ”技术的原理是磁耦合共振”,而他本人也因为这一发明获得了麦 克阿瑟基金会2008年的天才奖。 新技术所消耗的电能只有传统电磁感应供电技术的百万分之一,不由让人们对室内距离的无线供电重新燃起了希望。而它的关键在于共振”。 科学家们早就发现,共振是一种非常高效的传输能量方式。我们都听过诸如共振引起的铁桥坍塌、雪崩或者高音歌唱家震碎玻璃杯的故事。无论这些故事可信度如何,但它们的基本原理是正确的:两个振动频率相同的物体之间可以高效传输能量,而对不同振动频率的物体几乎没有影响。在马林的这种新技术中,将发送端和接收端的线圈调校成了一个磁共振系统,当发送端产生的振荡磁场频率和接收端的固有频率相同时,接收端就产生共振,从而实现了能量的传输。根据共振的特性,能量传输都是在这样一个共振系统内部进行,对这个共振系统之外的物体不会产生什么影响。这就像是几个厚度不同的玻璃杯不会因为同一频率的声音而同时炸碎一样。 最妙的就是这一点了。当发射端通电时,它并不会向外发射电磁波,而只是在周围形成一个非辐射的磁场。这个磁场用来和接收端联络,激发接收端的共振,从而以很小的消耗为代价来传输能量。在这项技术中,磁场的强度将不过和地球磁场强度相似,人们不用担心这种技术会对自己的身体和其他设备产生不良影响。

无线电能传输技术-基础理论

一基础理论 1. 非接触感应式电能传输系统的基本原理 无接触感应式电能传输(Contactless Inductive Power Transfer)是利用变压器的感应耦合的特点(如图1),将传统变压器的感应耦合磁路分开,初、次级绕组分别绕在不同的磁性结构上,电源和负载单元之间不需要机械连接进行能量耦合传输。这种初、次级分离的感应耦合电能传输技术不仅消除了摩擦、触电的危险,而且大大提高了系统电能传输的灵活性,显著减小了负载系统的体积和重量。正因为感应式电能传输系统的功能性好、可靠性高、柔性好,加上无接触,无磨损的特性,能够满足各种不同条件下电工设备用电需求,同时兼顾了信息传输功能的需求。在十九世纪末二十世纪初,特斯拉就提出交流磁场驱动小灯,但是由于技术和材料的限制,效率很低。随着电力电子技术、高频技术和磁性材料的巨大发展以及多种场合下电工设备感应式供电需求的增长,这种新型的能量传输技术正逐步兴起。 图1 非接触感应式电能传输系统 2.非接触感应式电能传输系统的结构及工作原理 相对于传统的感应电能传输系统,非接触感应式电能传输系统耦合程度较小,为了增加磁能积利用率,减小体积,提高系统的功率传输能力,初级电路通常采用高频变流/逆变技术,使交流电压在较高的频率上工作。如图2所示,非接触感应式电能传输系统的基本结构包括:初、次级电路以及感应耦合电磁结构。初级交流电压经初级变换器,由初级绕组与次级绕组耦合,次级绕组耦合得到的电能经次级变换器供给负载使用,同时利用初次级绕组还可以实现信号的双向传输。

图2 非接触感应式电能传输系统构成框图 系统工作时,在输入端将经整流、逆变的单相低频交流电转换成高频交流电流供给初级绕组。次级端口输出的电流为高频电流,根据负载用电需要,若为直流负载,则将高频电流经过整流为负载电能传输;若为交流负载,则根据需要进行交交变频或交直交逆变处理。这种能量传输方式有以下优点:1、没有裸露导体存在,感应耦合系统的能量传输能力不受环境因素,如尘土、污物、水等的影响。因此这种方式比起通过电气连接来传输能量,更为可靠、耐用,且不发生火花,不存在机械磨损和摩擦;2、系统各部分之间相互独立,可以保证电气绝缘;3、能够采用多个次级绕组接收能量时可为多个用电负载电能传输;4、变压器初、次级可以相互分离,配合自由,可以处于相对静止或运动状态,适用范围也更广泛。 二无接触电能传输系统的拓扑结构模型 非接触感应式电能传输系统有三个环节:即作为供能和接收环节的初级和次级电路,以及传输环节的耦合电路,在此基础上对三大环节进行分析,得到非接触感应式电能传输系统性能的影响因素,得出非接触感应式电能传输系统的选型和参数匹配的方法。具体表现在通过结构创新,提高磁能积利用率,减少体积,提高效率。 1.供能环节-初级电路 初级端供电质量将直接影响传输性能,它是非接触感应式电能传输系统中的重要构件。提高变换器效率,减小输出谐波分量,实现正弦波电压或电流供电是初级变换器的研究和发展的方向。初级变换器一般包括整流电路与高频逆变电路两部分。为了提高变换效率,常采用谐振技术,利用初级绕组漏电感实现谐振变换。 (a)

相关文档
最新文档