lwip各层协议栈详解

竭诚为您提供优质文档/双击可除lwip各层协议栈详解

篇一:lwip协议栈源码分析

lwip源码分析

-----caoxw

1lwip的结构

lwip(lightweightinternetprotocol)的主要模块包括:配置模块、初始化模块、netif模块、mem(memp)模块、netarp模块、ip模块、udp模块、icmp模块、igmp模块、dhcp模块、tcp模块、snmp模块等。下面主要对我们需要关心的协议处理进行说明和梳理。配置模块:

配置模块通过各种宏定义的方式对系统、子模块进行了配置。比如,通过宏,配置了mem管理模块的参数。该配置模块还通过宏,配置了协议栈所支持的协议簇,通过宏定制的方式,决定了支持那些协议。主要的文件是opt.h。

初始化模块:

初始化模块入口的文件为tcpip.c,其初始化入口函数为:

voidtcpip_init(void(*initfunc)(void*),void*arg)

该入口通过调用lwip_init()函数,初始化了所有的子模块,并启动了协议栈管理进程。同时,该函数还带有回调钩子及其参数。可以在需要的地方进行调用。

协议栈数据分发管理进程负责了输入报文的处理、超时处理、api函数以及回调的处理,原型如下:

staticvoidtcpip_thread(void*arg)

netif模块:

netif模块为协议栈与底层驱动的接口模块,其将底层的一个网口设备描述成协议栈的一个接口设备(netinterface)。该模块的主要文件为netif.c。其通过链表的方式描述了系统中的所有网口设备。

netif的数据结构描述了网口的参数,包括ip地址、mac 地址、link状态、网口号、收发函数等等参数。一个网口设备的数据收发主要通过该结构进行。

mem(memp)模块:

mem模块同一管理了协议栈使用的内容缓冲区,并管理pbuf结构以及报文的字段处理。主要的文件包括mem.c、memp.c、pbuf.c。

netarp模块:

netarp模块是处理arp协议的模块,主要源文件为etharp.c。其主要入口函数为:

err_tethernet_input(structpbuf*p,structnetif*netif)

该入口函数通过判断输入报文p的协议类型来决定是按照arp协议进行处理还是将该报文提交到ip协议。如果报文是arp报文,该接口则调用etharp_arp_input,进行arp 请求处理。如果是ip报文,该接口就调用etharp_ip_input 进行arp更新,并调用ip_input接口,将报文提交给ip层。

在该模块中,创建了设备的地址映射arp表,并提供地址映射关系查询接口。同时还提供了arp报文的发送接口。如下:

err_tetharp_output(structnetif*netif,structpbuf*q,s tructip_addr*ipaddr)

该接口需要注册到netif的output字段,ip层在输出报文时,通过该接口获取目标机的mac地址,组合最终报文后,由该接口调用底层设备的驱动接口发送数据。

在etharp_output接口中,判断报文类型,如果是广播包或者组播包,就调用etharp_send_ip(组装目标mac和源mac)接口,etharp_send_ip调用netif结构中的设备驱动注册的linkoutput钩子函数发送最终报文。如果是单播包,etharp_output接口就调用etharp_query进行ip地址和mac 地址的映射,来获取到目标机的mac地址。并在etharp_query 中调用etharp_send_ip来发送最终组合报文。

ip模块:

ip模块实现了协议的ip层处理,主要文件为ip.c。其主要入口函数为:

err_tip_input(structpbuf*p,structnetif*inp)

该接口通过判断输入报文的协议类型,将其输入到相应的上层协议模块中去。比如,将udp报文送到udp_input。

该模块另外一个接口是输入函数,原型如下:

err_tip_output(structpbuf*p,structip_addr*src,struc tip_addr*dest,u8_tttl,u8_t

tos,u8_tproto)

该接口通过路由表或者传输ip后,调用netif的output 字段函数钩子发送报文。

udp模块:

udp模块实现了udp协议层的协议处理,主要文件为udp.c。该模块通过pcb控制块将应用端口跟应用程序做了绑定。在接收到新报文时,分析其对应的pcb,找到对应的处理钩子,进行应用的处理。主要入口函数为:

voidudp_input(structpbuf*p,structnetif*inp)

该模块负责输出的接口如下:

err_tudp_send(structudp_pcb*pcb,structpbuf*p)

该模块负责将一个pcb跟一个本地端口进行绑定的接口如下:

err_tudp_bind(structudp_pcb*pcb,structip_addr*ipadd r,u16_tport)

该模块负责将一个pcb跟一个远端端口绑定的接口如下:

err_tudp_connect(structudp_pcb*pcb,structip_addr*ip addr,u16_tport)

icmp模块:

该模块负责icmp协议的处理,其比较简单。主要的处

理接口如下:

Voidicmp_input(structpbuf*p,structnetif*inp)

上述接口负责icmp输入报文的分析和处理。

igmp模块:

igmp模块负责分组管理。其主要的接口函数如下:

voidigmp_input(structpbuf*p,structnetif*inp,structi

p_addr*dest)

该接口负责igmp协议报文的处理,比如分析当前报文

是请求还是应答。

err_tigmp_joingroup(structip_addr*ifaddr,structip_a ddr*groupaddr)

该接口将一个网口加入一个组。

err_tigmp_leavegroup(structip_addr*ifaddr,structip_ addr*groupaddr)

该接口将一个网口从一个组中移出。

dhcp模块:

dhcp模块用于获取设备ip地址的相关信息。其处理入口主要有这么几个:dpch的启动、dpch的接收报文处理以及定时器模块的处理。

主要的接口原型如下:

err_tdhcp_start(structnetif*netif)

该接口用于设备启动dhcp模块,主要是客户端的功能。该模块实现设备dhcp描述结构生成,并将dhcp的端口绑定到udp协议中,以及将本dhcp模块跟远端服务器端口进行绑定。最后启动dhcp申请。

staticvoiddhcp_recv(void*arg,structudp_pcb*pcb,stru ctpbuf*p,structip_addr*addr,u16_tport)

该接口为一个注册接口,用于dhcp报文接收。在startdhcp时,该接口通过dhcp的udppcb注册到udp协议层。udp进行报文处理后,根据端口调用该注册接口。该接口中,实现dhcp报文的协议处理。

Voiddhcp_fine_tmr()

Voiddhcp_coarse_tmr()

这两个函数接口实现了dhcp的相关超时处理监控。上面一个用于请求应答超时处理。下面一个用于地址租用情况的到期处理。

从源码分析看,上述的接口在应用lwip的协议栈时,需要重点关注。对于小内存应用的场合,该协议栈的内存管理以及pbuf应用部分需要自行改写。

2lwip的协议流程

下面这张图比较清楚的描述了lwip的报文处理流程,呵呵,借用一下。不过,其对netif->output描述不够。从代码看,该output实际是arp层的输出,最后通过arp层调用netif中的底层输出接口发送报文。

篇二:lwip模块详细分析

lwip模块只要包括:

(1)、配置模块;(2)、初始化模块;(3)、netif模块;(4)mem模块(5)、netarp模块

(6)ip模块(7)icmp模块(8)dhcp模块(9)tcp

模块(10)snmp模块

(1)、配置模块:通过各种宏定义的方式对系统和子系统进行配置。主要文件是opt.h

(2)、初始化模块:初始化模块入口文件tcpip.c,其

初始化入口函数

Voidtcpip_init(void(*initfunc)(void*),void*arg);通过调用lwip_init(),初始化所有的子模块,并启动协议

栈管理进程。

staticvoidtcpip_thread(void*arg):协议栈数据分发管理进程负责输入报文的处理,超时处理、api函数及回调

的处理。

Voidtcpip_init(void(*initfunc)(void*),void*arg)

{

tcpip_init_done=initfunc;tcpip_init_done_arg=arg;mb

ox=sys_mbox_new(tcpip_mbox_size);lwip_init();

#iflwip_tcpip_coRe_locking

lock_tcpip_core=sys_sem_new(1);

#endif/*lwip_tcpip_coRe_locking*/

sys_thread_new(tcpip_thRead_name,tcpip_thread,null, lwip_stk_size,tcpip_thRead_pRio);

}

(3)、netif模块:

netif模块是协议栈与底层驱动的接口模块。该模块的

主要文件是netif.c,通过链表的形式描述了所有的网口设

Zigbee协议栈系统事件

系统常用事件处理函数: -按键事件 -接收消息事件 -网络状态改变事件 -绑定确认事件 -匹配响应事件 1、按键事件 Case KEY_CHANGE: 当有按键事件发生的时,调用按键事件处理函数Sample_HandleKeys()来处理按键事件。 在SampleApp例程中按键处理函数处理了以下2件事情 -如果按键1按下,将向网络中的其他设备发送LED闪烁命令 -如果按键2按下,检测组ID号为SAMPLEAPP_FLASH_GROUP的组是否已经注册。如果已经注册,调用aps_RemoveGroup()将其删除;如果没注册就在APS层注册

2、接收消息事件 Case:AF_INCOMING_MSG_CMD: 如果有接收消息事件发生,则调用函数SampleApp_MessageMSGCB(MSG)对接收的消息进行处理。一般的接收消息事件是通过用户自定义的端点输入簇和输出簇来处理的。 在LED闪烁命令的发送函数中的输出簇为SAMPLEAPP_FLASH_CLUSTERID,所以在接收消息事件的输入簇中为SAMPLEAPP_FLASH_CLUSTERID即收到LED闪烁命令

3、网络状态改变事件 Case:ZDO_STATE_CHANGE 当有网络状态改变事件发生后,会调用函数SampleApp_NwkState()来处理网络状态改变事件。在SampleApp例程中,网络状态改变事件主要处理了以下事件: -判断设备类型(区分协调器、路由节点、终端节点) -当协调器网络建立成功后或其他类型节点加入网络后点亮led1 -通过调用osal_start_timerEx()设置一个定时事件,当时间到达后启用用户自定义事件SampleApp_Send_PERIODIC_MSG_EVT 备注:在使用过程中这里的3种设备类型不是全选,写一个就可以了,其他的删除

Xmodem协议详解以及源代码剖析

研究 Xmodem 协议必看的 11个问题 Xmodem 协议作为串口数据传输主要的方式之一,恐怕只有做过 bootloader 的才有机会接触一下, 网上有关该协议的内容要么是英语要么讲解不详细。笔者以前写 bootloader 时研究过 1k-Xmodem ,参考了不少相关资料。这里和大家交流一下我对 Xmodem 的理解,多多指教! 1. Xmodem 协议是什么? XMODEM协议是一种串口通信中广泛用到的异步文件传输协议。分为标准Xmodem 和 1k-Xmodem 两种,前者以 128字节块的形式传输数据,后者字节块为 1k 即 1024字节,并且每个块都使用一个校验和过程来进行错误检测。在校验过程中如果接收方关于一个块的校验和与它在发送方的校验和相同时,接收方就向发送方发送一个确认字节 (ACK。由于 Xmodem 需要对每个块都进行认可, 这将导致性能有所下降, 特别是延时比较长的场合, 这种协议显得效率更低。 除了 Xmodem ,还有 Ymodem , Zmodem 协议。他们的协议内容和 Xmodem 类似,不同的是 Ymodem 允许批处理文件传输,效率更高; Zmodem 则是改进的了Xmodem ,它只需要对损坏的块进行重发,其它正确的块不需要发送确认字节。减少了通信量。 2. Xmodem 协议相关控制字符 SOH 0x01 STX 0x02 EOT 0x04 ACK 0x06 NAK 0x15

CAN 0x18 CTRLZ 0x1A 3.标准 Xmodem 协议(每个数据包含有 128字节数据帧格式 _______________________________________________________________ | SOH | 信息包序号 | 信息包序号的补码 | 数据区段 | 校验和 | |_____|____________|___________________|__________|____________| 4. 1k-Xmodem (每个数据包含有 1024字节数据帧格式 _______________________________________________________________ | STX | 信息包序号 | 信息包序号的补码 | 数据区段 | 校验和 | |_____|____________|___________________|__________|____________| 5.数据包说明 对于标准 Xmodem 协议来说,如果传送的文件不是 128的整数倍,那么最后一个数据包的有效内容肯定小于帧长,不足的部分需要用 CTRL- Z(0x1A来填充。这里可能有人会问,如果我传送的是 bootloader 工程生成的 .bin 文件, mcu 收到后遇到0x1A 字符会怎么处理?其实如果传送的是文本文件,那么接收方对于接收的内容是很容易识别的,因为 CTRL-Z 不是前 128个 ascii 码, 不是通用可见字符, 如果是二进制文件, mcu 其实也不会把它当作代码来执行。哪怕是 excel 文件等,由于其内部会有些结构表示各个字段长度等,所以不会读取多余的填充字符。否则 Xmodem太弱了。对于 1k-Xmodem ,同上理。 6.如何启动传输?

Zigbee协议栈原理基础

1Zigbee协议栈相关概念 1.1近距离通信技术比较: 近距离无线通信技术有wifi、蓝牙、红外、zigbee,在无线传感网络中需求的网络通信恰是近距离需求的,故,四者均可用做无线传感网络的通信技术。而,其中(1)红外(infrared):能够包含的信息过少;频率低波衍射性不好只能视距通信;要求位置固定;点对点传输无法组网。(2)蓝牙(bluetooth):可移动,手机支持;通信距离10m;芯片价格贵;高功耗(3)wifi:高带宽;覆盖半径100m;高功耗;不能自组网;(4)zigbee:价格便宜;低功耗;自组网规模大。?????WSN中zigbee通信技术是最佳方案,但它连接公网需要有专门的网关转换→进一步学习stm32。 1.2协议栈 协议栈是网络中各层协议的总和,其形象的反映了一个网络中文件传输的过程:由上层协议到底层协议,再由底层协议到上层协议。 1.2.1Zigbee协议规范与zigbee协议栈 Zigbee各层协议中物理层(phy)、介质控制层(mac)规范由IEEE802.15.4规定,网络层(NWK)、应用层(apl)规范由zigbee联盟推出。Zigbee联盟推出的整套zigbee规范:2005年第一版ZigBeeSpecificationV1.0,zigbee2006,zigbee2007、zigbeepro zigbee协议栈:很多公司都有自主研发的协议栈,如TI公司的:RemoTI,Z-Stack,SimpliciTI、freakz、msstatePAN 等。 1.2.2z-stack协议栈与zigbee协议栈 z-stack协议栈与zigbee协议栈的关系:z-stack是zigbee协议栈的一种具体实现,或者说是TI公司读懂了zigbee 协议栈,自己用C语言编写了一个软件—---z-stack,是由全球几千名工程师共同开发的。ZStack-CC2530-2.3.1-1.4.0软件可与TI的SmartRF05平台协同工作,该平台包括MSP430超低功耗微控制器(MCU)、CC2520RF收发器以及CC2591距离扩展器,通信连接距离可达数公里。 Z-Stack中的很多关键的代码是以库文件的形式给出来,也就是我们只能用它们,而看不到它们的具体的实现。其中核心部分的代码都是编译好的,以库文件的形式给出的,比如安全模块,路由模块,和Mesh自组网模块。与z-stack 相比msstatePAN、freakz协议栈都是全部真正的开源的,它们的所有源代码我们都可以看到。但是由于它们没有大的商业公司的支持,开发升级方面,性能方面和z-stack相比差距很大,并没有实现商业应用,只是作为学术研究而已。 还可以配备TI的一个标准兼容或专有的网络协议栈(RemoTI,Z-Stack,或SimpliciTI)来简化开发,当网络节点要求不多在30个以内,通信距离500m-1000m时用simpliciti。 1.2.3IEEE802.15.4标准概述 IEEE802.15.4是一个低速率无线个人局域网(LowRateWirelessPersonalAreaNetworks,LR-WPAN)标准。定义了物理层(PHY)和介质访问控制层(MAC)。 LR-WPAN网络具有如下特点: ◆实现250kb/s,40kb/s,20kb/s三种传输速率。 ◆支持星型或者点对点两种网络拓扑结构。 ◆具有16位短地址或者64位扩展地址。 ◆支持冲突避免载波多路侦听技术(carriersensemultipleaccesswithcollisionavoidance,CSMA/CA)。(mac层) ◆用于可靠传输的全应答协议。(RTS-CTS) ◆低功耗。 ◆能量检测(EnergyDetection,ED)。 ◆链路质量指示(LinkQualityIndication,LQI)。 ◆在2.45GHz频带内定义了16个通道;在915MHz频带内定义了10个通道;在868MHz频带内定义了1个通道。 为了使供应商能够提供最低可能功耗的设备,IEEE(InstituteofElectricalandElectronicsEngineers,电气及电子工程师学会)定义了两种不同类型的设备:一种是完整功能设备(full.functionaldevice,FFD),另一种是简化功能设备

LWIP协议栈的分析和设计

---《计算机网络与控制》论文 LWIP协议栈的分析

摘要 近些年来,随着互联网和通讯技术的迅猛发展,除了计算机之外,大量的嵌入式设备也需求接入网络。目前,互联网中使用的通讯协议基本是TCP/IP协议族,可运行于不同的网络上,本文研究的就是嵌入式TCP/IP协议栈LWIP。文章首先分析了LWIP的整体结构和协议栈的实现,再介绍协议栈的内存管理,最后讲解协议栈应用程序接口。 关键词: 嵌入式系统;协议;LWIP;以太网 Abstract With the rapid development of internet and communication technology, Not only computers but also embeded equipments are need to connect networks. At present, the basic communication protocol using in internet is TCP/IP, it can run in different network. This paper analyses the Light-Weight TCP/IP. The process model of a protocol implementation and processing of every layer are described first, and then gives the detailed management of Buffer and memory. At last, a reference lwIP API is given. Key words: Embedded System, Protocol, Light weight TCP/IP,Ethernet 引言

2020年Zigbee协议栈中文说明免费

1.概述 1.1解析ZigBee堆栈架构 ZigBee堆栈是在IEEE 802.15.4标准基础上建立的,定义了协议的MAC和PHY层。ZigBee设备应该包括IEEE802.15.4(该标准定义了RF射频以及与相邻设备之间的通信)的PHY和MAC层,以及ZigBee堆栈层:网络层(NWK)、应用层和安全服务提供层。图1-1给出了这些组件的概况。 1.1.1ZigBee堆栈层 每个ZigBee设备都与一个特定模板有关,可能是公共模板或私有模板。这些模板定义了设备的应用环境、设备类型以及用于设备间通信的簇。公共模板可以确保不同供应商的设备在相同应用领域中的互操作性。 设备是由模板定义的,并以应用对象(Application Objects)的形式实现(见图1-1)。每个应用对象通过一个端点连接到ZigBee堆栈的余下部分,它们都是器件中可寻址的组件。 图1-1 zigbe堆栈框架 从应用角度看,通信的本质就是端点到端点的连接(例如,一个带开关组件的设备与带一个或多个灯组件的远端设备进行通信,目的是将这些灯点亮)。 端点之间的通信是通过称之为簇的数据结构实现的。这些簇是应用对象之间共享信息所需的全部属性的容器,在特殊应用中使用的簇在模板中有定义。图1-1-2就是设备及其接口的一个例子:

图1-1-2 每个接口都能接收(用于输入)或发送(用于输出)簇格式的数据。一共有二个特殊的端点,即端点0和端点255。端点0用于整个ZigBee设备的配置和管理。应用程序可以通过端点0与ZigBee 堆栈的其它层通信,从而实现对这些层的初始化和配置。附属在端点0的对象被称为ZigBee设备对象 (ZD0)。端点255用于向所有端点的广播。端点241到254是保留端点。 所有端点都使用应用支持子层(APS)提供的服务。APS通过网络层和安全服务提供层与端点相接,并为数据传送、安全和绑定提供服务,因此能够适配不同但兼容的设备,比如带灯的开关。APS使用网络层(NWK)提供的服务。NWK负责设备到设备的通信,并负责网络中设备初始化所包含的活动、消息路由和网络发现。应用层可以通过ZigBee设备对象(ZD0)对网络层参数进行配置和访问。 1.1.2 80 2.15.4 MAC层 IEEE 802.15.4标准为低速率无线个人域网(LR-WPAN)定义了OSI模型开始的两层。PHY层定义了无线射频应该具备的特征,它支持二种不同的射频信号,分别位于2450MHz波段和868/915MHz 波段。2450MHz波段射频可以提供250kbps的数据速率和16个不同的信道。868 /915MHz波段中,868MHz支持1个数据速率为20kbps的信道,915MHz支持10个数据速率为40kbps的信道。MAC层负责相邻设备间的单跳数据通信。它负责建立与网络的同步,支持关联和去关联以及MAC 层安全:它能提供二个设备之间的可靠链接。 1.1.3 关于服务接入点 ZigBee堆栈的不同层与802.15.4 MAC通过服务接入点(SAP)进行通信。SAP是某一特定层提供的服务与上层之间的接口。 ZigBee堆栈的大多数层有两个接口:数据实体接口和管理实体接口。数据实体接口的目标是向上层提供所需的常规数据服务。管理实体接口的目标是向上层提供访问内部层参数、配置和管理数据的机制。 1.1.4 ZigBee的安全性 安全机制由安全服务提供层提供。然而值得注意的是,系统的整体安全性是在模板级定义的,这意味着模板应该定义某一特定网络中应该实现何种类型的安全。 每一层(MAC、网络或应用层)都能被保护,为了降低存储要求,它们可以分享安全钥匙。SSP是通过ZD0进行初始化和配置的,要求实现高级加密标准(AES)。ZigBee规范定义了信任中心的用

从Zigbee协议栈底层添加自己的按键配置

本实验是基于ZStack-CC2530-2.5.1a版本的协议栈来进行实验的,整个实验需要改动 hal_board_cfg.h、hal_board_cfg.h、hal_key.c、hal_key.h和自己定义的Coordinator.c这5个文件。 注意:添加自己的按键时尽量不要修改协议栈里面的按键程序,自己另行添加即可。 1、hal_key.h 在/* Switches (keys) */下面添加自己的按键定义 #define HAL_KEY_SW_8 0x80 图1: ---------------------------------------------------------------------------------------- 2、hal_board_cfg.h 在/* S6 */ #define PUSH1_BV BV(1) #define PUSH1_SBIT P0_1 #if defined (HAL_BOARD_CC2530EB_REV17) #define PUSH1_POLARITY ACTIVE_LOW #elif defined (HAL_BOARD_CC2530EB_REV13) #define PUSH1_POLARITY ACTIVE_LOW #else #error Unknown Board Indentifier #endif 下面模仿/* S6 */下的程序定义自己的按键值: /* S8 */ #define PUSH8_BV BV(4)//修改 #define PUSH8_SBIT P0_4//修改 #if defined (HAL_BOARD_CC2530EB_REV17)

lwip各层协议栈详解

竭诚为您提供优质文档/双击可除lwip各层协议栈详解 篇一:lwip协议栈源码分析 lwip源码分析 -----caoxw 1lwip的结构 lwip(lightweightinternetprotocol)的主要模块包括:配置模块、初始化模块、netif模块、mem(memp)模块、netarp模块、ip模块、udp模块、icmp模块、igmp模块、dhcp模块、tcp模块、snmp模块等。下面主要对我们需要关心的协议处理进行说明和梳理。配置模块: 配置模块通过各种宏定义的方式对系统、子模块进行了配置。比如,通过宏,配置了mem管理模块的参数。该配置模块还通过宏,配置了协议栈所支持的协议簇,通过宏定制的方式,决定了支持那些协议。主要的文件是opt.h。 初始化模块: 初始化模块入口的文件为tcpip.c,其初始化入口函数为: voidtcpip_init(void(*initfunc)(void*),void*arg)

该入口通过调用lwip_init()函数,初始化了所有的子模块,并启动了协议栈管理进程。同时,该函数还带有回调钩子及其参数。可以在需要的地方进行调用。 协议栈数据分发管理进程负责了输入报文的处理、超时处理、api函数以及回调的处理,原型如下: staticvoidtcpip_thread(void*arg) netif模块: netif模块为协议栈与底层驱动的接口模块,其将底层的一个网口设备描述成协议栈的一个接口设备(netinterface)。该模块的主要文件为netif.c。其通过链表的方式描述了系统中的所有网口设备。 netif的数据结构描述了网口的参数,包括ip地址、mac 地址、link状态、网口号、收发函数等等参数。一个网口设备的数据收发主要通过该结构进行。 mem(memp)模块: mem模块同一管理了协议栈使用的内容缓冲区,并管理pbuf结构以及报文的字段处理。主要的文件包括mem.c、memp.c、pbuf.c。 netarp模块: netarp模块是处理arp协议的模块,主要源文件为etharp.c。其主要入口函数为: err_tethernet_input(structpbuf*p,structnetif*netif)

zigbee协议栈代码主要名词解释

zigbee协议重要名词解释及英文缩写(转载)网络层功能: 1. 加入和退出网络 2. 申请安全结构 3. 路由管理 4. 在设备之间发现和维护路由 5. 发现邻设备 6. 储存邻设备信息 当适当的重新分配地址联合其他设备,ZIGBEE2006可以依赖于网络协调者建立一个新网络. ZIGBEE应用层由APS(应用支持)、AF(应用结构)、ZDO(ZIGBEE设备对象)和厂商自定义应用对象组成。 APS功能 1. 绑定维持工作台,定义一个两个合拢的设备进行比较建立他们的需要和服务。 2. 促进信息在设备之间的限制 3. 组地址定义,移除和过滤组地址消息 4. 地址映射来自于64位IEEE地址和16位网络地址 5. 分裂、重新组装和可靠数据传输 ZDO功能 1. 定义设备内部网络(ZigBee协调者和终端接点) 2. 开始和/或回答绑定请求 3. 在网络设备中建立一个网络安全关系 4. 在网络中发现设备和决定供给哪个应用服务 ZDO同样有责任在网络中发现设备和为他们提供应用服务。 1.1.4 网络拓扑 ZIGBEE网络层支持星状、树状和网状拓扑。在星状拓扑中网络受约束与单个设备,呼叫COORD。COORD有责任建立和维持在网络中发现的设备和其他所有设备,都知道的终端接点直接和COORD 通信。在网状和树状拓扑中,COORD有责任建立一个网络和选择几个关键网络参数,但是网络有有可能直接应用于ZigBee路由器。在树状网络中,利用分等级路由策略完成路由传输数据和控制消息直通网络。树状网络在802.15.4-2003中可以采用信标引导通信。网状网络将允许所有对等网络通信。ZIGBEE 路又将不能在网状网络中发射规则的IEEE802.15.4-2003信标。

LwIP协议栈源码详解

LwIP协议栈源码详解 ——TCP/IP协议的实现 Created by.. 老衲五木 at.. UESTC Contact me.. for_rest@https://www.360docs.net/doc/8211465988.html, 540535649@https://www.360docs.net/doc/8211465988.html,

前言 最近一个项目用到LwIP,恰好看到网上讨论的人比较多,所以有了写这篇学习笔记的冲动,一是为了打发点发呆的时间,二是为了吹过的那些NB。往往决定做一件事是简单的,而坚持做完这件事却是漫长曲折的,但终究还是写完了,时间开销大概为四个月,内存开销无法估计。。 这篇文章覆盖了LwIP协议大部分的内容,但是并不全面。它主要讲解了LwIP协议最重要也是最常被用到的部分,包括内存管理,底层网络接口管理,ARP层,IP层,TCP层,API 层等,这些部分是LwIP的典型应用中经常涉及到的。而LwIP协议的其他部分,包括UDP,DHCP,DNS,IGMP,SNMP,PPP等不具有使用共性的部分,这篇文档暂时未涉及。 原来文章是发在空间中的,每节每节依次更新,后来又改发为博客,再后来就干脆懒得发了。现在终于搞定,于是将所有文章汇总。绞尽脑汁的想写一段空前绝后,人见人爱的序言,但越写越觉得像是猫儿抓的一样。就这样,PS:由于本人文笔有限,情商又低,下里巴人一枚,所以文中的很多语句可能让您很纠结,您可以通过邮箱与我联系。共同探讨才是进步的关键。 最后,欢迎读者以任何方式使用与转载,但请保留作者相关信息,酱紫!码字。。。世界上最痛苦的事情莫过于此。。。 ——老衲五木

目录 1 移植综述------------------------------------------------------------------------------------------------------4 2 动态内存管理------------------------------------------------------------------------------------------------6 3 数据包pbuf--------------------------------------------------------------------------------------------------9 4 pbuf释放---------------------------------------------------------------------------------------------------13 5 网络接口结构-----------------------------------------------------------------------------------------------16 6 以太网数据接收--------------------------------------------------------------------------------------------20 7 ARP表-----------------------------------------------------------------------------------------------------23 8 ARP表查询-----------------------------------------------------------------------------------------------26 9 ARP层流程-----------------------------------------------------------------------------------------------28 10 IP层输入-------------------------------------------------------------------------------------------------31 11 IP分片重装1--------------------------------------------------------------------------------------------34 12 IP分片重装2--------------------------------------------------------------------------------------------37 13 ICMP处理-----------------------------------------------------------------------------------------------40 14 TCP建立与断开----------------------------------------------------------------------------------------43 15 TCP状态转换-------------------------------------------------------------------------------------------46 16 TCP控制块----------------------------------------------------------------------------------------------49 17 TCP建立流程-------------------------------------------------------------------------------------------53 18 TCP状态机----------------------------------------------------------------------------------------------56 19 TCP输入输出函数1-----------------------------------------------------------------------------------60 20 TCP输入输出函数2-----------------------------------------------------------------------------------63 21 TCP滑动窗口-------------------------------------------------------------------------------------------66 22 TCP超时与重传----------------------------------------------------------------------------------------69 23 TCP慢启动与拥塞避免-------------------------------------------------------------------------------73 24 TCP快速恢复重传和Nagle算法-------------------------------------------------------------------76 25 TCP坚持与保活定时器-------------------------------------------------------------------------------80 26 TCP定时器----------------------------------------------------------------------------------------------84 27 TCP终结与小结----------------------------------------------------------------------------------------88 28 API实现及相关数据结构-----------------------------------------------------------------------------91 29 API消息机制--------------------------------------------------------------------------------------------94 30 API函数及编程实例-----------------------------------------------------------------------------------97

一文读懂zigbee技术的协议原理

一文读懂zigbee技术的协议原理 一.前言 从今天开始,我们要正式开始进行zigbee相关的通信实验了,我所使用的协议栈是ZStack 是TI ZStack-CC2530-2.3.0-1.4.0版本,大家也可以从TI的官网上直接下载TI公司为cc2530写的协议栈代码,毕竟,我们作为初学者,应该先不要去深究协议栈是怎么用代码编写的,毕竟zigbee已经相当成熟了,我们应该先学会使用zigbee协议栈进行通信,并能应用于实际项目中,比如说智能家具,不知道大家是不是有同感,所以下面我就先给大家介绍一下zigbee通信的原理以及体系架构。 二.ZStack 体系架构 ZStack 的体系结构由称为层的各模块组成。每一层为其上层提供特定的服务:即由数据服务实体提供数据传输服务;管理实体提供所有的其他管理服务。每个服务实体通过相应的服务接入点(SAP) 为其上层提供一个接口,每个服务接入点通过服务原语来完成所对应的功能。 ZStack 根据IEEE 802.15.4 和ZigBee 标准分为物理层,介质接入控制层,网络层,应用层。物理层提供了基础的服务,数据传输和接收,网络层提供了各个节点连入的服务,是zigbee网络通信的关键,应用层是我们关注的重点,提供了应用的框架和ZDO。大家如果想了解体系结构的具体内容,可以自己去看说明文档,下面我给大家介绍一下zigbee 工作原理。 ZStack 采用操作系统的思想来构建,采用事件轮循机制,而且有一个专门的Timer2 来负责定时。从CC2530 工作开始,Timer2 周而复始地计时,有采集、发送、接收、显示…等任务要执行时就执行。当各层初始化之后,系统进入低功耗模式,当事件发生时,唤醒系统,开始进入中断处理事件,结束后继续进入低功耗模式。如果同时有几个事件发生,判断优先级,逐次处理事件。这种软件构架可以极大地降级系统的功耗。 整个ZStack 的主要工作流程,如图所示,大致分为以下6 步:(1) 关闭所有中断;(2) 芯

lwip协议栈源码分析

LWIP源码分析 ----- caoxw 1 LWIP的结构 LWIP(Light weight internet protocol)的主要模块包括:配置模块、初始化模块、NetIf 模块、mem(memp)模块、netarp模块、ip模块、udp模块、icmp 模块、igmp模块、dhcp 模块、tcp模块、snmp模块等。下面主要对我们需要关心的协议处理进行说明和梳理。 配置模块: 配置模块通过各种宏定义的方式对系统、子模块进行了配置。比如,通过宏,配置了mem管理模块的参数。该配置模块还通过宏,配置了协议栈所支持的协议簇,通过宏定制的方式,决定了支持那些协议。主要的文件是opt.h。 初始化模块: 初始化模块入口的文件为tcpip.c,其初始化入口函数为: void tcpip_init(void (* initfunc)(void *), void *arg) 该入口通过调用lwip_init()函数,初始化了所有的子模块,并启动了协议栈管理进程。同时,该函数还带有回调钩子及其参数。可以在需要的地方进行调用。 协议栈数据分发管理进程负责了输入报文的处理、超时处理、API函数以及回调的处理,原型如下: static void tcpip_thread(void *arg) NetIf模块: Netif模块为协议栈与底层驱动的接口模块,其将底层的一个网口设备描述成协议栈的一个接口设备(net interface)。该模块的主要文件为netif.c。其通过链表的方式描述了系统中的所有网口设备。 Netif的数据结构描述了网口的参数,包括IP地址、MAC地址、link状态、网口号、收发函数等等参数。一个网口设备的数据收发主要通过该结构进行。 Mem(memp)模块: Mem模块同一管理了协议栈使用的内容缓冲区,并管理pbuf结构以及报文的字段处理。主要的文件包括mem.c、memp.c、pbuf.c。 netarp模块: netarp模块是处理arp协议的模块,主要源文件为etharp.c。其主要入口函数为: err_t ethernet_input(struct pbuf *p, struct netif *netif) 该入口函数通过判断输入报文p的协议类型来决定是按照arp协议进行处理还是将该报文提交到IP协议。如果报文是arp报文,该接口则调用etharp_arp_input,进行arp请求处理。 如果是ip报文,该接口就调用etharp_ip_input进行arp更新,并调用ip_input接口,将报文提交给ip层。 在该模块中,创建了设备的地址映射arp表,并提供地址映射关系查询接口。同时还提供了arp报文的发送接口。如下:

TI_zigbee协议栈结构分析应用

无线盛世《快速进入ZB世界》
Ver:1

进入Zigbee世界的准备工作
§ 首先,我们需具备一些硬件设备及平台。以下 我就罗列一下Zigbee开发基本工具: § 计算机:不管是设计电路还是编程开发都是离 不开它的。 § Zigbee开发板:对于初学者来说,Zigbee开发 板无疑是最佳选择。有了开发板,你可以在我 们成熟设计的基础上学习或者做自己的设计。 § Zigbee模块:集MCU,RF,天线设计于一体 的Zigbee模块。使用它,我们可省去设计天线 及IC周边电路设计的复杂工作。

进入Zigbee世界的准备工作
§ Zigbee仿真器:是集烧写程序、在线编程和在线仿真 功能于一身的开发过程工作中必不可少的开发工具。 编程器既能对CC243x芯片(其实包括TI产品中的CC 系列的大部分芯片)进行烧写程序(hex标准文件程序 ),也能对CC243x芯片进行在线编程和仿真,让我们 能方便地在线调试开发,从而大大地提高了开发效率 。 § Zigbee协议分析仪:ZigBee的设计开发者必不可少的 工具!ZigBee协议分析仪具有广泛的功能,包括:分 析以及解码在PHY、MAC、NETWORK/SECURITY、 APPLICATION FRAMEWORK、和APPLICATION PROFICES等各层协议上的信息包;显示出错的包以 及接入错误;指示触发包;在接收和登记过程中可连 续显示包。

进入Zigbee世界的准备工作
§ 再次,我们需要在将用于开发Zigbee的计 算机平台上安装这些软件: § Zigbee协议分析软件(sniffer) § 程序烧写软件(Flash Programmer) § IAR公司的EW8051 version 7.20I/W32 。

LwIP协议栈开发嵌入式网络的三种方法分析

LwIP协议栈开发嵌入式网络的三种方法分析 摘要轻量级的TCP/IP协议栈LwIP,提供了三种应用程序设计方法,且很容易被移植到多任务的操作系统中。本文结合μC/OS-II这一实时操作系统,以建立TCP服务器端通信为例,分析三种方法以及之间的关系,着重介绍基于raw API的应用程序设计。最后在ST公司STM32F107微处理器平台上验证,并给出了测试结果。 关键词LwIP协议栈;μC/OS-II;嵌入式网络;STM32F107; 随着嵌入式系统功能的多样化以及网络在各个领域的中的广泛应用,具备网络功能的嵌入式设备拥有更高的使用价值和更强的通用性。然而大部分嵌入式设备使用经济型处理器,受内存和速度限制,资源有限,不需要也不可能完整实现所有的TCP/IP协议,有时只需要满足实际需求就行。LwIP是由瑞典计算机科学研究院开发的轻量型TCP/IP协议栈,其特点是保持了以太网的基本功能,通过优化减少了对存储资源的占用。LwIP是免费、开源的,任何人可以使用,能够在裸机的环境下运行,当然设计的时候也考虑了将来的移植问题,可以很容易移植到多任务操作系统中。本文介绍了以ARM微处理器STM32F107和PHY接口DP83848为平台,构建的嵌入式系统中,采用LwIP和嵌入式操作系统μC/OS-II,使用协议栈提供的三种应用程序接口,实现嵌入式设备的网络通信功能。 1LwIP和μC/OS-II介绍 1.1 LwIP协议栈 LwIP协议是瑞士计算机科学院的Adam Dunkels等开发的一套用于嵌入式系统的开放源代码TCP/IP协议栈。LwIP含义是light weight(轻型)IP协议,在实现时保持了TCP协议的主要功能基础上减少对RAM的占用,一般它只需要几十K的RAM和40K左右的ROM 就可以运行,这使LwIP协议栈很适合在低端嵌入式系统中使用。 LwIP协议栈的设计才用分层结构的思想,每一个协议都作为一个模块来实现,提供一些与其它协议的接口函数。所有的TCP/IP协议栈都在一个进程当中,这样TCP/IP协议栈就和操作系统内核分开了。而应用程序既可以是单独的进程也可以驻留在TCP/IP进程中,它们之间利用ICP机制进行通讯。如果应用程序是单独的线程可以通过操作系统的邮箱、消息队列等,与协议栈进程通讯。如果应用程序驻留在协议栈进程中,则应用程序可以通过内部回调函数和协议栈进程通讯。 1.2 μC/OS-II实时操作系统 μC/OS-II是一个源码公开、可移植、可固化、可裁剪及占先式的实时多任务操作系统,是专门为嵌入式应用设计的实时操作系统内核,已广泛的应用在各种嵌入式系统中。 μC/OS-II是多任务系统,内核负责管理各个任务,每个任务都有其优先级,μC/OS-II 最多可以管理64个任务,其每个任务都拥有自己独立的堆栈。μC/OS-II提供了非常丰富的系统服务功能,比如信号量、消息邮箱、消息队列、事件标志、内存管理和时间管理等,这些功能可以帮助用户实现非常复杂的应用。 1.3 LwIP协议栈移植到μC/OS-II LwIP协议栈在设计的时候就考虑到了将来的移植问题,因此把所有与硬件、操作系统、编译器有关的部分都全部独立起来,形成了一个操作系统模拟层。操作系统模拟层用进程间的信号量、邮箱机制处理通信问题,而μC/OS-II是一个基于任务调度的嵌入式实时操作系

ZigBee协议栈任务处理分析笔记

ZigBee协议栈任务处理分析笔记 ----(转载请注明出处774910349@https://www.360docs.net/doc/8211465988.html,)Everhuai写于2011-11-17 弄了这么久ZigBee协议栈,今天终于有一点头绪了,基本上知道了整个系统任务怎么被添加,又是怎么被切换的一个过程。下面就简单讲一讲这部分内容。 首先看的当然是main()函数,不过这个函数不是今天的重点,里面有我添加的注释,先就一笔带过吧。 int main( void ) { // Turn off interrupts osal_int_disable( INTS_ALL );//关闭全局中断EA=0,初始化过程不响应任何中断 // Initialization for board related stuff such as LEDs HAL_BOARD_INIT();//配置了时钟、LED、串口 // Make sure supply voltage is high enough to run zmain_vdd_check();//检查电源电压 // Initialize stack memory zmain_ram_init();//初始化堆内存 // Initialize board I/O /初始化板子用到的IO口 InitBoard( OB_COLD ); // Initialze HAL drivers HalDriverInit();//初始化外设 // Initialize NV System //系统初始化 osal_nv_init( NULL ); // Initialize basic NV items//任务初始化 zgInit(); // Initialize the MAC ZMacInit(); // Determine the extended address //确定长地址 zmain_ext_addr(); #ifndef NONWK // Since the AF isn't a task, call it's initialization routine afInit(); #endif // Initialize the operating system osal_init_system(); //系统初始化

Zigbee协议栈学习总结教学提纲

典型的智能家居网络总体结构图 智能家居系统模块整体框图

ZigBee是一种标准,该标准定义了短距离、低速率传输速率无线通讯所需要的一系列通信协议。基于ZigBee的无线网络所使用的工作频段为868MHz、915MHz和2.4GHz,最大数据传输速率为250Kbps。 ZigBee无线网络共分为5层:物理层(PHY),介质访问控制层(MAC),网络层(NWK),应用程序支持子层(APS),应用层(APL)。 总体而言,ZigBee技术有如下特点:高可靠性,低成本,低功耗,高安全性,低数据速率

Zigbee网络中的设备主要分为三种: 1,协调器,协调器节点负责发起并维护一个无线网络,识别网络中的设备加入网络,一个ZigBee 网络只允许有一个ZigBee 协调器; 2,路由器,路由器节点支撑网络链路结构,完成数据包的转发;。ZigBee 网格或树 型网络可以有多个ZigBee 路由器。ZigBee 星型网络不支持ZigBee 路由器。 3,终端节点,负责数据采集和可执行的网络动作。 从功能上,zigbee节点应由微控制器模块、存储器、无线收发模块、电源模块和其它外设功能模块组成。 ZigBee/IEEE802.15.4定义了两种类型的设备:它们是全功能设备(FFD,Full Function Device)和精减功能设备(RFD,Reduced Function Device)。FFD可以当作一个网络协调器或者一个普通的传感器节点,它可以和任何其他的设备通讯,传递由RFD发来的数据到其他设备,即充当了路由的功能。而RFD只能是传感器节点,它只能和FFD进行通讯,经过FFD可以将自己测得数据传送出去。在ZigBee网络中大多是这两种设备,网络中结点数理论上最多可达65,536个,可以组成三种类型网络:星型、网状型和树型。 星状网络由一个PAN 协调器和多个终端设备组成,只存在PAN 协调器与终端的通讯,终端设备间的通讯都需通过PAN 协调器的转发。 树状网络由一个协调器和一个或多个星状结构连接而成,设备除了能与自己的父节点或子节点进行点对点直接通讯外,其他只能通过树状路由完成消息传输。 网状网络是树状网络基础上实现的,与树状网络不同的是,它允许网络中所有具有路由功能的节点直接互连,由路由器中的路由表实现消息的网状路由。 星型,如果用星型网络的话,在房间内的节点是否能够穿墙,与房间外的协调器进行正常通信。

相关文档
最新文档