第六章IIR设计-3频率变换

设计变更通知单

设计变更通知单 表C2—3编号 工程名称北京(曹妃甸)现代产业发 展试验区(生态城先行启动 区)展示中心 专业名称新风工程 设计单位名称杭州中联筑境建筑设 计公司 日期2017-01-16 序号图号变更内容 被动房样板区东户变更内容: 1. 主卫回风管道路径变化,需将已安装好 的回风管拆除更改,同时,风管在静音 排风扇处增设电动风阀。 2. 主卧将已安装好的送风管部分拆除,送 风口调整至北侧,在灯池侧出风,风口 百叶尺寸140*140。 3. 次卧送风管调整较少,管道拆除向南侧 调整,紧挨南侧墙垛,出风口百叶尺寸 140*140。 4. 客厅内将南侧窗户位置风口及其风管拆 除。 5. 餐厅上方主风管拆除后向北侧移动大概 500mm米,此处三通需拆除更换左侧 去往客卧房间风管尺寸由300*140变更 为140*140,右侧通风客厅风口,风管 尺寸由140*140变更为250*140,客厅风 口百叶尺寸由140*140变更为250*140。 6. 客卧送风管道紧挨东侧墙体,需将此处 风管拆除,穿墙位置向西调整,出风口 置于衣柜上方侧出,风口百叶尺寸 140*140. 7. 北侧外墙新风口和排风口需上翻至女儿 墙下500mm,外墙皮位置增加弯头, 因此室内PVC管道需全部拆除,更换管 道。补风口管道同样拆除更换较长管

道,增设弯头进行下翻。 8. 安装队伍安装时,需将设备周围所有管 道进行保温处理。 建 设 单 位监 理 单 位设 计 单 位施 工 单 位签字栏 1、本表由建设单位、监理单位、施工单位和城建档案馆各保存一份。 2、涉及图纸修改的必须注明应修改图纸的图号。 3、不可将不同专业的设计变更办理在同一份变更上。

基于LM331频率电压转换器电路设计

基于LM331频率电压转换器电路设计LM331基本上是从国家半导体精密电压频率转换器。该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的 IC(阈值)。在PIN6负由此产生的脉冲序列的边缘,使得内建 说明 LM331基本上是从国家半导体精密电压频率转换器。该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的 IC(阈值)。在PIN6负由此产生的脉冲序列的边缘,使得内建的比较器电路,触发定时器电路。在任何时刻,电流流过的电流输出引脚(引脚6)将输入频)的值成正比。因此,输入频率(FIN)成正比的电压(VOUT)率和定时元件(R1和C1 将可在负载电阻R4 。电路图

注意事项 该电路可组装在一个VERO板上。 我用15V直流电源电压(+ VS),同时测试电路。 LM331可从5至30V DC之间的任何操作。 R3的值取决于电源电压和方程是R3 =(VS - 2V)/(2毫安)。 根据公式,VS = 15V,R3 = 68K。 输出电压取决于方程,VOUT =((R4)/(R5 + R6))* R1C1 * 2.09V *翅。壶R6可用于校准电路。

利用LM331进行频率电压转换

. 频率/电压变换器* 一、概述 本课题要求熟悉集成频率——电压变换器LM331的主要性能和一种应用; 熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。 二、技术要求 当正弦波信号的频率f i 在200Hz~2kHz 范围内变化时,对应输出的直流电压V i 在1~5V 范围内线形变化; 正弦波信号源采用函数波形发生器的输出(见课题二图5-2-3); 采用±12V 电源供电. 三、设计过程 1.方案选择 可供选择的方案有两种,它们是: 》 ○ 1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比. ○ 2直接应用F/V 变换器LM331,其输出与输入的脉冲信号重复频率成正比. 因为上述第○ 2种方案的性能价格比较高,故本课题用LM331实现. LM331的简要工作原理 LM331的管脚排列和主要性能见附录 LM331既可用作电压――频率转换(VFC ) 可用作频率――电压转换(FVC ) LM331用作FVC 时的原理框如图5-1-1所示. R +V CC 此时,○ 1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平. 工作过程(结合看图5-1-2所示的波形)如下: ;

2/3V CC v ct V 0 v CL p-p V CC 1 s t 图5-1-2 当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。

此时放电管T 截止,于是C t 由V CC 经R t 充电,其上电压V Ct 按指数规律增大。与此同时,电 流开关S 使恒流源I 与○1脚接通,使C L 充电,V CL 按线性增大(因为是恒流源对C L 充电)。 经过的时间,V Ct 增大到2/3V CC 时,则R 有效(R=1,S=0),Q =0,C t 、C L 再次充电。然后,又经过的时间返回到C t 、C L 放电。 以后就重复上面的过程,于是在R L 上就得到一个直流电压V o (这与电源的整流滤波原理类似),并且V o 与输入脉冲的重复频率f i 成正比。 C L 的平均充电电流为i ×()×f i C L 的平均放电电流为V o /R L 当C L 充放电平均电流平衡时,得 V o =I ×()×f i ×R L 式中I 是恒流电流,I=R S 式中是LM331内部的基准电压(即2脚上的电压)。 于是得i t t S L o f C R R R 09 .2V = " 可见,当R S 、R t 、C t 、R L 一定时,V o 正比于f i ,显然,要使V o 与f i 之间的关系保持精确、稳定,则上述元件应选用高精度、高稳定性的。 对于一定的f i ,要使V o 为一定植,可调节R S 的大小。恒流源电流I 允许在10μA~500μA 范围内调节,故R S 可在190k Ω~ k Ω范围内调节。一般R S 在10k Ω左右取用。 2.LM331用作FVC 的典型电路 LM331用作FVC 的电路如图5-1-3所示。 f i lo mA 2.02 V R CC x -=

电压频率变换器的设计讲解

机械与电子工程学院 课程设计报告 课程名称模拟电子技术课程设计设计题目电压频率变换器 所学专业名称电气信息类 班级电类114班 学号********** 学生姓名王*金 指导教师汪* 2012年12月23日

机电学院模拟电子技术课程设计 任务书 设计名称:电压频率转换器 学生姓名:王*金指导教师:汪* 起止时间:自2012 年12 月10 日起至2012 年12 月25 日止 一、课程设计目的 1).熟悉集成电路及有关电子元器件的使用; 2).了解电压平频率转换器主体电路的组成及工作原理; 3).学习电路中基本电路的应用以及单稳态触发器等综合应用。 二、课程设计任务和基本要求 设计任务: 1).熟悉和应用比较器的构成及设计方法,尤其是迟滞比较器的应用。 2).熟悉和应用积分器的构成和设计方法,了解电容在其中的工作原理。 3).熟悉和简单应用二极管作电子开关的构成和设计方法。 4).熟悉迟滞比较器与积分器之间的波形转换。 5).熟悉掌握运用multisim画图、调试和仿真。 基本要求: 1).有明确的设计方案使操作简便易行。 2).设计一个将直流电压转换成给定频率的矩形波,包括:积分器;电压

比较器。 3).输入为直流电压0-10V。 4).输出为f=0-500Hz的矩形波。 5).按规定格式写出课程设计报告书。

机电学院模拟电子技术课程设计指导老师评价表

目录 摘要和关键词 (1) 第一章设计指标 (2) 1.1 设计指标 (2) ◆ 1.1.1设计内容 (2) ◆ 1.1.2设计要求 (2) 第二章系统设计原理及内容 (2) 2.1 设计思想 (2) 电压/频率转换器原理框 (2) 第三章电路各模块方案设计 (3) 3.1 积分器的设计方案 (3) 3.2比较器的设计方案 (4) ◆ 3.2.1电压比较器 (4) ◆ 3.2.2过零比较器 (5) 3.3单稳态触发器 (6) 3.4低通滤波器 (6) 3.5模块的整合 (7) ◆ 3.5.1 电压/频率 (7) ◆ 3.5.2 频率/电压 (7) 第四章结束语 (8) 4.1心得体会 (8) 元件清单 (9) 参考文献 (9)

电压频率转换

A1的反馈电阻决定其直流增益。调整电位器RP1(10kΩ),使输入频率为30kHz 时,A1输出为3V,这样对于输入0~30kHz频率,可得0~3V输出电压,线性度为0.005%左右。 温漂取决于电容C2、A1的反馈电阻以及基准电压(13脚电压)。为此,C2采用温度系数为-120ppm/℃的聚苯乙烯电容,R2(75kΩ)采用温度系数为+120ppm/℃的电阻,基准电压电路的稳压二极管VD1采用LT1004。 本电路开关电容滤波器采用LTC1043,A1采用LF356,也可用其他讼司类似产品代替。 如图是NE555构成的电压/频率转换电路。电路中n,A1和A2构成同相积分器,VT1和A3构成恒流源,NE555构成单稳多谐振荡器。VT2是受NE555控制使其开关工作,对恒流源实行通/断控制。 A1和A2构成同相积分器,即同相输入电位较高,则输出上升;反之,同相输入电位较低,则输出下降。恒流源电流对C1进行充电,由于A2的同相输入为零,致使A2输出向负方向变化。由于A2为反相器,因此,A1的输出当然是向正方向上升。若恒流源切断,则积分电流仅是与恒流源反向的输入电流对C1反向充电,又使A2的输出电压向正方向变化,同理A1的输出向负方向变化。由此可知,积分电流受VT2的控制改变方向,从而实现了A1的积分输出改变方向。A1的输出送至NE555的2脚,只要7脚内部晶体管开路,C2就由R4充电使其电压上升,当6脚电平达到(2/3)Ucc时就会使片内触发器翻转,3脚变为低电平,同时C2通过7脚放电返回到零电位。由于3脚为低电平,VD1导通使VT2截止,这就切断了恒流源向积分器的充电通路。这时,A1输出下降,一直降到(1/3)Ucc时又使NE555的2脚为低电平并处于触发状态,于是又开始新的一轮循环,即3脚输出高电平,C2通过R4充电,VD1截止使恒流源为积分器提供电流直到3脚返回到低电平为止。重复上述过程就形成振荡,将输入0~-1OV电压转换为0~100 kHz的频率输出。

电压频率与频率电压转换电路

电压频率与频率电压 转换电路 2011年8月24日

目录: 摘要: (2) Abstract: (2) 一、设计方案 (3) (一)、电压频率转换电路 (3) 1.基于555定时器的电压频率转换: (3) 2.基于LM331的电压频率转换: (4) (二)、频率电压转换电路 (5) 1.基于LM2907的频率电压转换: (5) 2.基于LM331的频率电压转换 (5) 二、主体电路设计 (8) 三、电路安装 (9) (一)、电压频率转换电路 (9) (二)、频率电压转换电路 (10) 四、系统调试: (10) (一)VFC: (10) (二)FVC: (11) 1

摘要: 本系统利用了LM331的原理及性能设计了频率电压以及电压频率转换电路,实现了0Hz--10kHz频率与0—10V电压的相互转换,电路简单,转换结果线性度好。 关键字:LM331 频率电压转换滤波 Abstract: The system uses the principle and characteristic of LM331 to design the frequency-to-voltage and the voltage-to- frequency conversion circuits, realizes the frequency of 0Hz--10kHz and the voltage of 0 - 10V’s transformation , the circuits are simple and result have good linearity. Key-word: LM331 frequency voltage transformation filter 2

电压频率转换电路介绍及扩展.docx

电压频率转换电路介绍及扩展

测控课程论文 学 院 物理电子工程学院 专 业 电子信息工程 年 级 2*** 级 姓 名 *** 论文题目 电压频率转换电路介绍及扩 展 指导教师 *** 成绩 学 号

2015年12月25日 一、应用背景: 电压频率转换器VFC(Voltage Frequency Converter)是一种实现模数转换功能的器件,将模拟电压量变换为脉冲信号,该输出脉冲信号的频率与输入电压的大小成正比。电压频率转换器也称为电压控制振荡电路(VCO),简称压控振荡电路。随电压—频率转换实际上是一种模拟量和数字量之间的转换技术。当模拟信号(电压或电流)转换为数字信号时,转换器的输出是一串频率正比于模拟信号幅值的矩形波,显然数据是串行的。串行输出的模数转换在数字控制系统中很有用,它可以把模拟量误差信号变成与之成正比的脉冲信号,以驱动步进式伺服机构用来精密控制。 二、V/f 转换器详解 V/f (电压/频率)转换器能把输入信号电压转换成相应的频率信号,即它的输出信号频率与输入信号电压值成比例,故又称为电压控制(压控)振荡器(VCO)。由于频率在传送过程中稳定度很高,能够很好排除干扰,所以其广泛应用在调频,锁相和A/D变换等许多技术领域。电路主要指标有:额定工作频率和动态范围,灵敏度或变换系数,非线性误差,灵敏度误差和温度系数等。通用V/f 转换电路有积分复原式转换电路和电荷平衡式转换电路。 1、积分复原型

下图1、(a)(b)分别为积分复原电路图和波形图。电路主要组成 有:积分器、比较器和积分复原开关等 (a)转换电路 (b)波形图 图1积分复原式V/f 转换电路及波形图 电路分析: 电路包括积分器比较器和积分复原开关灯。其中由N 2、R5-R8组成的滞回比较器的正相输入端两个门限电频为 7 66Z 761R R 7-U +++=R R u R R u -U V ∞ - + + N 1 ∞ - + + N 2 R 2 -E u i R 1 R 3 C R 4 R 5 R 6 R 7 R 8 R 9 u C u P V S1 V S2 V S3 u o O U 1 U 2 u T u o T 1 T 2 t u C U 2 U 1 t t O O u P

电压频率和频率电压转换电路的设计

电压频率和频率电压转换电路的设计 图1 数字测量仪表电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。(2)F/V转换电路F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。它有通用运放F/V转换电路和集成F/V转换器两种类型。1、1设计要求设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。1、2 设计指标(1)输入为直流电压0- 10V,输出为f=0-500Hz的矩形波。 (2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。2 设计内容总体框图设计2.1 V/F转换电路的设计2、1、1 工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。 通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值。

矩形波的振荡频率2、1、2 模块功能积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。滞回比较器:用来输出矩形波,积分器得到的三角波可触发比较器自动翻转形成矩形波。稳压管:用来确定矩形波的幅值。 图2 总体框架图2、2 功能模块的设计2、2、1 积分电路工作原理积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。由于同相积分电路的共模输入分量大,积分误差大,应用场合少,所以不予论述,本课程设计用到的是反相积分电路。图3 积分器反相积分电路如图3 所示,电容器C 引入交流并联电压负反馈,运放工作在线性区。由于积分运算是对瞬时值而言的,所以各电流电压均采用瞬时值符号。由电路得因为“-”端是虚地,即U-=0,并且式中是积分前时刻电容C上的电压,称为电容端电压的初始值。所以把代入上式得当时若输入电压是图所示的阶跃电压,并假定,则t>=0时,由于,所以由此看出,当E为正值时,输出为反向积分,E对电容器恆流充电,其充电电流为E/R,故输出电压随线性变化。当向负值方向增大到集成运放反向饱和电压时,集成运放进入非线性工作状态,保持不变,图3所示。 如输入是方波,则输出将是三角波,波形关系如图4所示。当时间在0~期间时,电容放电当t=1时,当时间在~期间时,电容充电,其初始值所以当 t= 时,。

电压频率转换器

课程设计说明书 课程名称:模拟电子技术课程设计 题目:电压频率转换器 学生姓名: 专业: 班级: 学号: 指导教师: 日期:年月日

电压/频率变换器 一、设计任务与要求 说明:电压/频率变换电路实质上是一种振荡频率随外加控制电压变化的振荡器。 主要技术指标与要求: (1)设计一种电压/频率变换电路,输入υI为直流电压(控制信号),输出频率为?O的矩形脉冲,且 fυI。 O (2)υI变化范围:0~10V。 (3)?O变化范围:0~10kHz (4)转换精度<1% 。 二、方案设计与论证 可知电路有积分器,单稳态触发器,电子开关和恒流源电路组成,狂徒如下:Array 1、电压/频率变换器的输入信号频率 f。与输入电压 Vi 的大小成正比,输入控制电压 Vi 常为直流电压,也可根据要求选用脉冲信号做为控制电压,其输出信号可为正弦波或者脉冲波形电压。 2、本设计利用输入电压的大小改变电容的充电速度,从而改变振荡电路的振荡频率,故采用积分器作为输入电路。积分器的输出信号去控制电压比较器或者 单稳态触发器,可得到矩形脉冲输出,由输出信号电平通过一定反馈方式控制

积分电容恒流放电,当电容放电到某一域值时,电容 C 再次充电。由此实现 Vi 控制电容充放电速度,即控制输出脉冲频率。 三、单元电路设计与参数计算 1、积分器设计: 积分器采用集成运算放大器和 RC 元件构成的反向输入积分器。具体电路如下: 2、单稳态触发器设计 : 单稳态触发器采用 555 定时器构成的单稳电路。具体电路如下:

3、电子开关设计 电子开关采用开关三极管接成反向器形式,当触发器的输出为高电平时,三极管饱和导通,输出近似为 0,当触发器输出为低电平时,三极管截止,输出近似等于+VCC. 4 、恒流源电路设计 恒流源电路可采用开关三极管,稳压二极管Dz 等元件构成。具体电路如下所示。R2/D1/D5给三极管提供基极偏置,R1提供射极偏置,与+/-15V电源构成恒流源电路,三极管的集电极电流为恒定电流。当V1为低电平D2,D3 截止,D4导通,所以积分电容通过三极管放电。当 V1为高电平D2、D3 导通,D4截止,输入信号对积分电容充电。在单稳态触发器的输出端得到矩形脉冲。 四、总原理图及元器件清单 1 总原理图

设计变更通知单.doc

○○股份有限公司 设计变更通知单 编号:

美文欣赏 1、走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。秋天,虽没有玫瑰的芳香,却有秋菊的淡雅,没有繁花似锦,却有硕果累累。秋天,没有夏日的激情,却有浪漫的温情,没有春的奔放,却有收获的喜悦。清风落叶舞秋韵,枝头硕果醉秋容。秋天是甘美的酒,秋天是壮丽的诗,秋天是动人的歌。 2、人的一生就是一个储蓄的过程,在奋斗的时候储存了希望;在耕耘的时候储存了一粒种子;在旅行的时候储存了风景;在微笑的时候储存了快乐。聪明的人善于储蓄,在漫长而短暂的人生旅途中,学会储蓄每一个闪光的瞬间,然后用它们酿成一杯美好的回忆,在四季的变幻与交替之间,散发浓香,珍藏一生! 3、春天来了,我要把心灵放回萦绕柔肠的远方。让心灵长出北归大雁的翅膀,乘着吹动彩云的熏风,捧着湿润江南的霡霂,唱着荡漾晨舟的渔歌,沾着充盈夜窗的芬芳,回到久别的家乡。我翻开解冻的泥土,挖出埋藏在这里的梦,让她沐浴灿烂的阳光,期待她慢慢长出枝蔓,结下向往已久的真爱的果实。 4、好好享受生活吧,每个人都是幸福的。人生山一程,水一程,轻握一份懂得,将牵挂折叠,将幸福尽收,带着明媚,温暖前行,只要心是温润的,再遥远的路也会走的安然,回眸处,愿阳光时时明媚,愿生活处处晴好。 5、漂然月色,时光随风远逝,悄然又到雨季,花,依旧美;心,依旧静。月的柔情,夜懂;心的清澈,雨懂;你的深情,我懂。人生没有绝美,曾经习惯漂浮的你我,曾几何时,向往一种平实的安定,风雨共度,淡然在心,凡尘远路,彼此守护着心的旅程。沧桑不是自然,而是经历;幸福不是状态,而是感受。 6、疏疏篱落,酒意消,惆怅多。阑珊灯火,映照旧阁。红粉朱唇,腔板欲与谁歌?画脸粉色,凝眸着世间因果;未央歌舞,轮回着缘起缘落。舞袖舒广青衣薄,何似院落寂寞。风起,谁人轻叩我柴扉小门,执我之手,听我戏说? 7、经年,未染流殇漠漠清殇。流年为祭。琴瑟曲中倦红妆,霓裳舞中残娇靥。冗长红尘中,一曲浅吟轻诵描绘半世薄凉寂寞,清殇如水。寂寞琉璃,荒城繁心。流逝的痕迹深深印骨。如烟流年中,一抹曼妙娇羞舞尽半世清冷傲然,花祭唯美。邂逅的情劫,淡淡刻心。那些碎时光,用来祭奠流年,可好? 8、缘分不是擦肩而过,而是彼此拥抱。你踮起脚尖,彼此的心就会贴得更近。生活总不完美,总有辛酸的泪,总有失足的悔,总有幽深的怨,总有抱憾的恨。生活亦很完美,总让我们泪中带笑,悔中顿悟,怨中藏喜,恨中生爱。 9、海浪在沙滩上一层一层地漫涌上来,又一层一层地徐徐退去。我与你一起在海水中尽情的戏嬉,海浪翻滚,碧海蓝天,一同感受海的胸怀,一同去领略海的温情。这无边的海,就如同我们俩无尽的爱,重重的将我们包裹。 10、寂寞的严冬里,到处是单调的枯黄色。四处一片萧瑟,连往日明净的小河也失去了光彩,黯然无神地躲在冰面下恹恹欲睡。有母女俩,在散发着丝丝暖意的阳光下,母亲在为女

电压频率转换电路

2 电压/频率转换电路 电压/频率转换即V/F 转换,是将一定的输入电压信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。针对煤矿的特殊要求,我们只分析如何将电压转换成200~1000Hz的频率信号。 实现V/F 转换有很多的集成芯片可以利用,其中LM331是一款性能价格比较高的芯片,由美国NS公司生产,是一种目前十分常用的电压/频率转换器,还可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。由于LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01% ,工作频率低到1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V 等变换电路,并且容易保证转换精度。LM331可采用双电源或单电源供电,可工作在4.0~40V 之间,输出可高达40V,而且可以防止Vs短路。图2是由LM331组成的典型的电压/频率变换器。 其输出频率与电路参数的关系为: Fout= Vin·Rs/(2.09·R1·Rt·Ct) 可见,在参数Rs、R1、Rt、Ct确定后,输出脉冲频率Fout与输入电压Vin成正比,从而实现了电压-频率的线性变换。改变式中Rs的值,可调节电路的转换增益,即V和F之间的线性比例关系。将1~5V 的电压转换成200~1000Hz的频率信号,电路参数理论值为R =18kΩ,Ct=0.022uF,R1=100kΩ,Rs=16.5528kΩ,由于元器件与标称值存在误差,在

第六章 挡土墙及土压力计算

第六章:挡土墙及土压力计算 挡土墙:为防止土体坍塌而修建的挡土结构。土压力:墙后土体对墙背的作用力称为土压力。 一、三种土压力——根据墙、土间可能的位移方向的不同,土压力可以分为三种类型: 1.主动土压力Ea ——在土压力作用下,挡土墙发生离开土体方向的位移,墙后填土达到极限平衡状态,此时墙背上的土压力称为主动土压力,记为Ea 。 2.被动土压力Ep ——在外力作用下,挡土墙发生挤向土体方向的位移,墙后填土达到极限平衡状态,此时墙背上的土压力称为被动土压力,记为Ep 。 3.静止土压力Eo ——墙土间无位移,墙后填土处于弹性平衡状态,此时墙背上的土压力称为静止土压力,记为Eo 。 二、三种土压力在数量上的关系 墙、土间无位移,墙后填土处于弹性平衡状态,与天然状态相同,此时的土压力为静止土压力;在此基础上,墙发生离开土体方向的位移,墙、土间的接触作用减弱,墙、土间的接触压力减小,因此主动土压力在数值上将比静止土压力小;而被动土压力是在静止土压力的基础上墙挤向土体,随着墙、土间挤压位移量的增加,这种挤压作用越来越强,挤压应力越来 越大,因此被动土压力最大。即:Ea

模拟电路之电压频率转换

模拟电路课程设计报告 设计课题:电压频率转换 专业班级:09电气技术教育学生姓名:易群 学号:090805031 指导教师:曾祥华 设计时间:2011/1/10 (以上小二号、行距40磅)

电压频率转换 一、设计任务与要求 1.将输入的直流电压(10组以上正电压)转换成与之对应的频率信号。 2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。(提示:用锯齿波的频率与滞回比较器的电压存在一一对应关系,从而得到不同的频率.) 二、方案设计与论证 (一)电源部分 单相电压经过电源变压器、整流电路、滤波电路和稳压电路转换成稳定的直流电压。直流电源的输入为220V的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压,变压器副边电压通过整流电路从交流电压转换为直流电压,即将正弦波电压转换为单一方向的脉动电压,再通过低通滤波电路滤波,减小电压的脉动,使输出电压平滑,但由于电网电压波动或负载变化时,其平均值也将随之变化,则在滤波电路后接个稳压电路,使输出直流电压基本不受电网电压波动和负载变化的影响,从而获得足够高的稳定性。在此次设计中则用220v、50Hz的交流电通过电源变压器、整流电路、滤波电路、稳压电路利用桥式整流电路实现正、负12V直流电压。方框图如下: 原理:图 10.1.1 直流稳压电源的方框图 电网电压

直流稳压电源通过变压器、整流、滤波、稳压来实现。 1)通过电源变压器降压后,再对220V 、50Hz 的交流电压进行处理,变压器副边电压有效值决定于后面电路的输出电压。 2)变压器副边电压通过整流电路将正弦波电压转换为单一方向的脉动电压,一般整流电路用单相半波整流和单相桥式整流,但单相半波电路仅试用于整流电流较小,对脉动要求不高的场合,所以此次采用单相桥式整流电路。 3)经过整流电路的电压仍含有交流分量,再为了减小电压的脉动,则接一滤波电 路 , 输 出 电 压 平 稳 。 图 如 下 : 4)交流电压通过整流、滤波后虽然变为交流成分较小的直流电压,但是当电网波动或者负载变化时,它的值也会变动,则通过稳压电路使输出直流电压基本不受电网电压波动和负载变化的影响,从而得到更好的稳定行。 方案一、单相半波整流电路 设变压器的副边电压有效值为U 2,则其瞬时值U 2=2sinwt 。 在U 2的正半周期,A 点位正,B 点位负,二极管外加反向电压,因而处于导通状态。电流从A 点流出,经过二极管D 和负载R L 流入B 点, u 0= u 22sinwt (wt=0~π) 。在u 2的负周期,B 点为正,A 点为负,二极管外加反向电压,因而处于截至状态,u 0=0(wt=π~2π)。负载R L 的电压和电流都具有单一方向脉动的特性,图1为单相半波整流电路: 滤

06章挡土墙设计-习题答案路基路面工程

第六章挡土墙设计 一、名词解释 1.挡土墙 2. 主要力系 3. 主动土压力 4.被动土压力 5.锚定板挡土墙 6. 第二破裂面 1.挡土墙:为防止土体坍塌而修筑的,主要承受侧向土压力的墙式建筑物 2.主要力系:经常作用于挡土墙的各种力 3.主动土压力:当挡土墙向外移动时(位移或倾覆),土压力随之减少,直到墙后土体 沿破裂面下滑而处于极限平衡状态,作用于墙背的土压力称为主动土压力 4.被动土压力:当挡土墙向土体挤压移动时,土压力随之增大,土体被推移向上滑动 处于极限平衡状态,作用于土体对墙背的抗力称为主动土压力 5.锚定板挡土墙:由钢筋混凝土墙面、钢拉杆、锚定板以及其间的填土共同形成的一 种组合挡土结构 6.第二破裂面:当墙后土体达到主动极限平衡状态时,破裂棱体并不沿墙背或假想墙 背滑动,而是沿着第一破裂面与假想墙背之间的另一破裂面滑动,该破裂面称为第二破裂面 三、计算题: 1.某挡土墙高H=6m,墙顶宽度B=0.7m,墙底宽度B’= 2.5m;墙背直立(α=0)填土表面水平(β=0),墙背光滑(δ=0),用毛石和水泥砂浆砌筑;砌体容重为22KN/m3;填土内摩擦角φ=40°,填土粘聚力c=0,填土容重为19KN/m3,基底摩擦系数为0.5,地基承载力抗力值为f=180kPa,试验算该挡土墙抗滑稳定性、抗倾覆稳定性和地基承载力。(提示:土压力计算采用公式6-6或采用土力学中朗金(Rankine)主动土压力公式,土压力作用点 位于墙高H/3位置)。 解: (1)土压力计算: 由于挡土墙后土压力沿着墙高呈三角形分布,因此土压力作用点距离墙底的距离为: z=H/3=6/3=2m (2)挡土墙自重及重心: 将挡土墙截面分成一个三角形和一个矩形,分别计算自重: G1和G2的作用点离O点的距离分别为 (3)倾覆稳定验算: 挡土墙满足抗倾覆稳定设计要求 (4)滑动稳定验算: 挡土墙满足抗滑稳定设计要求 (5)地基承载力验算 作用于基底的总垂直力 N1=G1+G2=119+92.4=211.4KN/m 合力作用点离O点的距离:

(重要)利用LM331进行频率电压转换

频率/电压变换器实验报告设计 一、实验目的 熟悉集成频率——电压变换器LM331的主要性能和一种应用; 熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。 二、技术要求 当方波信号的频率f i在200Hz~2kHz范围内变化时,对应输出的直流电压V i在1~5V范围内线形变化; 方波信号源采用函数波形发生器的输出(见课题二图5-2-3); 采用±12V电源供电. 三、设计报告要求 1.列出已知条件,技术指标。 2.分析电路原理。 3.写出设计步骤: (1)电路形式选择。 (2)电路设计,对所选电路中的各元件值进行计算式估算,并标于图中。 4.测试与调整: (1)按技术要求测试数据,对不满足技术指标的参数进行调整,并整理列出表格,在方格纸上绘出波形。 (2)故障分析几说明。 5.误差分析。 四、实验仪器及主要器件 1.仪器 双踪示波器 1台 直流稳压电源 1台 毫伏表 1台 万用表 1台 低频信号发生器 1台 2.元器件 μA741 1只 LM331 1只 LM324 1只 电位器、电阻、电容若干 五、设计过程 1.方案选择 可供选择的方案有两种,它们是: ○1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比. ○2直接应用F/V变换器LM331,其输出与输入的脉冲信号重复频率成正比. 因为上述第○2种方案的性能价格比较高,故本课题用LM331实现. LM331的简要工作原理

LM331的管脚排列和主要性能见附录 LM331既可用作电压――频率转换(VFC ) 可用作频率――电压转换(FVC ) LM331用作FVC 时的原理框如图5-1-1所示. -输入比较器 定时比较器 + +56 7 Q T C t R t V CC 2/3V CC 9/10V CC s 置“1”端 置“0”端 R fi 图5-1-1 Q 此时,○ 1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○ 7脚接比较电平. 工作过程(结合看图5-1-2所示的波形)如下: 当输入负脉冲到达时,由于○6脚电平低于○ 7脚电平,所以S=1(高电平),Q =0(低电平)。此时放电管T 截止, 于是C t 由V CC 经R t 充电,其上电压V Ct 按指数规律增大。与此同时,电流开关S 使恒流源I 与○ 1脚接通,使C L 充电,V CL 按线性增大(因为是恒流源对C L 充电)。

设计变更通知单四篇

设计变更通知单四篇篇一:设计变更通知单 工程名称原施工图编号 变更部位变更设计图号 变更原因变更设计内容

设计单位:批准:(盖章) 审核: 设计: 年月日

篇二:设计变更通知单设计变更通知单 表C2—3 编号 05-C2-001 工程名称前门东区20XX年修缮工程专业名称 给排水及采 暖 设计单位名 称 北京建工建筑设计研究院日期20XX-10-26 序号图号变更内容 1、前门东区20XX年修缮工程大江胡同83号采暖 用管≥40使用热镀锌钢管,保温使用50mm聚氨酯, 外做玻璃钢保护层。 签 字 栏 建设单位监理单位设计单位施工单位

1、本表由建设单位、监理单位、施工单位和城建档案馆各保存一份。 2、涉及图纸修改的必须注明应修改图纸的图号。 3、不可将不同专业的设计变更办理在同一份变更上。 4、“专业名称”栏应按专业填写,如建筑、结构、给排水、电气、通风空调等。

篇三:设计变更通知单 工程名称漯河市双汇广场景观工程设计单位南京南华建筑设计事务所 变更部位篮球场结构施工单位河南水利建筑工程有限公司 变更原因和内容: 1、篮球场设计标高59.14m,其结构层厚24cm,也就是说结构层底标高应为58.90m,而实际原有地面(旧篮球场)高为58.82m,即现地面到结构层底还有8cm,其厚度不是一个结构层,为此基底采取加大碎石垫层的做法,即篮球场原设计为10cm 碎石垫层改为18cm厚碎石垫层。 2、另外考虑到混凝土基础极易受温度的变化而开裂、变形经甲方、现场监理、设计共同研究决定将篮球场砼基层改为沥青混凝土基层。 3、篮球场的东侧、北侧、西侧增加排水沟,南侧增设300×500×80厚砼路侧石。 4、排水沟在东西两侧用Ф150PVC管与主排水连接,长度分别为。 4、篮球场围网围在排水沟的外侧,结构不变,平面尺寸为52.66+52.66+37.66+37.66=180.64m。 5、增加灯光球场照明灯12盏,专用线路长米,配电箱一个。 6、双层坐凳观光台28米,两用垃圾箱6个。 其结构详见附图。

传感器中的电压电流、电压频率变换的实现.

传感器中的电压/电流、电压/频率变换 的实现 传感器中的电压/电流、电压/频率变换的实现 类别:传感与控制 随着电子技术和计算机技术的迅速进步,工业自动化得到了快速发展,而在工业控制领域,检测传感器件起着越来越重要的作用,各种先进的传感器正在大量应用。但是很多传感器只提供4~20mA或者0~5V的直流模拟信号输出,而我国煤矿使用的煤矿安全监测系统大部分只允许接入1~5mA或者200~1000Hz的模拟信号,所以在一般工业现场使用的传感器要实现在煤矿的应用,除了考虑防爆因素外,还必须进行输出模拟信号的转换。这种输出信号的转换如果购买专用的转换设备,不仅价格高,使用也不是很方便。实际上自己设计制作一些转换电路也可以方便的实现所需性能,下面就介绍两种实用的电压/电流、电压/频率转换电路的设计和原理。 1电压/电流转换电路电压/电流转换即V/I转换,是将输入的电压信号转换成满足一定关系的电流信号,转换后的电流相当一个输出可调的恒流源,其输出电流应能够保持稳定而不会随负载的变化而变化。V/I转换原理如图1。由图1可见,电路主要元件为一运算放大器LM324和三极管BG9013及其他辅助元件构成,V0为偏置电压,Vin为输入电压即待转换电压,R为负载电阻。其中运算放大器起比较器作用,将正相端电压输入信号与反相端电压V-进行比较,经运算放大器放大后再经三极管放大,BG9013的射级电流Ie作用在电位器Rw上,由运放性质可知:V-=Ie·Rw=(1+k)Ib·Rw(k为BG9013的放大倍数)流经负荷R的电流Io即BG9013的集电极电流等于k·Ib。令R1=R2,则有V0+Vm=V+=V-=(1+k)Ib·Rw=(1+1/k)Io·Rw其中k》1,所以Io≈(Vo+Vin)/Rw。由上述分析可见,输出电流Io的大小在偏置电压和反馈电阻Rw为定值时,与输入电压Vin成正比,而与负载电阻R的大小无关,说明了电路良好的恒流性能。改变V0的大小,可在Vin=0时改变Io的输出。在V0一定时改变Rw的大小,可以改变Vin与Io的比例关系。由Io≈(V0+Vi)/Rw关系式也可以看出,当确定了Vin和Io之间的比例关系后,即可方便地确定偏置电压V0和反馈电阻Rw。例如将0~5V电压转换成0~5mA的电流信号,可令V0=0,Rw=1kΩ,其中Vo=0相当于将其直接接地。若将0~5V电压信号转换成1~5mA电流信号,则可确定V0=1.25V,Rw=1.25kΩ。同样若将4~20mA电流信号转换成1~5mA电流信号,只需先将4~20mA转换成电压即可按上述关系确定V0和Rw的参数大小,其他转换可依次类推。为了使输入输出获得良好的线性对应关系,要特别注意元器件的选择,如输入电阻R1、R2及反馈电阻Rw,要选用低温漂的精

模电课程设计(电压频率转换电路)

模拟电路课程设计报告设计课题:电压—频率转换电路 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

题目电压—频率转换电路 一、设计任务与要求 1.将输入的直流电压(10组以上正电压)转换成与之对应的频率信号。 2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 (提示:用锯齿波的频率与滞回比较器的电压存在一一对应关系,从而得到不同的频率.) 二、方案设计与论证 用集成运放构成的电压—频率转换电路,将直流电压转换成频率与其数值成正比的输出电压,其输出为矩形波。 方案一、采用电荷平衡式电路 输入电压→积分器→滞回比较器→输入 原理图:

方案二、采用复位式电路 输入电压→积分器→单限比较器→输出 原理图: 通过对两种转换电路进行比较分析,我选择方案一来实现电压—频率的转换。方案一的电路图简单,操作起来更容易,器件少,价钱也更便宜,且方案一的线性误差小,精度高,实验结果更准确,所以我选择方案一。 三、单元电路设计与参数计算 1、电源部分:

图1 电源原理图 单相交流电经过电源变压器、单相桥式整流电路、滤波电路和稳压电路转换成稳定的直流电压。 直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压进行处理。变压器副边电压通过整流电路从交流电压转换为直流电压,即将正弦波电压转换为单一方向的脉冲电压。 为了减少电压的脉动,需通过低通滤波电路滤波,使输出电压平滑。 交流电压通过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或者负载变化时,其平均值也将随之变化。稳压电路的功能是使输出直流电压基本不受电网电压波动和负载变化的影响,从而获得足够高的稳定性。 取值为: 变压器:规格220V~15V 整流芯片:LM7812、LM7912 整流用的二极管:1N4007 电解电容:3300uf C2、C3:0.1uf C4、C5:0.47uf C7、C8:220uf 发光二极管上的R:1KΩ 2、电压—频率转换部分: ○1积分器:

电压频率的转换

模拟电路课程设计电压——频率转换电路 教学学院:物理与电子信息学院专业:10电气技术教育 学号:100805016 姓名:杨球 指导教师:刘玲丽 完成日期:2011年1月12号

设计一个电压/频率转换电路 一、设计任务与要求 ①将输入的直流电压(10组以上正电压)转换成与之对应的频率信号。 ②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 (提示:用锯齿波的频率与滞回比较器的电压存在一一对应关系,从而得到不同的频率.) 二、方案设计与论证 1 电源部分. 直流稳压电源一般由电源变压器,整流电路,滤波电路及稳压电路所组成。变压器把电网高压交流电压变为所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电源。 1).直流稳压电源设计思路 (1)电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。 (2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。 (3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。 (4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL。 2).直流稳压电源原理 直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成,其中: (1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。 (2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电压,常用的整流滤波电路有全波整流、桥式整流,此处用的是桥式整流电路。

相关文档
最新文档