高考一轮复习相互独立事件同时发生的概率练习题

高考一轮复习相互独立事件同时发生的概率练习题
高考一轮复习相互独立事件同时发生的概率练习题

相互独立事件同时发生的概率

一、基本知识点复习

1.积事件的含义及其表示:

1.相互独立事件的定义:

3.相互独立事件同时发生的概率公式:

4.独立重复试验的含义,

5. n 次独立重复试验中,某事件恰好发生k 次的概率公式:

二、复习练习题

(一)选择题

1.甲、乙两人进行围棋比赛,比赛采用5局3胜制,若有一方先胜3局则比赛结

束,假定甲每局比赛获胜的概率均为3

2,则甲以3:1获胜的概率为()A.278 B.8132 C.94 D. 9

82.三人独立的破译一份密码,他们能单独译出的概率分别为4

1,31,51,假设他们破译密码是彼此独立的,则此密码被破译的概率是()

A.52

B.32

C.53

D. 4

33.某人射击一次,击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为()

A.12581

B.12554

C.12536

D. 125

274.若事件E 和F 相互独立,且4

1)()(F P E P ,则)(F E P 的值为()A.0 B.161 C.41 D. 2

15.在4次独立重复试验中,随机事件A 恰好发生1次概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是()

A.1,4.0

B.6.0,0

C.4.0,0

D. 1

,6.06.从甲袋中摸出一个红球的概率是31,从乙袋中摸出一个红球的概率是2

1,现从两袋中各摸出一个球,则3

2等于()A .两个球不都是红球的概率; B.两个球都是红球的概率;

C .两个球中至少有一个红球的概率; D.两球中恰有一个红球的概率.

7.某校A 班有学生40名,其中男生24名.B 班有学生50名,其中女生30名.现从A,B 班各找一名学生进行问卷调查,则找出的学生是一男一女的概率是()A.2512 B.2513 C.2516 D. 25

9

8.甲、乙、丙三人用计算机联网学习数学,每天上课后独立完成6道自我检测题,

甲答及格的概率为108,乙答及格的概率为106,丙答及格的概率为10

7.三人各答一次,则三人中只有一人答及格的概率为()

A.203

B.12542

C.250

47 D. 以上全不对9.袋子里有5个黑球,4个白球.每次随机取出一球,若取得黑球,则放入袋中,重新取球;若取得白球则停止取球.那么在第四次取球之后停止的概率为()A.451435C C C B.94)95(3 C.41

53 D. 1

4C 9

4)95(310.一个电路上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,且这两根熔丝熔断与否相互独立.则其中至少有一根熔断的概率为()

A.039.026.015.0

B.961

.026.015.01C.629.074.085.0 D. 371

.074.085.01二、填空题

11.某类电脑无故障运行10000小时的概率是0.2,则3台此类电脑在运行10000小时以上最多只有1台出故障的概率为

12.有一批书共100本,其中文科书40本,理科书60本,按装潢可分为精装、平装两种,精装书70本,某人从这100本书中任取一本,恰是文科书,放回后再任取一本,恰是精装书,这一事件的概率是

13.地震发生后拯救被埋人员就是同时间赛跑,下表给出了救援时间与被埋者存活率的关系

震后救援时间30分钟18小时3天5天

存活率99﹪80﹪30﹪7﹪

四川·汶川大地震后全国人民齐心协力展开救援工作,震后18小时救援人员探测到某废墟下有5名被困者,这5人中至少有4人存活的概率为,若震后3天才发现被困者,则至少有4人存活的概率为

14.一道数学竞赛题,甲生解出它的概率为

21,乙生解出它的概率为31,丙生解出它的概率为41

,由甲、乙、丙三人独立解答此题,恰有一人解出的概率是

15.某射手射击一次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第三次击中目标的概率是0.9;②他恰好击中目标3次的概率是1.09.03

;③他至少击中目标一次的概率的概率

是41.01;其中,正确结论的序号是

三、解答题

16.设一射手平均每射击10次中靶4次,求在5次射击中

(1)恰好击中1次的概率;

(2)第二次击中的概率;

(3)恰好击中2次的概率;

(4)第二、三两次击中的概率;

(5)至少击中1次的概率.

17.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局比赛中加获胜的概率是0.6,乙获胜的概率是0.4,各局比赛的结果相互独立,已知前2局中,甲、乙各胜1局.

(1)求再赛2局结束这次比赛的概率;

(2)求甲获得这次比赛的胜利的概率.

18.某单位为绿化环境,移栽了甲、乙两种大树各2株,设甲、乙两种大树的存

活率分别为5

465和,且各株大树是否存活互不影响.求移栽的4株大树中(1)至少有一株存活的概率;

(2)两种大树各存活一株的概率.

19.一家3口都会下棋,互有输赢,但父亲的棋艺最高.一天,儿子想要父亲给钱去买一套奥数教程.父亲说:“你得与我们下3盘棋,我和你母亲轮流与你下.”儿子问:“是先和您下,还是先和妈妈下?”父亲说:“这可以由你选择.”请问儿子应当如何选择?

20.甲、乙两人各射击一次,击中目标的概率分别是4

332和,假设两人是否击中目标相互之间没有影响.

(1)就甲射击4次,至少有一次击中目标的概率;

(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;

(3)假设某人连续2次未击中目标,则终止其射击.问:乙恰好射击5次后被终止射击的概率是多少?

21. 甲、乙、丙三人在同一办公室工作,办公室里只有一部电话机,设经该机打

进的电话是打给甲、乙、丙的概率依次为61、31、2

1,若在一段时间内打进三个电话,且各个电话相互独立,求:

(1)这三个电话是打给同一个人的概率;

(2)这三个电话恰有两个是打给甲的概率.

b6相互独立事件概率求解

本文为自本人珍藏 版权所有 仅供参考 本文为本人珍藏,有较高的使用、参考、借鉴价值!! 本文为本人珍藏,有较高的使用、参考、借鉴价值!! 相互独立事件概率问题求解辨析 焦景会 055350 河北隆尧一中 事件A 、B 是相互独立事件,当且仅当事件A 和B 是否发生,相互之间没有影响。如果事件A 与B 相互独立,那么A 与B 、A 与B 、A 与B 也都是相互独立的。尤其在涉及“至多”或“至少”问题时,常先求此事件的对立事件的概率,再利用公式()1()P A P A =-求出所求事件的概率。这种解法,称为逆向思考方法。下面就相互独立事件概率问题举例分析如下。 一、 反面求解相互独立事件同时发生的概率 例1、加工某零件需3道工序,设第1、2、3道工序出现次品的概率分别为0.02,0.03,0.05,假设三道工序互不影响,求加工出来的零件是次品的概率。 解:由题中“三道工序互不影响”,可判定1、2、3道工序出现次品的事件是相互独立事件,可用相互独立事件的乘法公式。 设A=“加工出来的零件是次品”,i A =“第i 道工序出现次品”,则123A A A A =??, 由于三道工序互不影响,123()()()()P A p A P A P A ∴=??=(1-0.12)(1-0.03)(1-0.05)=0.90307。所以 ()1()10.903070.09693P A P A =-=-=。 点评:两个或多个相互独立事件同时发生的概率等于每个事件发生的概率积,结合“对立事件的概率和为1”,先求其对立事件的概率,然后再求原事件概率,采用这种解法可使问题变得简易。 二、用排列组合思想理解相互独立事件的概率 例2、甲乙两人各投篮3次,每次投中得分概率为0.6,0.7,求甲乙两人得分相同的概率。 解: 甲乙两人得分相同可以有;甲乙都中0、1、2、3次共四种情况。设甲投中0、1、2、3次概率分别为0123A A A A 、、、,乙投中0、1、2、3次概率分别为 0123B 、B 、B 、B , 则 0012233()()()()P P A B P A B P A B P A B =+++ 1 1 2 2 3 3 2 2 2 2 3 33 30.40.30.60.40.70.30.60.40.70.3C C C C =?+ ???+???3 30.60.70.321+?=。 点评:全面考虑各种可能性,然后利用公式()(1)k k n k n n P k p p C -=-。 三、通过分类或分步将复杂事件分解为简单事件

3.1随机事件的概率教案

3.1随机事件的概率教案 篇一:3.1.1随机事件的概率教案 3.1随机事件的概率(一) 教学目标 1.通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念及其意义; 2.根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键; 3.理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法,理解频率和概率的区别和联系; 4.通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识.教学重点 根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象,理解频率和概率的区别和联系. 教学难点 理解随机事件的频率定义及概率的统计定义及计算概率的方法,理解频率和概率的区别和联系. 教学过程 一、问题情景:

[设置情景]1名数学家=10个师 在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力。这句话有一个非同寻常的来历。 1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额。 为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性。一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大。 美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口。结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应。 在自然界和实际生活中,我们会遇到各种各样的现象。如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象。 确定性现象,一般有着较明显得内在规律,因此比较容易掌握它。而随机现象,由于它具有不确定性,因此它成为人们研究的重点。随机

随机变量条件概率与事件相互独立

2. 2.1条件概率 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“ Y ” ,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y ,Y Y Y 和 Y Y Y .用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B 仅包含一个基本事件Y Y Y .由古典概型计算公式可 知,最后一名同学抽到中奖奖券的概率为1()3 P B = . 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y 和Y Y Y .而“最后一名同学抽到中奖 奖券”包含的基本事件仍是Y Y Y .由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为 1 2 ,不妨记为P (B|A ) , 其中A 表示事件“第一名同学没有抽到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件 B 发生的概率,使得 P ( B|A )≠P ( B ) . 思考:对于上面的事件A 和事件B ,P ( B|A )与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y , Y Y Y ,Y Y Y } .既然已知事件A 必然发生,那么只需在A={Y Y Y , Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y 和Y Y Y .在事件 A 发 生的情况下事件B 发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y Y Y ,因 此 (|)P B A = 12=() () n AB n A . 其中n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式, ()() (),()()() n AB n A P AB P A n n = =ΩΩ 其中 n (Ω)表示Ω中包含的基本事件个数.所以, (|)P B A =()()()() ()()()() n AB n AB P AB n n A n P n Ω==ΩΩΩ. 因此,可以通过事件A 和事件AB 的概率来表示P (B| A ) . 条件概率 1.定义 设A 和B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). (|)P B A 读作A 发生的条件下 B 发生的概率.

随机事件及其概率检测试题(有参考答案与点拨)

随机事件及其概率检测试题(有参考答案与点拨) 随机事件及其概率同步练习学力测评双基复习巩固 1.下列事件属于不可能事件的为() A.连续投掷骰子两次,掷得的点数和为4 B.连续投掷骰子两次,掷得的点数和为8 C.连续投掷骰子两次,掷得的点数和为12 D.连续投掷骰子两次,掷得的点数和为16 2.下列事件属于必然事件的为() A.没有水分,种子发芽 B.电话在响一声时就被接到 C.实数的平方为正数 D.全等三角形面积相等3.给出下列事件:①同学甲竞选班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A、B、C,满足,,则;⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥7月天下雪;⑦从1,3,9中任选两数相加,其和为偶数;⑧骑车通过10个十字路口,均遇红灯.其中属于随机事件的有() A.4个 B.4个 C.5个 D.6个 4.在10件同类产品中,其中8件为正品,2件为次品.从中任意抽出3件的必然事件是() A.3件都是正品 B.至少有1件是次品 C.3件都是次品 D.至少有1件是正品 5.事件A的概率 P(A)必须满足() A.0<P(A)<1 B.P(A)=1 C.0≤P(A)≤1 D.P(A)=0或1 6.下列说法正确的为() A.概率就是频率 B.概率为1的事件可以不发生 C.概率为0的事件一定不会发生 D.概率不可以是一个无理数7.在第1、3、6、8、16路公共汽车都要依靠的一个站(假设这个站只能停靠一辆汽车),有一位乘客等候第6路或第16路汽车.假定当时各路汽车首先到站的可能性都是相等,则首先到站正好是这位乘客所需求的汽车的概率等于() A. B. C. D. 8.每道选择题都有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,某人说:“每个选择支正确的概率是,我每题都选择第一个选择支,则一定有3题选择结果正确” .对该人的话进行判断,其结论是() A.正确的 B.错误的 C.模棱两可的 D.有歧义的 9.在天气预报中,有“降水概率预报”,例如预报“明天降水概率为78%”,这是指() A.明天该地区有78%的地区降水,其他22%的地区不降水 B.明天该地区约有78%的时间降水,其他时

《随机事件发生的可能性》教案

《随机事件发生的可能性》教案 教学目标 知识与技能 理解随机事件发生的可能性大小. 过程与方法 通过举出生活中常见的例子,体会确定性事件和随机事件的概念,认识随机事件发生的可能性大小. 教学重点 不同的随机事件发生的可能性的大小有可能不同. 教学难点 理解随机事件发生的可能性的大小. 教学过程 一、随机事件发生的可能性大小 动脑筋: ①掷一枚均匀的硬币,是正面朝上的可能性大,还是反面朝上的可能性大? ②一个袋中有8个球,5红3白,球的大小和质地完全相同,搅均匀后从袋中任意取出一个球,是取出红球的可能性大,还是取出白球的可能性大? 【教学说明】教师引导学生讨论,分小组回答完成. 归纳:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性大小有可能不同,可能性的大小也就是概率的大小. 二、例题讲解 例1、如教材134页图13-1,是一个可以转动的转盘.盘面上有8个全等的扇形区域,其中1个是红色,2个是绿色,2个是白色,3个是黄色.用力转动转盘,当转盘停止后,指针对准哪种颜色区域的可能性最小?对准哪种颜色区域的可能性最大? 例2、任意掷一枚骰子,比较下列情况出现的可能性的大小. (1)面朝上的点数系小于2;(2)面朝上的点数是奇数 (3)面朝上的点数是偶数;(4)面朝上的点数大于2. 三、练一练 1、比较下列随机事件发生的可能性大小. (1)如图,转动一个能自由转动的转盘,指针指向红色区域和指向白色区域; (2)小明和小亮做掷硬币的游戏,他们商定:将一枚硬币掷两次,如果两次朝上的面相同,那么小明获胜;如果两次朝上的面不同,那么小亮获胜.谁获胜的可能性大?

2、10张扑克牌中有3张黑桃、2张方片、5张红桃.从中任意抽取一张,抽到哪一种花色牌的可能性最大?抽到哪一种花色牌的可能性最小? 四、师生互动,课堂小结 1.师生共同回顾事件的分类及概念,知道随机事件发生的可能性有大小. 2.通过这节课学习,你掌握了哪些知识?还有哪些疑问?请与同学们交流.

随机事件的概率知识点总结

随机事件的概率 一、事件 1.在条件S下,一定会发生的事件,叫做相对于条件S的必然事件. 2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件. 3.在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件. 二、概率和频率 1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据. 2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现 的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n A n 为事件A出现的频率. 3.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A). 三、事件的关系与运算

四、概率的几个基本性质 1.概率的取值范围:0≤P(A)≤1. 2.必然事件的概率P(E)=1. 3.不可能事件的概率P(F)=0. 4.概率的加法公式: 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). 5.对立事件的概率: 若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1-P(B). 1.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.则下列结果正确的是( ) A.P(M)=1 3 P(N)= 1 2 B.P(M)=1 2 P(N)= 1 2 C.P(M)=1 3 P(N)= 3 4 D.P(M)=1 2 P(N)= 3 4 解析:选D 由条件知事件M包含:(正、反)、(反、正).事件N包含:(正、正)、(正、反)、(反、正). 故P(M)=1 2 ,P(N)= 3 4 . 2.(2012·)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球 D.恰有一个红球与恰有二个红球 解析:选D A中的两个事件不互斥,B中两事件互斥且对立,C中的两个事件不互斥,D

教案.1随机事件与概率(公开课)

第二十五章概率初步 25.1随机事件与概率 学习目标: 1.了解随机事件、必然事件、不可能事件的概念。 2.理解概率的概念和意义。 学习重点与难点:对概率定义的初步理解。 学习过程:自学指导1:看课本125页到127页问题3上面的内容。 自学检测(1): 1、在一定条件下,有些事件____________________, 这样的事件称为必然事件。 2、在一定条件下,有些事件____________________, 这样的事件称为不可能事件。___________和____________统称为确定事件。 3、在一定条件下,有些事件__________________________________的事件,称为随机事件。 4.必然事件发生的可能性是,不可能事件发生的可能性是________,随机事件发生的可能性. 学习过程:自学指导2:看课本127页到131页问题3上面的内容 自学检测(2): 1、对于一个随机事件A,我们把刻画其发生可能性大小的_________,称为随机事 件A发生的概率。 2、一般地,如果在一次试验中,有______种可能的结果,并且它们发生的可能 性都相等,事件A包含其中的种结果,那么事件A发生的概率 P(A)= 。 达标测试 1.(梅州)下列事件中,必然事件是() A.任意掷一枚均匀的硬币,正面朝上 B.黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门 C.通常情况下,水往低处流 D.上学的路上一定能遇到同班同学 2.(台州市)下列事件是随机事件的是()

A .台州今年国庆节当天的最高气温是35℃ B .在一个装着白球和黑球的袋中摸球,摸出红球 C .抛掷一石头,石头终将落地 D .有一名运动员奔跑的速度是20米/秒 3.(甘肃省白银市)如图,小红和小丽在操场上做游戏,她们先在地上画出一个 圆圈,然后蒙上眼在一定距离外向圆圈内投小石子,则投一次就正好投到圆圈内是( ) A .必然事件(必然发生的事件) B .不可能事件(不可能发生的事件) C .确定事件(必然发生或不可能发生的事件) D .不确定事件(随机事件) 4.(湘潭) 将五张分别印有北京2008年奥运会吉祥物 “贝贝,晶晶,欢欢,迎 迎,妮妮”的卡片(卡片的形状、大小一样,质地相同)放入盒中,从中随机抽取一张卡片印有“妮妮”的概率为( ) A. 1 2 B. 13 C. 14 D. 15 5、(宜宾市)一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是 ( ) A. 9 4 B. 92 C. 3 1 D. 3 2 6.(广东湛江市)从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是 12 ,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 7.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 8. ( 宁夏回族自治区)从-1,1,2三个数中任取一个,作为一次函数y=kx+3的

相互独立事件的概率

第79课 相互独立事件的概率 ●考试目标 主词填空 1.如果事件A (或B )是否发生的对事件B (或A )发生的概率没有影响,那么这样的事件叫做相互独 立事件.相互独立事件A 和B 同时发生,记作A ·B,其概率由相互独立事件概率的乘法公式: P (A ·B)=P(A)·P(B). 2.“互斥”事件A 与B ,要记住其判别的依据是A ∩B=;而“相互独立”事件A 与B ,是指它们中的任何一个发生与否对另一个事件发生的概率没有“影响”. 3.如果在1次试验中,某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次 的概率. P n (k )=k n k k n P P C --)1(. ● 题型示例 点津归纳 【例1】 甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算: (1)两人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率. 【解前点津】 “两人都击中目标”是事件A ·B ;“恰有1人击中目标”是A ·A B 或·B ;“至少有1人击中目标”是A ·B 或A ·A B 或·B . 【规范解答】 我们来记“甲射击一次击中目标”为事件A ,“乙射击一次击中目标”为事件B . (1)显然,“两人各射击一次,都击中目标”就是事件A ·B ,又由于事件A 与B 相互独立. ∴ P (A ·B )=P (A )·P (B )=0.8×0.8=0.64. (2)“两个各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A ·B ),另一种是甲未击中乙击中(即A ·B ),根据题意这两种情况在各射击一次时不可能同时发生,即事件A ·A B 与·B 是互斥的,所以所求概率为: P =)()()()()()(B P A P B P A P B A P B A P ?+?=?+? =0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32. (3) “两人各射击一次,至少有一人击中目标”的概率为: P =P (A ·B)+[P (A ·A P B ()+·B)]=0.64+0.32=0.96. 【解后归纳】 本题考查应用相互独立事件同时发生的概率的有关知识的正确应用. 【例2】如图,电路由电池A 、B 、C 并联组成.电池A 、B 、C 损坏的概率分别是0.3、0.2、0.2,求电路断电的概率. 【解前点津】 可规定A =“电池A 损坏”,B =“电池B 损坏”,C =“电池C 损坏”.这样,就有事

相互独立事件同时发生的概率典型例题

典型例题 例1 掷三颗骰子,试求: (1)没有一颗骰子出现1点或6点的概率; (2)恰好有一颗骰子出现1点或6点的概率. 分析:我们把三颗骰子出现1点或6点分别记为事件,由已知,是相互独立事件.问题(1)没有1颗骰子出现1点或6点相当于,问题(2)恰有一颗骰子出现1点或6点可分为三类:,三个事件为互斥事件.问题(1)可以用相互独立事件的概率公式求解,问题(2)可以用互斥事件的概率公式求解. 解:记“第1颗骰子出现1点或6点”为事件,由已知是相互独立事件,且. (1)没有1颗骰子出现1点或6点,也就是事件全不发生,即事件,所以所求概率为: . (2)恰好有1颗骰子出现1点或6点,即发生不发生不发生或 不发生发生不发生或不发生不发生发生,用符号表示为事件 ,所求概率为:

说明:再加上问题:至少有1颗骰子出现1点或6点的概率是多少我们逆向思考,其对立事件为“没有一颗骰子出现1点或6点,即问题(1)中的事件, 所求概率为,在日常生活中,经常遇到几个独立事件,要求出至少有一个发生的概率,比如例1中的至少有1个人译出密码的概率,再比如:有两门高射炮,每一门炮击中飞机的概率都是,求同时发射一发炮弹,击中飞机的概率是多少把两门炮弹击中飞机分别记为事件A与B,击中飞机即 A与B至少有1个发生,所求概率为 . 例2 某工厂的产品要同时经过两名检验员检验合格方能出厂,但在检验时也可能出现差错,将合格产品不能通过检验或将不合格产品通过检验,对于两名检验员,合格品不能通过检验的概率分别为,不合格产品通过检验的概率分别为,两名检验员的工作独立.求:(1)一件合格品不能出厂的概率,(2)一件不合格产品能出厂的概率. 分析:记“一件合格品通过两名检验员检验”分别记为事件和事件,问题(1)一件合格品不能出厂相当于一件合格品至少不能通过一个检验员检验,逆向考虑,其对立事件为合格品通过两名检验,即发生,而的概率可以用相互独立事件的概率公式求解.我们把“一件不合格品通过两名检验员检验”分别记为事件和事件,则问题(2)一件不合格品能出厂相当于一件不合格品同时通过两名检验员检验,即事件发生,其概率可用相互独立事件概率公式求解. 解:(1)记“一件合格品通过第i名检验员检验”为事件,“一件合格品不能通过检验出厂”的对立事件为“一件合格品同时通过两名检验员检验”,即事件发生.

随机事件的概率教案(绝对经典)

§12.1 随机事件的概率 会这样考 1.考查随机事件的概率,以选择或填空题形式出现;2.考查互斥事件、对立事件的概率;3.和统计知识相结合,考查概率与统计的综合应用. 1.随机事件和确定事件 (1)在条件S 下,一定会发生的事件,叫作相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件,叫作相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件. (4)在条件S 下可能发生也可能不发生的事件,叫作相对于条件S 的随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母A ,B ,C …表示. 2.频率与概率 (1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n 为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率. 3. 4.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式 ①如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ).

②若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). ③事件A 的对立事件一般记为A , 则P (A )=1-P (A ) [难点正本 疑点清源] 1.频率和概率 (1)频率与概率有本质的区别,不可混为一谈.频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次 数足够多,所得频率就可以近似地当作随机事件的概率. (2)概率从数量上反映了一个事件发生的可能性的大小;概率的定义实际上也是求一个事件的概率的基本方法. 2.互斥事件与对立事件 互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件. 1.给出下列三个命题,其中正确命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验, 结果3次出现正面,因此正面出现的概率是3 7 ;③随机事件发生的频率就是这个随机事件发生的概率. 答案 0解析 ①错,不一定是10件次品;②错,3 7 是频率而非概率;③错,频率不等于概率,这是两 个不同的概念. 2.在n 次重复进行的试验中,事件A 发生的频率为m n ,当n 很大时,P (A )与m n 的关系是( ) A .P (A )≈m n B .P (A )m n D .P (A )=m n 答案 A 解析 在n 次重复进行的试验中,试验次数很大时,频率可近似当作随机事件的概率. 3.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球 C .至少有一个红球与至少有一个白球 D .恰有一个红球与恰有两个红球 答案 D 4.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________. 答案 0.5. 题型一 事件的关系及运算 例1 判断下列给出的每对事件,是互斥事件还是对立事件,并说明理由.从40张扑克牌(红桃、黑桃、 方块、梅花点数从1~10各10张)中,任取一张. (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”. 解 (1)是互斥事件,不是对立事件. (2)既是互斥事件,又是对立事件.

高中数学教案——随机事件的概率 第四课时

课 题: 11.1随机事件的概率 (四) 教学目的: 1 掌握求解等可能性事件的概率的基本方法; 2.能正确地对一些较复杂的等可能性事件进行分析 教学重点:等可能性事件及其概率的分析和求解 教学难点:对事件的“等可能性”的准确理解 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5 基本事件: 一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件 例如:投掷硬币出现2种结果叫2个基本事件,通常试验中的某一事件A 由几个基本事件组成(例如:投掷一枚骰子出现正面是3的倍数这一事件由“正面是3”、“正面是6”这两个基本事件组成). 6.等可能性事件: 如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率: 如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如

事件A 事件I 果事件A 包含m 个结果,那么事件A 的概率()m P A n =. ①一个基本事件是一次试验的结果,且每个基本事件的概率都是1n ,即是等可能的; ②公式()m P A n =是求解公式,也是等可能性事件的概率的定义,它与随机事件的频率有本质区别; ③可以从集合的观点来考察事件A 的概率:()()()card A P A card I =8.等可能性事件的概率公式及一般求解方法 二、讲解范例: 例1.4个球投入5个盒子中,求: (1)每个盒子最多1个球的概率; (2)恰有一个盒子放2个球,其余盒子最多放1个球的概率 解:4个球投入5个盒子中,每个球有5个选法,4个球有4 5种不同选择结果, (1)相当于从5个盒子中选4个盒子,每个盒子放1个球,有45A 种不同选择结果, ∴所求概率为454245125 A =. (2)先从5个盒子中选1个,从4个球中选2个放入其中,其余2个球放入剩 余的4个盒子中的2个中,有122544 C C A ??个不同结果, ∴所求概率为1225444725125 C C A ??=. 点评:本题属于古典概率的另一基本题型——盒子投球问题,所投的球可以是真实的球,还可以是学生、旅客等,盒子可以是房间、教室、座位等例2.袋中有4个白球和5个黑球,连续从中取出3个球,计算: (1)“取后放回,且顺序为黑白黑”的概率; (2)“取后不放回,且取出2黑1白”的概率 解:(1)每一次取球都有9种方法,共有3 9种结果,

随机事件的概率教学设计(全国一等奖)分析

江西省高安二中龙跃文

2012年11月【随机事件的概率】教学设计 江西省高安二中龙跃文 【教学内容解析】 《随机事件的概率》是北师大版数学必修3中第三章第一节的第一课时,是一节与生活实际联系紧密的概念课。本节课在旨在通过理解概率的定义的基础上理解其核心思想——随机思想。生活中存在着大量的随机现象,如天气、保险、彩票等。随机思想在当今社会有着广泛的应用,在概率成为普通生活常识的今天,对随机现象有一个较清楚的认识,成为每一个公民文化素质的基本要求。研究随机性有助于探究大自然和生活中事件发生的规律,从而方便人们的生活和生产。在初中阶段,同学们已经初步学习了随机事件和概率,对随机现象有了一定的了解。在高中阶段我们进一步学习概率的知识,从而为以后的概率论和数理统计知识打好基础。本节是高中概率的起始内容,理解好本节知识是学习本章后续古典概型和几何概型的重要前提。此外,随机思想是自然辩证法的重要思想,理解随机思想有助于培养学生用一分为二、对立统一的辩证唯物主义观点分析问题和认识世界。 教学重点:概率概念的提出以及频率与概率的区别和联系; 教学难点:利用概率的统计意义解释生活中的一些随机现象。 【教学目标设置】 知识与技能目标: (1)了解随机事件,必然事件,不可能事件的概念,能列举一些生活中的随机事件; (2)能通过正确理解随机事件发生的不确定性和稳定性,进一步认识随机现象; (3)能正确理解概率的概念和意义,明确事件发生的频率与事件发生的概率的区别与联系. 过程与方法目标: (1)能够通过在抛硬币的试验获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高. (2)能利用概率知识正确理解一些现实生活中的随机现象和实际问题。 情感态度与价值观目标: (1) 能通过亲身试验和感受来理解知识,体会数学知识与现实世界的联系。 (2) 通过发现随机事件的发生既有随机性,又存在着统计规律性的过程,体会偶然性和 必然性的对立统一的辩证唯物主义思想。 【学生学情分析】 (1)随机事件广泛存在于生活中,学生对随机事件和概率在生活中都有感性的体验,比如天气、彩票等问题,但是学生在高中学习阶段对随机思想的认识比较少,对随机现象理论也没有形成系统的认识。 (2)要正确理解本节内容中所蕴含的随机思想,需要学生有一定的生活经历,能自己动

相互独立事件与概率的乘法公式

相互独立事件与概率的乘法公式 说课人:董新森 工作单位:东平县职业中专 时间:2007年5月22日

“相互独立事件与概率的乘法公式”说课稿 一、教材分析 1、教材所处的地位和作用 本节课是概率的第三个计算公式,是在学习了互斥事件和概率的加法公式后而引入的,是对概率计算公式的进一步研究,同时又为下一步学习独立重复试验概率的计算奠定了知识和方法基础。 2、教学目标 (1)能正确区分互斥事件和相互独立事件,会用乘法公式解决简单问题。 (2)在归纳总结乘法公式过程中,进一步提高由特殊推测一般的合情推理能力。 (3)通过教师指导下的学生探索归纳活动,激发学生学习的兴趣,使学生经历数学思维过程,获得成功的体验。 3、教学重点与难点 教学重点:概率的乘法公式的应用 教学难点:区分互斥事件和相互独立事件 二、教学和学法 本节课采用启发探究式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、归纳、总结的学习方法,让学生经历数学知识的应用过程。

三、教学过程设计 1、从数学问题引入探究主题 若事件A={甲同学的生日是5月份},B={乙同学的生日是5月份},则A∩B={甲和乙的生日都是5月份} 问题:(1)说出事件A和事件B是否为互斥事件,为什么? (引出相互独立事件的概念) (2)试计算P(A)、P(B)、P(A∩B)。 (3)试分析P(A)、P(B)、P(A∩B)三者之间关系。 (4)试举出几个相互独立事件的例子。 2、发现规律 从以上事例中引导学生观察、分析、归纳 P(A∩B)=P(A)×P(B) 一般地说,如果事件A1,A2,…A n相互独立,那么这几个事件

《随机事件的概率》教案

《随机事件的概率》教案 一、教学目标 知识与技能目标:了解生活中的随机现象;了解必然事件,不可能事件,随机事件的概念;理解随机事件的频率与概率的含义。 过程与方法目标:通过做实验的过程,理解在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解频率和概率的关系;通过一系列问题的设置,培养学生独立思考、发现问题、分析问题和解决问题的能力。 情感、态度、价值观目标:渗透偶然寓于必然,事件之间既对立又统一的辩证唯物主义思想;增强学生的科学素养。 二、教学重点、难点 教学重点:根据随机事件、必然事伯、不可能事件的概念判断给定事件的类型,并能用概率来刻画生活中的随机现象,理解频率和概率的区别与联系。 教学难点:理解随机事件的频率定义与概率的统计定义及计算方法,理解频率和概率的区别与联系。 三、教学准备 多媒体 四、教学过程

情境设置,引入课题 相传古代有个国王,由于崇尚迷信,世代沿袭着一条奇特的法规:凡是死囚,在临刑时要抽一次“生死签”,即在两张小纸片上分别写着“生”和“死”的字样,由执法官监督,让犯人当众抽签,如果抽到“死”字的签,则立即处死;如果抽到“生”字的签,则当场赦免。 有一次国王决定处死一个敢于“犯上”的大臣,为了不让这个囚臣得到半点获赦机会,他与几个心腹密谋暗议,暗中叮嘱执法官,把两张纸上都写成“死”。 但最后“犯上”的大臣还是获得赦免,你知道他是怎么做的吗? 相信聪明的同学们应该知道“犯上”的大臣的聪明之举:将所抽到的签吞毁掉,为证明自己抽到“生”字的签,只需验证所剩的签为“死”签。 我们如果学习了随机事件的概率,便不难用数学的角度来解释“犯上”的大臣的聪明之举。下面中公资深讲师跟大家来认识一下事件的概念。探索研究,理解事 问题1:下面有一些事件,请同学们从这些事件发生与否的角度,分析一下它们各有什么特点? ①“导体通电后,发热”; ②“抛出一块石块,自由下落”; ③“某人射击一次,中靶”;

人教A版高中数学必修三随机事件的概率教案

3.1.1随机事件的概率 (第一课时) 一、教学目标: 1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A 出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A 发生的频率f n (A )与事件A 发生的概率P (A )的区别与联系; 2、过程与方法:发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高; 3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识. 二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2) 教学难点:用概率的知识解释现实生活中的具体问题. 三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三 类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,计算机及多媒体教学. 四、教学设想: 1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。 2、基本概念: (1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)= n n A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。 (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值 n n A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 3、例题分析: 例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)“抛一石块,下落”. (2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a >b ,那么a -b >0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”; (7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;

高中数学《随机事件的概率》公开课优秀教学设计

《随机事件的概率》教学设计 一、教学内容解析 由于概率问题与人们的实际生活有着紧密的联系,对指导人们社会生产、生活具有十分重要 的意义,所以概率不仅是高考重点内容,更是学生应该掌握的重要知识。 相对于传统的代数、几何而言,概率论形成较晚,其定义方式新颖独特,具有不确定性,这 是理解概率的难点所在. 随机事件的概率”是人教A版《数学必修3》第三章第一节的内容, 本节课是其中的第一课时。课程标准要求:在具体情境中,了解随机事件发生的不确定性 和频率的稳定性,进一步了解概率的意义以及频率与概率的区别”。并指出:概率教学的核 心问题是让学生了解随机现象与概率的意义”。要求教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的不确定性及其频率的稳定性,并尝试澄清日常生活遇到的一些错误认识。”本节课在学生已有的初中知识基础上通过数学试验展开了对概率的研究一一利用频率估计概率,即当试验次数较大时,频率渐趋稳定的那个常数就叫概率,属于原认知性知识,本节课通过对生活实例的剖析,让学生体会生活中我们利用事件发生的 频率估计概率的实践经验,通过抛硬币的数学试验让学生逐渐体会虽然随机事件在一次试验中其发生与否不可确定,但是大量重复试验的情况下其概率值会存在一定的规律性一一接近于一个常数。体会偶然与必然的联系,体会现象与本质的关系,体会规律的客观存在性,体会数学源于生活又应用于生活。同时,本节课的学习,将为后面学习古典概型、几何概型、条件概率等打下基础。因此,我认为通过抛掷硬币了解概率的定义、明确其与频率的区别 和联系”是本节课的教学重点。 二、教学目标设置 课程标准要求:在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了 解概率的意义以及频率与概率的区别”。并指出:概率教学的核心问题是让学生了解随机现 象与概率的意义”。要求教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解 随机事件发生的不确定性及其频率的稳定性。”因此本节课的教学目标设定为: 1知识与技能 ⑴了解随机事件、必然事件、不可能事件的概念; ⑵通过试验了解随机事件发生的不确定性和频率的稳定性;正确理解事件A出现的频率的 意义,明确事件A发生的频率与事件A发生的概率P(A)的区别与联系 2、过程与方法

高中数学第一册(上)相互独立事件的概率

高三数学第一轮复习讲义(74) 2005.1.8 相互独立事件的概率 一.复习目标: 1.了解相互独立事件的意义,会求相互独立事件同时发生的概率; 2.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 二.知识要点: 1.相互独立事件的概念: . 2.,A B 是相互独立事件,则()P A B ?= . 3.1次试验中某事件发生的概率是P ,则n 次独立重复试验中恰好发生k 次的概率是 . 三.课前预习: 1.下列各对事件 (1)运动员甲射击一次,“射中9环”与“射中8环”, (2)甲、乙二运动员各射击一次, “甲射中10环”与“乙射中9环”, (3)甲、乙二运动员各射击一次, “甲、乙都射中目标”与,“甲、乙都没有射中目标”, (4)甲、乙二运动员各射击一次, “至少有一人射中目标”与,“甲射中目标但乙没有射中目标”,是互斥事件的有 (1),(3) .相互独立事件的有 (2) . 2.某射手射击一次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论: ①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是30.90.1?; ③他至少击中目标1次的概率是410.1-,其中正确结论的序号 ①③ . 3.100件产品中有5件次品,从中连续取两次,(1)取后不放回,(2)取后放回,则两次都取合格品的概率分别是 893990 、 361400 . 4.三个互相认识的人乘同一列火车,火车有10节车厢,则至少两人上了同一车厢的概率是 ( ) ()A 29200 ()B 725 ()C 7125 ()D 718 5.口袋里装有大小相同的黑、白两色的手套,黑色手套15只,白色手套10只,现从中随机地取出两只手 套,如果两只是同色手套则甲获胜,两只手套颜色不同则乙获胜,则甲、乙获胜的机会是 ( ) ()A 甲多 ()B 乙多 ()C 一样多 ()D 不确定 四.例题分析: 例1.某地区有5个工厂,由于电力紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响. (1)求5个工厂均选择星期日停电的概率;(2)求至少有两个工厂选择同一天停电的概率. 解:设5个工厂均选择星期日停电的事件为A . 则511()716807 P A ==. (2)设5个工厂选择停电的时间各不相同的事件为B . 则575360()72401 A P B ==, 至少有两个工厂选择同一天停电的事件为B ,3602041()1()124012401 P B P B =-=-=. 小结:5个工厂均选择星期日停电可看作5个相互独立事件. 例2.某厂生产的A 产品按每盒10件进行包装,每盒产品均需检验合格后方可出厂.质检办法规定:从每

相关文档
最新文档